Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Helge Deller | 2676 | 100.00% | 1 | 100.00% |
Total | 2676 | 1 |
/* SPDX-License-Identifier: GPL-2.0 */ /* * Common functionality for PARISC32 and PARISC64 BPF JIT compilers * * Copyright (c) 2023 Helge Deller <deller@gmx.de> * */ #ifndef _BPF_JIT_H #define _BPF_JIT_H #include <linux/bpf.h> #include <linux/filter.h> #include <asm/cacheflush.h> #define HPPA_JIT_DEBUG 0 #define HPPA_JIT_REBOOT 0 #define HPPA_JIT_DUMP 0 #define OPTIMIZE_HPPA 1 /* enable some asm optimizations */ // echo 1 > /proc/sys/net/core/bpf_jit_enable #define HPPA_R(nr) nr /* use HPPA register #nr */ enum { HPPA_REG_ZERO = 0, /* The constant value 0 */ HPPA_REG_R1 = 1, /* used for addil */ HPPA_REG_RP = 2, /* Return address */ HPPA_REG_ARG7 = 19, /* ARG4-7 used in 64-bit ABI */ HPPA_REG_ARG6 = 20, HPPA_REG_ARG5 = 21, HPPA_REG_ARG4 = 22, HPPA_REG_ARG3 = 23, /* ARG0-3 in 32- and 64-bit ABI */ HPPA_REG_ARG2 = 24, HPPA_REG_ARG1 = 25, HPPA_REG_ARG0 = 26, HPPA_REG_GP = 27, /* Global pointer */ HPPA_REG_RET0 = 28, /* Return value, HI in 32-bit */ HPPA_REG_RET1 = 29, /* Return value, LOW in 32-bit */ HPPA_REG_SP = 30, /* Stack pointer */ HPPA_REG_R31 = 31, #ifdef CONFIG_64BIT HPPA_REG_TCC = 3, HPPA_REG_TCC_SAVED = 4, HPPA_REG_TCC_IN_INIT = HPPA_REG_R31, #else HPPA_REG_TCC = 18, HPPA_REG_TCC_SAVED = 17, HPPA_REG_TCC_IN_INIT = HPPA_REG_R31, #endif HPPA_REG_T0 = HPPA_REG_R1, /* Temporaries */ HPPA_REG_T1 = HPPA_REG_R31, HPPA_REG_T2 = HPPA_REG_ARG4, #ifndef CONFIG_64BIT HPPA_REG_T3 = HPPA_REG_ARG5, /* not used in 64-bit */ HPPA_REG_T4 = HPPA_REG_ARG6, HPPA_REG_T5 = HPPA_REG_ARG7, #endif }; struct hppa_jit_context { struct bpf_prog *prog; u32 *insns; /* HPPA insns */ int ninsns; int reg_seen_collect; int reg_seen; int body_len; int epilogue_offset; int prologue_len; int *offset; /* BPF to HPPA */ }; #define REG_SET_SEEN(ctx, nr) { if (ctx->reg_seen_collect) ctx->reg_seen |= BIT(nr); } #define REG_SET_SEEN_ALL(ctx) { if (ctx->reg_seen_collect) ctx->reg_seen = -1; } #define REG_FORCE_SEEN(ctx, nr) { ctx->reg_seen |= BIT(nr); } #define REG_WAS_SEEN(ctx, nr) (ctx->reg_seen & BIT(nr)) #define REG_ALL_SEEN(ctx) (ctx->reg_seen == -1) #define HPPA_INSN_SIZE 4 /* bytes per HPPA asm instruction */ #define REG_SIZE REG_SZ /* bytes per native "long" word */ /* subtract hppa displacement on branches which is .+8 */ #define HPPA_BRANCH_DISPLACEMENT 2 /* instructions */ /* asm statement indicator to execute delay slot */ #define EXEC_NEXT_INSTR 0 #define NOP_NEXT_INSTR 1 #define im11(val) (((u32)(val)) & 0x07ff) #define hppa_ldil(addr, reg) \ hppa_t5_insn(0x08, reg, ((u32)(addr)) >> 11) /* ldil im21,reg */ #define hppa_addil(addr, reg) \ hppa_t5_insn(0x0a, reg, ((u32)(addr)) >> 11) /* addil im21,reg -> result in gr1 */ #define hppa_ldo(im14, reg, target) \ hppa_t1_insn(0x0d, reg, target, im14) /* ldo val14(reg),target */ #define hppa_ldi(im14, reg) \ hppa_ldo(im14, HPPA_REG_ZERO, reg) /* ldi val14,reg */ #define hppa_or(reg1, reg2, target) \ hppa_t6_insn(0x02, reg2, reg1, 0, 0, 0x09, target) /* or reg1,reg2,target */ #define hppa_or_cond(reg1, reg2, cond, f, target) \ hppa_t6_insn(0x02, reg2, reg1, cond, f, 0x09, target) #define hppa_and(reg1, reg2, target) \ hppa_t6_insn(0x02, reg2, reg1, 0, 0, 0x08, target) /* and reg1,reg2,target */ #define hppa_and_cond(reg1, reg2, cond, f, target) \ hppa_t6_insn(0x02, reg2, reg1, cond, f, 0x08, target) #define hppa_xor(reg1, reg2, target) \ hppa_t6_insn(0x02, reg2, reg1, 0, 0, 0x0a, target) /* xor reg1,reg2,target */ #define hppa_add(reg1, reg2, target) \ hppa_t6_insn(0x02, reg2, reg1, 0, 0, 0x18, target) /* add reg1,reg2,target */ #define hppa_addc(reg1, reg2, target) \ hppa_t6_insn(0x02, reg2, reg1, 0, 0, 0x1c, target) /* add,c reg1,reg2,target */ #define hppa_sub(reg1, reg2, target) \ hppa_t6_insn(0x02, reg2, reg1, 0, 0, 0x10, target) /* sub reg1,reg2,target */ #define hppa_subb(reg1, reg2, target) \ hppa_t6_insn(0x02, reg2, reg1, 0, 0, 0x14, target) /* sub,b reg1,reg2,target */ #define hppa_nop() \ hppa_or(0,0,0) /* nop: or 0,0,0 */ #define hppa_addi(val11, reg, target) \ hppa_t7_insn(0x2d, reg, target, val11) /* addi im11,reg,target */ #define hppa_subi(val11, reg, target) \ hppa_t7_insn(0x25, reg, target, val11) /* subi im11,reg,target */ #define hppa_copy(reg, target) \ hppa_or(reg, HPPA_REG_ZERO, target) /* copy reg,target */ #define hppa_ldw(val14, reg, target) \ hppa_t1_insn(0x12, reg, target, val14) /* ldw im14(reg),target */ #define hppa_ldb(val14, reg, target) \ hppa_t1_insn(0x10, reg, target, val14) /* ldb im14(reg),target */ #define hppa_ldh(val14, reg, target) \ hppa_t1_insn(0x11, reg, target, val14) /* ldh im14(reg),target */ #define hppa_stw(reg, val14, base) \ hppa_t1_insn(0x1a, base, reg, val14) /* stw reg,im14(base) */ #define hppa_stb(reg, val14, base) \ hppa_t1_insn(0x18, base, reg, val14) /* stb reg,im14(base) */ #define hppa_sth(reg, val14, base) \ hppa_t1_insn(0x19, base, reg, val14) /* sth reg,im14(base) */ #define hppa_stwma(reg, val14, base) \ hppa_t1_insn(0x1b, base, reg, val14) /* stw,ma reg,im14(base) */ #define hppa_bv(reg, base, nop) \ hppa_t11_insn(0x3a, base, reg, 0x06, 0, nop) /* bv(,n) reg(base) */ #define hppa_be(offset, base) \ hppa_t12_insn(0x38, base, offset, 0x00, 1) /* be,n offset(0,base) */ #define hppa_be_l(offset, base, nop) \ hppa_t12_insn(0x39, base, offset, 0x00, nop) /* ble(,nop) offset(0,base) */ #define hppa_mtctl(reg, cr) \ hppa_t21_insn(0x00, cr, reg, 0xc2, 0) /* mtctl reg,cr */ #define hppa_mtsar(reg) \ hppa_mtctl(reg, 11) /* mtsar reg */ #define hppa_zdep(r, p, len, target) \ hppa_t10_insn(0x35, target, r, 0, 2, p, len) /* zdep r,a,b,t */ #define hppa_shl(r, len, target) \ hppa_zdep(r, len, len, lo(rd)) #define hppa_depwz(r, p, len, target) \ hppa_t10_insn(0x35, target, r, 0, 3, 31-(p), 32-(len)) /* depw,z r,p,len,ret1 */ #define hppa_depwz_sar(reg, target) \ hppa_t1_insn(0x35, target, reg, 0) /* depw,z reg,sar,32,target */ #define hppa_shrpw_sar(reg, target) \ hppa_t10_insn(0x34, reg, 0, 0, 0, 0, target) /* shrpw r0,reg,sar,target */ #define hppa_shrpw(r1, r2, p, target) \ hppa_t10_insn(0x34, r2, r1, 0, 2, 31-(p), target) /* shrpw r1,r2,p,target */ #define hppa_shd(r1, r2, p, target) \ hppa_t10_insn(0x34, r2, r1, 0, 2, 31-(p), target) /* shrpw r1,r2,p,tarfer */ #define hppa_extrws_sar(reg, target) \ hppa_t10_insn(0x34, reg, target, 0, 5, 0, 0) /* extrw,s reg,sar,32,ret0 */ #define hppa_extrws(reg, p, len, target) \ hppa_t10_insn(0x34, reg, target, 0, 7, p, len) /* extrw,s reg,p,len,target */ #define hppa_extru(r, p, len, target) \ hppa_t10_insn(0x34, r, target, 0, 6, p, 32-(len)) #define hppa_shr(r, len, target) \ hppa_extru(r, 31-(len), 32-(len), target) #define hppa_bl(imm17, rp) \ hppa_t12_insn(0x3a, rp, imm17, 0x00, 1) /* bl,n target_addr,rp */ #define hppa_sh2add(r1, r2, target) \ hppa_t6_insn(0x02, r2, r1, 0, 0, 0x1a, target) /* sh2add r1,r2,target */ #define hppa_combt(r1, r2, target_addr, condition, nop) \ hppa_t11_insn(IS_ENABLED(CONFIG_64BIT) ? 0x27 : 0x20, \ r2, r1, condition, target_addr, nop) /* combt,cond,n r1,r2,addr */ #define hppa_beq(r1, r2, target_addr) \ hppa_combt(r1, r2, target_addr, 1, NOP_NEXT_INSTR) #define hppa_blt(r1, r2, target_addr) \ hppa_combt(r1, r2, target_addr, 2, NOP_NEXT_INSTR) #define hppa_ble(r1, r2, target_addr) \ hppa_combt(r1, r2, target_addr, 3, NOP_NEXT_INSTR) #define hppa_bltu(r1, r2, target_addr) \ hppa_combt(r1, r2, target_addr, 4, NOP_NEXT_INSTR) #define hppa_bleu(r1, r2, target_addr) \ hppa_combt(r1, r2, target_addr, 5, NOP_NEXT_INSTR) #define hppa_combf(r1, r2, target_addr, condition, nop) \ hppa_t11_insn(IS_ENABLED(CONFIG_64BIT) ? 0x2f : 0x22, \ r2, r1, condition, target_addr, nop) /* combf,cond,n r1,r2,addr */ #define hppa_bne(r1, r2, target_addr) \ hppa_combf(r1, r2, target_addr, 1, NOP_NEXT_INSTR) #define hppa_bge(r1, r2, target_addr) \ hppa_combf(r1, r2, target_addr, 2, NOP_NEXT_INSTR) #define hppa_bgt(r1, r2, target_addr) \ hppa_combf(r1, r2, target_addr, 3, NOP_NEXT_INSTR) #define hppa_bgeu(r1, r2, target_addr) \ hppa_combf(r1, r2, target_addr, 4, NOP_NEXT_INSTR) #define hppa_bgtu(r1, r2, target_addr) \ hppa_combf(r1, r2, target_addr, 5, NOP_NEXT_INSTR) /* 64-bit instructions */ #ifdef CONFIG_64BIT #define hppa64_ldd_reg(reg, b, target) \ hppa_t10_insn(0x03, b, reg, 0, 0, 3<<1, target) #define hppa64_ldd_im5(im5, b, target) \ hppa_t10_insn(0x03, b, low_sign_unext(im5,5), 0, 1<<2, 3<<1, target) #define hppa64_ldd_im16(im16, b, target) \ hppa_t10_insn(0x14, b, target, 0, 0, 0, 0) | re_assemble_16(im16) #define hppa64_std_im5(src, im5, b) \ hppa_t10_insn(0x03, b, src, 0, 1<<2, 0xB<<1, low_sign_unext(im5,5)) #define hppa64_std_im16(src, im16, b) \ hppa_t10_insn(0x1c, b, src, 0, 0, 0, 0) | re_assemble_16(im16) #define hppa64_bl_long(offs22) \ hppa_t12_L_insn(0x3a, offs22, 1) #define hppa64_mtsarcm(reg) \ hppa_t21_insn(0x00, 11, reg, 0xc6, 0) #define hppa64_shrpd_sar(reg, target) \ hppa_t10_insn(0x34, reg, 0, 0, 0, 1<<4, target) #define hppa64_shladd(r1, sa, r2, target) \ hppa_t6_insn(0x02, r2, r1, 0, 0, 1<<4|1<<3|sa, target) #define hppa64_depdz_sar(reg, target) \ hppa_t21_insn(0x35, target, reg, 3<<3, 0) #define hppa_extrd_sar(reg, target, se) \ hppa_t10_insn(0x34, reg, target, 0, 0, 0, 0) | 2<<11 | (se&1)<<10 | 1<<9 | 1<<8 #define hppa64_bve_l_rp(base) \ (0x3a << 26) | (base << 21) | 0xf000 #define hppa64_permh_3210(r, target) \ (0x3e << 26) | (r << 21) | (r << 16) | (target) | 0x00006900 #define hppa64_hshl(r, sa, target) \ (0x3e << 26) | (0 << 21) | (r << 16) | (sa << 6) | (target) | 0x00008800 #define hppa64_hshr_u(r, sa, target) \ (0x3e << 26) | (r << 21) | (0 << 16) | (sa << 6) | (target) | 0x0000c800 #endif struct hppa_jit_data { struct bpf_binary_header *header; u8 *image; struct hppa_jit_context ctx; }; static inline void bpf_fill_ill_insns(void *area, unsigned int size) { memset(area, 0, size); } static inline void bpf_flush_icache(void *start, void *end) { flush_icache_range((unsigned long)start, (unsigned long)end); } /* Emit a 4-byte HPPA instruction. */ static inline void emit(const u32 insn, struct hppa_jit_context *ctx) { if (ctx->insns) { ctx->insns[ctx->ninsns] = insn; } ctx->ninsns++; } static inline int epilogue_offset(struct hppa_jit_context *ctx) { int to = ctx->epilogue_offset, from = ctx->ninsns; return (to - from); } /* Return -1 or inverted cond. */ static inline int invert_bpf_cond(u8 cond) { switch (cond) { case BPF_JEQ: return BPF_JNE; case BPF_JGT: return BPF_JLE; case BPF_JLT: return BPF_JGE; case BPF_JGE: return BPF_JLT; case BPF_JLE: return BPF_JGT; case BPF_JNE: return BPF_JEQ; case BPF_JSGT: return BPF_JSLE; case BPF_JSLT: return BPF_JSGE; case BPF_JSGE: return BPF_JSLT; case BPF_JSLE: return BPF_JSGT; } return -1; } static inline signed long hppa_offset(int insn, int off, struct hppa_jit_context *ctx) { signed long from, to; off++; /* BPF branch is from PC+1 */ from = (insn > 0) ? ctx->offset[insn - 1] : 0; to = (insn + off > 0) ? ctx->offset[insn + off - 1] : 0; return (to - from); } /* does the signed value fits into a given number of bits ? */ static inline int check_bits_int(signed long val, int bits) { return ((val >= 0) && ((val >> bits) == 0)) || ((val < 0) && (((~((u32)val)) >> (bits-1)) == 0)); } /* can the signed value be used in relative code ? */ static inline int relative_bits_ok(signed long val, int bits) { return ((val >= 0) && (val < (1UL << (bits-1)))) || /* XXX */ ((val < 0) && (((~((unsigned long)val)) >> (bits-1)) == 0) && (val & (1UL << (bits-1)))); } /* can the signed value be used in relative branches ? */ static inline int relative_branch_ok(signed long val, int bits) { return ((val >= 0) && (val < (1UL << (bits-2)))) || /* XXX */ ((val < 0) && (((~((unsigned long)val)) < (1UL << (bits-2)))) && (val & (1UL << (bits-1)))); } #define is_5b_int(val) check_bits_int(val, 5) static inline unsigned sign_unext(unsigned x, unsigned len) { unsigned len_ones; len_ones = (1 << len) - 1; return x & len_ones; } static inline unsigned low_sign_unext(unsigned x, unsigned len) { unsigned temp; unsigned sign; sign = (x >> (len-1)) & 1; temp = sign_unext (x, len-1); return (temp << 1) | sign; } static inline unsigned re_assemble_12(unsigned as12) { return (( (as12 & 0x800) >> 11) | ((as12 & 0x400) >> (10 - 2)) | ((as12 & 0x3ff) << (1 + 2))); } static inline unsigned re_assemble_14(unsigned as14) { return (( (as14 & 0x1fff) << 1) | ((as14 & 0x2000) >> 13)); } #ifdef CONFIG_64BIT static inline unsigned re_assemble_16(unsigned as16) { unsigned s, t; /* Unusual 16-bit encoding, for wide mode only. */ t = (as16 << 1) & 0xffff; s = (as16 & 0x8000); return (t ^ s ^ (s >> 1)) | (s >> 15); } #endif static inline unsigned re_assemble_17(unsigned as17) { return (( (as17 & 0x10000) >> 16) | ((as17 & 0x0f800) << (16 - 11)) | ((as17 & 0x00400) >> (10 - 2)) | ((as17 & 0x003ff) << (1 + 2))); } static inline unsigned re_assemble_21(unsigned as21) { return (( (as21 & 0x100000) >> 20) | ((as21 & 0x0ffe00) >> 8) | ((as21 & 0x000180) << 7) | ((as21 & 0x00007c) << 14) | ((as21 & 0x000003) << 12)); } static inline unsigned re_assemble_22(unsigned as22) { return (( (as22 & 0x200000) >> 21) | ((as22 & 0x1f0000) << (21 - 16)) | ((as22 & 0x00f800) << (16 - 11)) | ((as22 & 0x000400) >> (10 - 2)) | ((as22 & 0x0003ff) << (1 + 2))); } /* Various HPPA instruction formats. */ /* see https://parisc.wiki.kernel.org/images-parisc/6/68/Pa11_acd.pdf, appendix C */ static inline u32 hppa_t1_insn(u8 opcode, u8 b, u8 r, s16 im14) { return ((opcode << 26) | (b << 21) | (r << 16) | re_assemble_14(im14)); } static inline u32 hppa_t5_insn(u8 opcode, u8 tr, u32 val21) { return ((opcode << 26) | (tr << 21) | re_assemble_21(val21)); } static inline u32 hppa_t6_insn(u8 opcode, u8 r2, u8 r1, u8 c, u8 f, u8 ext6, u16 t) { return ((opcode << 26) | (r2 << 21) | (r1 << 16) | (c << 13) | (f << 12) | (ext6 << 6) | t); } /* 7. Arithmetic immediate */ static inline u32 hppa_t7_insn(u8 opcode, u8 r, u8 t, u32 im11) { return ((opcode << 26) | (r << 21) | (t << 16) | low_sign_unext(im11, 11)); } /* 10. Shift instructions */ static inline u32 hppa_t10_insn(u8 opcode, u8 r2, u8 r1, u8 c, u8 ext3, u8 cp, u8 t) { return ((opcode << 26) | (r2 << 21) | (r1 << 16) | (c << 13) | (ext3 << 10) | (cp << 5) | t); } /* 11. Conditional branch instructions */ static inline u32 hppa_t11_insn(u8 opcode, u8 r2, u8 r1, u8 c, u32 w, u8 nop) { u32 ra = re_assemble_12(w); // ra = low_sign_unext(w,11) | (w & (1<<10) return ((opcode << 26) | (r2 << 21) | (r1 << 16) | (c << 13) | (nop << 1) | ra); } /* 12. Branch instructions */ static inline u32 hppa_t12_insn(u8 opcode, u8 rp, u32 w, u8 ext3, u8 nop) { return ((opcode << 26) | (rp << 21) | (ext3 << 13) | (nop << 1) | re_assemble_17(w)); } static inline u32 hppa_t12_L_insn(u8 opcode, u32 w, u8 nop) { return ((opcode << 26) | (0x05 << 13) | (nop << 1) | re_assemble_22(w)); } /* 21. Move to control register */ static inline u32 hppa_t21_insn(u8 opcode, u8 r2, u8 r1, u8 ext8, u8 t) { return ((opcode << 26) | (r2 << 21) | (r1 << 16) | (ext8 << 5) | t); } /* Helper functions called by jit code on HPPA32 and HPPA64. */ u64 hppa_div64(u64 div, u64 divisor); u64 hppa_div64_rem(u64 div, u64 divisor); /* Helper functions that emit HPPA instructions when possible. */ void bpf_jit_build_prologue(struct hppa_jit_context *ctx); void bpf_jit_build_epilogue(struct hppa_jit_context *ctx); int bpf_jit_emit_insn(const struct bpf_insn *insn, struct hppa_jit_context *ctx, bool extra_pass); #endif /* _BPF_JIT_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1