Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Helge Deller | 6749 | 100.00% | 1 | 100.00% |
Total | 6749 | 1 |
// SPDX-License-Identifier: GPL-2.0 /* * BPF JIT compiler for PA-RISC (64-bit) * * Copyright(c) 2023 Helge Deller <deller@gmx.de> * * The code is based on the BPF JIT compiler for RV64 by Björn Töpel. * * TODO: * - check if bpf_jit_needs_zext() is needed (currently enabled) * - implement arch_prepare_bpf_trampoline(), poke(), ... */ #include <linux/bitfield.h> #include <linux/bpf.h> #include <linux/filter.h> #include <linux/libgcc.h> #include "bpf_jit.h" static const int regmap[] = { [BPF_REG_0] = HPPA_REG_RET0, [BPF_REG_1] = HPPA_R(5), [BPF_REG_2] = HPPA_R(6), [BPF_REG_3] = HPPA_R(7), [BPF_REG_4] = HPPA_R(8), [BPF_REG_5] = HPPA_R(9), [BPF_REG_6] = HPPA_R(10), [BPF_REG_7] = HPPA_R(11), [BPF_REG_8] = HPPA_R(12), [BPF_REG_9] = HPPA_R(13), [BPF_REG_FP] = HPPA_R(14), [BPF_REG_AX] = HPPA_R(15), }; /* * Stack layout during BPF program execution (note: stack grows up): * * high * HPPA64 sp => +----------+ <= HPPA64 fp * | saved sp | * | saved rp | * | ... | HPPA64 callee-saved registers * | curr args| * | local var| * +----------+ <= (BPF FP) * | | * | ... | BPF program stack * | | * | ... | Function call stack * | | * +----------+ * low */ /* Offset from fp for BPF registers stored on stack. */ #define STACK_ALIGN FRAME_SIZE #define EXIT_PTR_LOAD(reg) hppa64_ldd_im16(-FRAME_SIZE, HPPA_REG_SP, reg) #define EXIT_PTR_STORE(reg) hppa64_std_im16(reg, -FRAME_SIZE, HPPA_REG_SP) #define EXIT_PTR_JUMP(reg, nop) hppa_bv(HPPA_REG_ZERO, reg, nop) static u8 bpf_to_hppa_reg(int bpf_reg, struct hppa_jit_context *ctx) { u8 reg = regmap[bpf_reg]; REG_SET_SEEN(ctx, reg); return reg; }; static void emit_hppa_copy(const s8 rs, const s8 rd, struct hppa_jit_context *ctx) { REG_SET_SEEN(ctx, rd); if (OPTIMIZE_HPPA && (rs == rd)) return; REG_SET_SEEN(ctx, rs); emit(hppa_copy(rs, rd), ctx); } static void emit_hppa64_depd(u8 src, u8 pos, u8 len, u8 target, bool no_zero, struct hppa_jit_context *ctx) { int c; pos &= (BITS_PER_LONG - 1); pos = 63 - pos; len = 64 - len; c = (len < 32) ? 0x4 : 0; c |= (pos >= 32) ? 0x2 : 0; c |= (no_zero) ? 0x1 : 0; emit(hppa_t10_insn(0x3c, target, src, 0, c, pos & 0x1f, len & 0x1f), ctx); } static void emit_hppa64_shld(u8 src, int num, u8 target, struct hppa_jit_context *ctx) { emit_hppa64_depd(src, 63-num, 64-num, target, 0, ctx); } static void emit_hppa64_extrd(u8 src, u8 pos, u8 len, u8 target, bool signed_op, struct hppa_jit_context *ctx) { int c; pos &= (BITS_PER_LONG - 1); len = 64 - len; c = (len < 32) ? 0x4 : 0; c |= (pos >= 32) ? 0x2 : 0; c |= signed_op ? 0x1 : 0; emit(hppa_t10_insn(0x36, src, target, 0, c, pos & 0x1f, len & 0x1f), ctx); } static void emit_hppa64_extrw(u8 src, u8 pos, u8 len, u8 target, bool signed_op, struct hppa_jit_context *ctx) { int c; pos &= (32 - 1); len = 32 - len; c = 0x06 | (signed_op ? 1 : 0); emit(hppa_t10_insn(0x34, src, target, 0, c, pos, len), ctx); } #define emit_hppa64_zext32(r, target, ctx) \ emit_hppa64_extrd(r, 63, 32, target, false, ctx) #define emit_hppa64_sext32(r, target, ctx) \ emit_hppa64_extrd(r, 63, 32, target, true, ctx) static void emit_hppa64_shrd(u8 src, int num, u8 target, bool signed_op, struct hppa_jit_context *ctx) { emit_hppa64_extrd(src, 63-num, 64-num, target, signed_op, ctx); } static void emit_hppa64_shrw(u8 src, int num, u8 target, bool signed_op, struct hppa_jit_context *ctx) { emit_hppa64_extrw(src, 31-num, 32-num, target, signed_op, ctx); } /* Emit variable-length instructions for 32-bit imm */ static void emit_imm32(u8 rd, s32 imm, struct hppa_jit_context *ctx) { u32 lower = im11(imm); REG_SET_SEEN(ctx, rd); if (OPTIMIZE_HPPA && relative_bits_ok(imm, 14)) { emit(hppa_ldi(imm, rd), ctx); return; } if (OPTIMIZE_HPPA && lower == imm) { emit(hppa_ldo(lower, HPPA_REG_ZERO, rd), ctx); return; } emit(hppa_ldil(imm, rd), ctx); if (OPTIMIZE_HPPA && (lower == 0)) return; emit(hppa_ldo(lower, rd, rd), ctx); } static bool is_32b_int(s64 val) { return val == (s32) val; } /* Emit variable-length instructions for 64-bit imm */ static void emit_imm(u8 rd, s64 imm, u8 tmpreg, struct hppa_jit_context *ctx) { u32 upper32; /* get lower 32-bits into rd, sign extended */ emit_imm32(rd, imm, ctx); /* do we have upper 32-bits too ? */ if (OPTIMIZE_HPPA && is_32b_int(imm)) return; /* load upper 32-bits into lower tmpreg and deposit into rd */ upper32 = imm >> 32; if (upper32 || !OPTIMIZE_HPPA) { emit_imm32(tmpreg, upper32, ctx); emit_hppa64_depd(tmpreg, 31, 32, rd, 1, ctx); } else emit_hppa64_depd(HPPA_REG_ZERO, 31, 32, rd, 1, ctx); } static int emit_jump(signed long paoff, bool force_far, struct hppa_jit_context *ctx) { unsigned long pc, addr; /* Note: Use 2 instructions for jumps if force_far is set. */ if (relative_bits_ok(paoff - HPPA_BRANCH_DISPLACEMENT, 22)) { /* use BL,long branch followed by nop() */ emit(hppa64_bl_long(paoff - HPPA_BRANCH_DISPLACEMENT), ctx); if (force_far) emit(hppa_nop(), ctx); return 0; } pc = (uintptr_t) &ctx->insns[ctx->ninsns]; addr = pc + (paoff * HPPA_INSN_SIZE); /* even the 64-bit kernel runs in memory below 4GB */ if (WARN_ON_ONCE(addr >> 32)) return -E2BIG; emit(hppa_ldil(addr, HPPA_REG_R31), ctx); emit(hppa_be_l(im11(addr) >> 2, HPPA_REG_R31, NOP_NEXT_INSTR), ctx); return 0; } static void __build_epilogue(bool is_tail_call, struct hppa_jit_context *ctx) { int i; if (is_tail_call) { /* * goto *(t0 + 4); * Skips first instruction of prologue which initializes tail * call counter. Assumes t0 contains address of target program, * see emit_bpf_tail_call. */ emit(hppa_ldo(1 * HPPA_INSN_SIZE, HPPA_REG_T0, HPPA_REG_T0), ctx); emit(hppa_bv(HPPA_REG_ZERO, HPPA_REG_T0, EXEC_NEXT_INSTR), ctx); /* in delay slot: */ emit(hppa_copy(HPPA_REG_TCC, HPPA_REG_TCC_IN_INIT), ctx); return; } /* load epilogue function pointer and jump to it. */ /* exit point is either at next instruction, or the outest TCC exit function */ emit(EXIT_PTR_LOAD(HPPA_REG_RP), ctx); emit(EXIT_PTR_JUMP(HPPA_REG_RP, NOP_NEXT_INSTR), ctx); /* NOTE: we are 64-bit and big-endian, so return lower sign-extended 32-bit value */ emit_hppa64_sext32(regmap[BPF_REG_0], HPPA_REG_RET0, ctx); /* Restore callee-saved registers. */ for (i = 3; i <= 15; i++) { if (OPTIMIZE_HPPA && !REG_WAS_SEEN(ctx, HPPA_R(i))) continue; emit(hppa64_ldd_im16(-REG_SIZE * i, HPPA_REG_SP, HPPA_R(i)), ctx); } /* load original return pointer (stored by outest TCC function) */ emit(hppa64_ldd_im16(-2*REG_SIZE, HPPA_REG_SP, HPPA_REG_RP), ctx); emit(hppa_bv(HPPA_REG_ZERO, HPPA_REG_RP, EXEC_NEXT_INSTR), ctx); /* in delay slot: */ emit(hppa64_ldd_im5(-REG_SIZE, HPPA_REG_SP, HPPA_REG_SP), ctx); emit(hppa_nop(), ctx); // XXX WARUM einer zu wenig ?? } static int emit_branch(u8 op, u8 rd, u8 rs, signed long paoff, struct hppa_jit_context *ctx) { int e, s; bool far = false; int off; if (op == BPF_JSET) { /* * BPF_JSET is a special case: it has no inverse so translate * to and() function and compare against zero */ emit(hppa_and(rd, rs, HPPA_REG_T0), ctx); paoff -= 1; /* reduce offset due to hppa_and() above */ rd = HPPA_REG_T0; rs = HPPA_REG_ZERO; op = BPF_JNE; } /* set start after BPF_JSET */ s = ctx->ninsns; if (!relative_branch_ok(paoff - HPPA_BRANCH_DISPLACEMENT + 1, 12)) { op = invert_bpf_cond(op); far = true; } /* * For a far branch, the condition is negated and we jump over the * branch itself, and the two instructions from emit_jump. * For a near branch, just use paoff. */ off = far ? (2 - HPPA_BRANCH_DISPLACEMENT) : paoff - HPPA_BRANCH_DISPLACEMENT; switch (op) { /* IF (dst COND src) JUMP off */ case BPF_JEQ: emit(hppa_beq(rd, rs, off), ctx); break; case BPF_JGT: emit(hppa_bgtu(rd, rs, off), ctx); break; case BPF_JLT: emit(hppa_bltu(rd, rs, off), ctx); break; case BPF_JGE: emit(hppa_bgeu(rd, rs, off), ctx); break; case BPF_JLE: emit(hppa_bleu(rd, rs, off), ctx); break; case BPF_JNE: emit(hppa_bne(rd, rs, off), ctx); break; case BPF_JSGT: emit(hppa_bgt(rd, rs, off), ctx); break; case BPF_JSLT: emit(hppa_blt(rd, rs, off), ctx); break; case BPF_JSGE: emit(hppa_bge(rd, rs, off), ctx); break; case BPF_JSLE: emit(hppa_ble(rd, rs, off), ctx); break; default: WARN_ON(1); } if (far) { int ret; e = ctx->ninsns; /* Adjust for extra insns. */ paoff -= (e - s); ret = emit_jump(paoff, true, ctx); if (ret) return ret; } else { /* * always allocate 2 nops instead of the far branch to * reduce translation loops */ emit(hppa_nop(), ctx); emit(hppa_nop(), ctx); } return 0; } static void emit_zext_32(u8 reg, struct hppa_jit_context *ctx) { emit_hppa64_zext32(reg, reg, ctx); } static void emit_bpf_tail_call(int insn, struct hppa_jit_context *ctx) { /* * R1 -> &ctx * R2 -> &array * R3 -> index */ int off; const s8 arr_reg = regmap[BPF_REG_2]; const s8 idx_reg = regmap[BPF_REG_3]; struct bpf_array bpfa; struct bpf_prog bpfp; /* if there is any tail call, we need to save & restore all registers */ REG_SET_SEEN_ALL(ctx); /* get address of TCC main exit function for error case into rp */ emit(EXIT_PTR_LOAD(HPPA_REG_RP), ctx); /* max_entries = array->map.max_entries; */ off = offsetof(struct bpf_array, map.max_entries); BUILD_BUG_ON(sizeof(bpfa.map.max_entries) != 4); emit(hppa_ldw(off, arr_reg, HPPA_REG_T1), ctx); /* * if (index >= max_entries) * goto out; */ emit(hppa_bltu(idx_reg, HPPA_REG_T1, 2 - HPPA_BRANCH_DISPLACEMENT), ctx); emit(EXIT_PTR_JUMP(HPPA_REG_RP, NOP_NEXT_INSTR), ctx); /* * if (--tcc < 0) * goto out; */ REG_FORCE_SEEN(ctx, HPPA_REG_TCC); emit(hppa_ldo(-1, HPPA_REG_TCC, HPPA_REG_TCC), ctx); emit(hppa_bge(HPPA_REG_TCC, HPPA_REG_ZERO, 2 - HPPA_BRANCH_DISPLACEMENT), ctx); emit(EXIT_PTR_JUMP(HPPA_REG_RP, NOP_NEXT_INSTR), ctx); /* * prog = array->ptrs[index]; * if (!prog) * goto out; */ BUILD_BUG_ON(sizeof(bpfa.ptrs[0]) != 8); emit(hppa64_shladd(idx_reg, 3, arr_reg, HPPA_REG_T0), ctx); off = offsetof(struct bpf_array, ptrs); BUILD_BUG_ON(off < 16); emit(hppa64_ldd_im16(off, HPPA_REG_T0, HPPA_REG_T0), ctx); emit(hppa_bne(HPPA_REG_T0, HPPA_REG_ZERO, 2 - HPPA_BRANCH_DISPLACEMENT), ctx); emit(EXIT_PTR_JUMP(HPPA_REG_RP, NOP_NEXT_INSTR), ctx); /* * tcc = temp_tcc; * goto *(prog->bpf_func + 4); */ off = offsetof(struct bpf_prog, bpf_func); BUILD_BUG_ON(off < 16); BUILD_BUG_ON(sizeof(bpfp.bpf_func) != 8); emit(hppa64_ldd_im16(off, HPPA_REG_T0, HPPA_REG_T0), ctx); /* Epilogue jumps to *(t0 + 4). */ __build_epilogue(true, ctx); } static void init_regs(u8 *rd, u8 *rs, const struct bpf_insn *insn, struct hppa_jit_context *ctx) { u8 code = insn->code; switch (code) { case BPF_JMP | BPF_JA: case BPF_JMP | BPF_CALL: case BPF_JMP | BPF_EXIT: case BPF_JMP | BPF_TAIL_CALL: break; default: *rd = bpf_to_hppa_reg(insn->dst_reg, ctx); } if (code & (BPF_ALU | BPF_X) || code & (BPF_ALU64 | BPF_X) || code & (BPF_JMP | BPF_X) || code & (BPF_JMP32 | BPF_X) || code & BPF_LDX || code & BPF_STX) *rs = bpf_to_hppa_reg(insn->src_reg, ctx); } static void emit_zext_32_rd_rs(u8 *rd, u8 *rs, struct hppa_jit_context *ctx) { emit_hppa64_zext32(*rd, HPPA_REG_T2, ctx); *rd = HPPA_REG_T2; emit_hppa64_zext32(*rs, HPPA_REG_T1, ctx); *rs = HPPA_REG_T1; } static void emit_sext_32_rd_rs(u8 *rd, u8 *rs, struct hppa_jit_context *ctx) { emit_hppa64_sext32(*rd, HPPA_REG_T2, ctx); *rd = HPPA_REG_T2; emit_hppa64_sext32(*rs, HPPA_REG_T1, ctx); *rs = HPPA_REG_T1; } static void emit_zext_32_rd_t1(u8 *rd, struct hppa_jit_context *ctx) { emit_hppa64_zext32(*rd, HPPA_REG_T2, ctx); *rd = HPPA_REG_T2; emit_zext_32(HPPA_REG_T1, ctx); } static void emit_sext_32_rd(u8 *rd, struct hppa_jit_context *ctx) { emit_hppa64_sext32(*rd, HPPA_REG_T2, ctx); *rd = HPPA_REG_T2; } static bool is_signed_bpf_cond(u8 cond) { return cond == BPF_JSGT || cond == BPF_JSLT || cond == BPF_JSGE || cond == BPF_JSLE; } static void emit_call(u64 addr, bool fixed, struct hppa_jit_context *ctx) { const int offset_sp = 2*FRAME_SIZE; emit(hppa_ldo(offset_sp, HPPA_REG_SP, HPPA_REG_SP), ctx); emit_hppa_copy(regmap[BPF_REG_1], HPPA_REG_ARG0, ctx); emit_hppa_copy(regmap[BPF_REG_2], HPPA_REG_ARG1, ctx); emit_hppa_copy(regmap[BPF_REG_3], HPPA_REG_ARG2, ctx); emit_hppa_copy(regmap[BPF_REG_4], HPPA_REG_ARG3, ctx); emit_hppa_copy(regmap[BPF_REG_5], HPPA_REG_ARG4, ctx); /* Backup TCC. */ REG_FORCE_SEEN(ctx, HPPA_REG_TCC_SAVED); if (REG_WAS_SEEN(ctx, HPPA_REG_TCC)) emit(hppa_copy(HPPA_REG_TCC, HPPA_REG_TCC_SAVED), ctx); /* * Use ldil() to load absolute address. Don't use emit_imm as the * number of emitted instructions should not depend on the value of * addr. */ WARN_ON(addr >> 32); /* load function address and gp from Elf64_Fdesc descriptor */ emit(hppa_ldil(addr, HPPA_REG_R31), ctx); emit(hppa_ldo(im11(addr), HPPA_REG_R31, HPPA_REG_R31), ctx); emit(hppa64_ldd_im16(offsetof(struct elf64_fdesc, addr), HPPA_REG_R31, HPPA_REG_RP), ctx); emit(hppa64_bve_l_rp(HPPA_REG_RP), ctx); emit(hppa64_ldd_im16(offsetof(struct elf64_fdesc, gp), HPPA_REG_R31, HPPA_REG_GP), ctx); /* Restore TCC. */ if (REG_WAS_SEEN(ctx, HPPA_REG_TCC)) emit(hppa_copy(HPPA_REG_TCC_SAVED, HPPA_REG_TCC), ctx); emit(hppa_ldo(-offset_sp, HPPA_REG_SP, HPPA_REG_SP), ctx); /* Set return value. */ emit_hppa_copy(HPPA_REG_RET0, regmap[BPF_REG_0], ctx); } static void emit_call_libgcc_ll(void *func, const s8 arg0, const s8 arg1, u8 opcode, struct hppa_jit_context *ctx) { u64 func_addr; if (BPF_CLASS(opcode) == BPF_ALU) { emit_hppa64_zext32(arg0, HPPA_REG_ARG0, ctx); emit_hppa64_zext32(arg1, HPPA_REG_ARG1, ctx); } else { emit_hppa_copy(arg0, HPPA_REG_ARG0, ctx); emit_hppa_copy(arg1, HPPA_REG_ARG1, ctx); } /* libcgcc overwrites HPPA_REG_RET0, so keep copy in HPPA_REG_TCC_SAVED */ if (arg0 != HPPA_REG_RET0) { REG_SET_SEEN(ctx, HPPA_REG_TCC_SAVED); emit(hppa_copy(HPPA_REG_RET0, HPPA_REG_TCC_SAVED), ctx); } /* set up stack */ emit(hppa_ldo(FRAME_SIZE, HPPA_REG_SP, HPPA_REG_SP), ctx); func_addr = (uintptr_t) func; /* load function func_address and gp from Elf64_Fdesc descriptor */ emit_imm(HPPA_REG_R31, func_addr, arg0, ctx); emit(hppa64_ldd_im16(offsetof(struct elf64_fdesc, addr), HPPA_REG_R31, HPPA_REG_RP), ctx); /* skip the following bve_l instruction if divisor is 0. */ if (BPF_OP(opcode) == BPF_DIV || BPF_OP(opcode) == BPF_MOD) { if (BPF_OP(opcode) == BPF_DIV) emit_hppa_copy(HPPA_REG_ZERO, HPPA_REG_RET0, ctx); else { emit_hppa_copy(HPPA_REG_ARG0, HPPA_REG_RET0, ctx); } emit(hppa_beq(HPPA_REG_ARG1, HPPA_REG_ZERO, 2 - HPPA_BRANCH_DISPLACEMENT), ctx); } emit(hppa64_bve_l_rp(HPPA_REG_RP), ctx); emit(hppa64_ldd_im16(offsetof(struct elf64_fdesc, gp), HPPA_REG_R31, HPPA_REG_GP), ctx); emit(hppa_ldo(-FRAME_SIZE, HPPA_REG_SP, HPPA_REG_SP), ctx); emit_hppa_copy(HPPA_REG_RET0, arg0, ctx); /* restore HPPA_REG_RET0 */ if (arg0 != HPPA_REG_RET0) emit(hppa_copy(HPPA_REG_TCC_SAVED, HPPA_REG_RET0), ctx); } static void emit_store(const s8 rd, const s8 rs, s16 off, struct hppa_jit_context *ctx, const u8 size, const u8 mode) { s8 dstreg; /* need to calculate address since offset does not fit in 14 bits? */ if (relative_bits_ok(off, 14)) dstreg = rd; else { /* need to use R1 here, since addil puts result into R1 */ dstreg = HPPA_REG_R1; emit(hppa_addil(off, rd), ctx); off = im11(off); } switch (size) { case BPF_B: emit(hppa_stb(rs, off, dstreg), ctx); break; case BPF_H: emit(hppa_sth(rs, off, dstreg), ctx); break; case BPF_W: emit(hppa_stw(rs, off, dstreg), ctx); break; case BPF_DW: if (off & 7) { emit(hppa_ldo(off, dstreg, HPPA_REG_R1), ctx); emit(hppa64_std_im5(rs, 0, HPPA_REG_R1), ctx); } else if (off >= -16 && off <= 15) emit(hppa64_std_im5(rs, off, dstreg), ctx); else emit(hppa64_std_im16(rs, off, dstreg), ctx); break; } } int bpf_jit_emit_insn(const struct bpf_insn *insn, struct hppa_jit_context *ctx, bool extra_pass) { bool is64 = BPF_CLASS(insn->code) == BPF_ALU64 || BPF_CLASS(insn->code) == BPF_JMP; int s, e, ret, i = insn - ctx->prog->insnsi; s64 paoff; struct bpf_prog_aux *aux = ctx->prog->aux; u8 rd = -1, rs = -1, code = insn->code; s16 off = insn->off; s32 imm = insn->imm; init_regs(&rd, &rs, insn, ctx); switch (code) { /* dst = src */ case BPF_ALU | BPF_MOV | BPF_X: case BPF_ALU64 | BPF_MOV | BPF_X: if (imm == 1) { /* Special mov32 for zext */ emit_zext_32(rd, ctx); break; } if (!is64 && !aux->verifier_zext) emit_hppa64_zext32(rs, rd, ctx); else emit_hppa_copy(rs, rd, ctx); break; /* dst = dst OP src */ case BPF_ALU | BPF_ADD | BPF_X: case BPF_ALU64 | BPF_ADD | BPF_X: emit(hppa_add(rd, rs, rd), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_SUB | BPF_X: case BPF_ALU64 | BPF_SUB | BPF_X: emit(hppa_sub(rd, rs, rd), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_AND | BPF_X: case BPF_ALU64 | BPF_AND | BPF_X: emit(hppa_and(rd, rs, rd), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_OR | BPF_X: case BPF_ALU64 | BPF_OR | BPF_X: emit(hppa_or(rd, rs, rd), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_XOR | BPF_X: case BPF_ALU64 | BPF_XOR | BPF_X: emit(hppa_xor(rd, rs, rd), ctx); if (!is64 && !aux->verifier_zext && rs != rd) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_MUL | BPF_K: case BPF_ALU64 | BPF_MUL | BPF_K: emit_imm(HPPA_REG_T1, is64 ? (s64)(s32)imm : (u32)imm, HPPA_REG_T2, ctx); rs = HPPA_REG_T1; fallthrough; case BPF_ALU | BPF_MUL | BPF_X: case BPF_ALU64 | BPF_MUL | BPF_X: emit_call_libgcc_ll(__muldi3, rd, rs, code, ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_DIV | BPF_K: case BPF_ALU64 | BPF_DIV | BPF_K: emit_imm(HPPA_REG_T1, is64 ? (s64)(s32)imm : (u32)imm, HPPA_REG_T2, ctx); rs = HPPA_REG_T1; fallthrough; case BPF_ALU | BPF_DIV | BPF_X: case BPF_ALU64 | BPF_DIV | BPF_X: emit_call_libgcc_ll(&hppa_div64, rd, rs, code, ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_MOD | BPF_K: case BPF_ALU64 | BPF_MOD | BPF_K: emit_imm(HPPA_REG_T1, is64 ? (s64)(s32)imm : (u32)imm, HPPA_REG_T2, ctx); rs = HPPA_REG_T1; fallthrough; case BPF_ALU | BPF_MOD | BPF_X: case BPF_ALU64 | BPF_MOD | BPF_X: emit_call_libgcc_ll(&hppa_div64_rem, rd, rs, code, ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_LSH | BPF_X: case BPF_ALU64 | BPF_LSH | BPF_X: emit_hppa64_sext32(rs, HPPA_REG_T0, ctx); emit(hppa64_mtsarcm(HPPA_REG_T0), ctx); if (is64) emit(hppa64_depdz_sar(rd, rd), ctx); else emit(hppa_depwz_sar(rd, rd), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_RSH | BPF_X: case BPF_ALU64 | BPF_RSH | BPF_X: emit(hppa_mtsar(rs), ctx); if (is64) emit(hppa64_shrpd_sar(rd, rd), ctx); else emit(hppa_shrpw_sar(rd, rd), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_ARSH | BPF_X: case BPF_ALU64 | BPF_ARSH | BPF_X: emit_hppa64_sext32(rs, HPPA_REG_T0, ctx); emit(hppa64_mtsarcm(HPPA_REG_T0), ctx); if (is64) emit(hppa_extrd_sar(rd, rd, 1), ctx); else emit(hppa_extrws_sar(rd, rd), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; /* dst = -dst */ case BPF_ALU | BPF_NEG: case BPF_ALU64 | BPF_NEG: emit(hppa_sub(HPPA_REG_ZERO, rd, rd), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; /* dst = BSWAP##imm(dst) */ case BPF_ALU | BPF_END | BPF_FROM_BE: switch (imm) { case 16: /* zero-extend 16 bits into 64 bits */ emit_hppa64_depd(HPPA_REG_ZERO, 63-16, 64-16, rd, 1, ctx); break; case 32: if (!aux->verifier_zext) emit_zext_32(rd, ctx); break; case 64: /* Do nothing */ break; } break; case BPF_ALU | BPF_END | BPF_FROM_LE: switch (imm) { case 16: emit(hppa_extru(rd, 31 - 8, 8, HPPA_REG_T1), ctx); emit(hppa_depwz(rd, 23, 8, HPPA_REG_T1), ctx); emit(hppa_extru(HPPA_REG_T1, 31, 16, rd), ctx); emit_hppa64_extrd(HPPA_REG_T1, 63, 16, rd, 0, ctx); break; case 32: emit(hppa_shrpw(rd, rd, 16, HPPA_REG_T1), ctx); emit_hppa64_depd(HPPA_REG_T1, 63-16, 8, HPPA_REG_T1, 1, ctx); emit(hppa_shrpw(rd, HPPA_REG_T1, 8, HPPA_REG_T1), ctx); emit_hppa64_extrd(HPPA_REG_T1, 63, 32, rd, 0, ctx); break; case 64: emit(hppa64_permh_3210(rd, HPPA_REG_T1), ctx); emit(hppa64_hshl(HPPA_REG_T1, 8, HPPA_REG_T2), ctx); emit(hppa64_hshr_u(HPPA_REG_T1, 8, HPPA_REG_T1), ctx); emit(hppa_or(HPPA_REG_T2, HPPA_REG_T1, rd), ctx); break; default: pr_err("bpf-jit: BPF_END imm %d invalid\n", imm); return -1; } break; /* dst = imm */ case BPF_ALU | BPF_MOV | BPF_K: case BPF_ALU64 | BPF_MOV | BPF_K: emit_imm(rd, imm, HPPA_REG_T2, ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; /* dst = dst OP imm */ case BPF_ALU | BPF_ADD | BPF_K: case BPF_ALU64 | BPF_ADD | BPF_K: if (relative_bits_ok(imm, 14)) { emit(hppa_ldo(imm, rd, rd), ctx); } else { emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx); emit(hppa_add(rd, HPPA_REG_T1, rd), ctx); } if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_SUB | BPF_K: case BPF_ALU64 | BPF_SUB | BPF_K: if (relative_bits_ok(-imm, 14)) { emit(hppa_ldo(-imm, rd, rd), ctx); } else { emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx); emit(hppa_sub(rd, HPPA_REG_T1, rd), ctx); } if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_AND | BPF_K: case BPF_ALU64 | BPF_AND | BPF_K: emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx); emit(hppa_and(rd, HPPA_REG_T1, rd), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_OR | BPF_K: case BPF_ALU64 | BPF_OR | BPF_K: emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx); emit(hppa_or(rd, HPPA_REG_T1, rd), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_XOR | BPF_K: case BPF_ALU64 | BPF_XOR | BPF_K: emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx); emit(hppa_xor(rd, HPPA_REG_T1, rd), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_LSH | BPF_K: case BPF_ALU64 | BPF_LSH | BPF_K: if (imm != 0) { emit_hppa64_shld(rd, imm, rd, ctx); } if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_RSH | BPF_K: case BPF_ALU64 | BPF_RSH | BPF_K: if (imm != 0) { if (is64) emit_hppa64_shrd(rd, imm, rd, false, ctx); else emit_hppa64_shrw(rd, imm, rd, false, ctx); } if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_ARSH | BPF_K: case BPF_ALU64 | BPF_ARSH | BPF_K: if (imm != 0) { if (is64) emit_hppa64_shrd(rd, imm, rd, true, ctx); else emit_hppa64_shrw(rd, imm, rd, true, ctx); } if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; /* JUMP off */ case BPF_JMP | BPF_JA: paoff = hppa_offset(i, off, ctx); ret = emit_jump(paoff, false, ctx); if (ret) return ret; break; /* IF (dst COND src) JUMP off */ case BPF_JMP | BPF_JEQ | BPF_X: case BPF_JMP32 | BPF_JEQ | BPF_X: case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP32 | BPF_JGT | BPF_X: case BPF_JMP | BPF_JLT | BPF_X: case BPF_JMP32 | BPF_JLT | BPF_X: case BPF_JMP | BPF_JGE | BPF_X: case BPF_JMP32 | BPF_JGE | BPF_X: case BPF_JMP | BPF_JLE | BPF_X: case BPF_JMP32 | BPF_JLE | BPF_X: case BPF_JMP | BPF_JNE | BPF_X: case BPF_JMP32 | BPF_JNE | BPF_X: case BPF_JMP | BPF_JSGT | BPF_X: case BPF_JMP32 | BPF_JSGT | BPF_X: case BPF_JMP | BPF_JSLT | BPF_X: case BPF_JMP32 | BPF_JSLT | BPF_X: case BPF_JMP | BPF_JSGE | BPF_X: case BPF_JMP32 | BPF_JSGE | BPF_X: case BPF_JMP | BPF_JSLE | BPF_X: case BPF_JMP32 | BPF_JSLE | BPF_X: case BPF_JMP | BPF_JSET | BPF_X: case BPF_JMP32 | BPF_JSET | BPF_X: paoff = hppa_offset(i, off, ctx); if (!is64) { s = ctx->ninsns; if (is_signed_bpf_cond(BPF_OP(code))) emit_sext_32_rd_rs(&rd, &rs, ctx); else emit_zext_32_rd_rs(&rd, &rs, ctx); e = ctx->ninsns; /* Adjust for extra insns */ paoff -= (e - s); } if (BPF_OP(code) == BPF_JSET) { /* Adjust for and */ paoff -= 1; emit(hppa_and(rs, rd, HPPA_REG_T1), ctx); emit_branch(BPF_JNE, HPPA_REG_T1, HPPA_REG_ZERO, paoff, ctx); } else { emit_branch(BPF_OP(code), rd, rs, paoff, ctx); } break; /* IF (dst COND imm) JUMP off */ case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP32 | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP32 | BPF_JGT | BPF_K: case BPF_JMP | BPF_JLT | BPF_K: case BPF_JMP32 | BPF_JLT | BPF_K: case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP32 | BPF_JGE | BPF_K: case BPF_JMP | BPF_JLE | BPF_K: case BPF_JMP32 | BPF_JLE | BPF_K: case BPF_JMP | BPF_JNE | BPF_K: case BPF_JMP32 | BPF_JNE | BPF_K: case BPF_JMP | BPF_JSGT | BPF_K: case BPF_JMP32 | BPF_JSGT | BPF_K: case BPF_JMP | BPF_JSLT | BPF_K: case BPF_JMP32 | BPF_JSLT | BPF_K: case BPF_JMP | BPF_JSGE | BPF_K: case BPF_JMP32 | BPF_JSGE | BPF_K: case BPF_JMP | BPF_JSLE | BPF_K: case BPF_JMP32 | BPF_JSLE | BPF_K: paoff = hppa_offset(i, off, ctx); s = ctx->ninsns; if (imm) { emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx); rs = HPPA_REG_T1; } else { rs = HPPA_REG_ZERO; } if (!is64) { if (is_signed_bpf_cond(BPF_OP(code))) emit_sext_32_rd(&rd, ctx); else emit_zext_32_rd_t1(&rd, ctx); } e = ctx->ninsns; /* Adjust for extra insns */ paoff -= (e - s); emit_branch(BPF_OP(code), rd, rs, paoff, ctx); break; case BPF_JMP | BPF_JSET | BPF_K: case BPF_JMP32 | BPF_JSET | BPF_K: paoff = hppa_offset(i, off, ctx); s = ctx->ninsns; emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx); emit(hppa_and(HPPA_REG_T1, rd, HPPA_REG_T1), ctx); /* For jset32, we should clear the upper 32 bits of t1, but * sign-extension is sufficient here and saves one instruction, * as t1 is used only in comparison against zero. */ if (!is64 && imm < 0) emit_hppa64_sext32(HPPA_REG_T1, HPPA_REG_T1, ctx); e = ctx->ninsns; paoff -= (e - s); emit_branch(BPF_JNE, HPPA_REG_T1, HPPA_REG_ZERO, paoff, ctx); break; /* function call */ case BPF_JMP | BPF_CALL: { bool fixed_addr; u64 addr; ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass, &addr, &fixed_addr); if (ret < 0) return ret; REG_SET_SEEN_ALL(ctx); emit_call(addr, fixed_addr, ctx); break; } /* tail call */ case BPF_JMP | BPF_TAIL_CALL: emit_bpf_tail_call(i, ctx); break; /* function return */ case BPF_JMP | BPF_EXIT: if (i == ctx->prog->len - 1) break; paoff = epilogue_offset(ctx); ret = emit_jump(paoff, false, ctx); if (ret) return ret; break; /* dst = imm64 */ case BPF_LD | BPF_IMM | BPF_DW: { struct bpf_insn insn1 = insn[1]; u64 imm64 = (u64)insn1.imm << 32 | (u32)imm; if (bpf_pseudo_func(insn)) imm64 = (uintptr_t)dereference_function_descriptor((void*)imm64); emit_imm(rd, imm64, HPPA_REG_T2, ctx); return 1; } /* LDX: dst = *(size *)(src + off) */ case BPF_LDX | BPF_MEM | BPF_B: case BPF_LDX | BPF_MEM | BPF_H: case BPF_LDX | BPF_MEM | BPF_W: case BPF_LDX | BPF_MEM | BPF_DW: case BPF_LDX | BPF_PROBE_MEM | BPF_B: case BPF_LDX | BPF_PROBE_MEM | BPF_H: case BPF_LDX | BPF_PROBE_MEM | BPF_W: case BPF_LDX | BPF_PROBE_MEM | BPF_DW: { u8 srcreg; /* need to calculate address since offset does not fit in 14 bits? */ if (relative_bits_ok(off, 14)) srcreg = rs; else { /* need to use R1 here, since addil puts result into R1 */ srcreg = HPPA_REG_R1; BUG_ON(rs == HPPA_REG_R1); BUG_ON(rd == HPPA_REG_R1); emit(hppa_addil(off, rs), ctx); off = im11(off); } switch (BPF_SIZE(code)) { case BPF_B: emit(hppa_ldb(off, srcreg, rd), ctx); if (insn_is_zext(&insn[1])) return 1; break; case BPF_H: emit(hppa_ldh(off, srcreg, rd), ctx); if (insn_is_zext(&insn[1])) return 1; break; case BPF_W: emit(hppa_ldw(off, srcreg, rd), ctx); if (insn_is_zext(&insn[1])) return 1; break; case BPF_DW: if (off & 7) { emit(hppa_ldo(off, srcreg, HPPA_REG_R1), ctx); emit(hppa64_ldd_reg(HPPA_REG_ZERO, HPPA_REG_R1, rd), ctx); } else if (off >= -16 && off <= 15) emit(hppa64_ldd_im5(off, srcreg, rd), ctx); else emit(hppa64_ldd_im16(off, srcreg, rd), ctx); break; } break; } /* speculation barrier */ case BPF_ST | BPF_NOSPEC: break; /* ST: *(size *)(dst + off) = imm */ /* STX: *(size *)(dst + off) = src */ case BPF_ST | BPF_MEM | BPF_B: case BPF_ST | BPF_MEM | BPF_H: case BPF_ST | BPF_MEM | BPF_W: case BPF_ST | BPF_MEM | BPF_DW: case BPF_STX | BPF_MEM | BPF_B: case BPF_STX | BPF_MEM | BPF_H: case BPF_STX | BPF_MEM | BPF_W: case BPF_STX | BPF_MEM | BPF_DW: if (BPF_CLASS(code) == BPF_ST) { emit_imm(HPPA_REG_T2, imm, HPPA_REG_T1, ctx); rs = HPPA_REG_T2; } emit_store(rd, rs, off, ctx, BPF_SIZE(code), BPF_MODE(code)); break; case BPF_STX | BPF_ATOMIC | BPF_W: case BPF_STX | BPF_ATOMIC | BPF_DW: pr_info_once( "bpf-jit: not supported: atomic operation %02x ***\n", insn->imm); return -EFAULT; default: pr_err("bpf-jit: unknown opcode %02x\n", code); return -EINVAL; } return 0; } void bpf_jit_build_prologue(struct hppa_jit_context *ctx) { int bpf_stack_adjust, stack_adjust, i; unsigned long addr; s8 reg; /* * stack on hppa grows up, so if tail calls are used we need to * allocate the maximum stack size */ if (REG_ALL_SEEN(ctx)) bpf_stack_adjust = MAX_BPF_STACK; else bpf_stack_adjust = ctx->prog->aux->stack_depth; bpf_stack_adjust = round_up(bpf_stack_adjust, STACK_ALIGN); stack_adjust = FRAME_SIZE + bpf_stack_adjust; stack_adjust = round_up(stack_adjust, STACK_ALIGN); /* * NOTE: We construct an Elf64_Fdesc descriptor here. * The first 4 words initialize the TCC and compares them. * Then follows the virtual address of the eBPF function, * and the gp for this function. * * The first instruction sets the tail-call-counter (TCC) register. * This instruction is skipped by tail calls. * Use a temporary register instead of a caller-saved register initially. */ REG_FORCE_SEEN(ctx, HPPA_REG_TCC_IN_INIT); emit(hppa_ldi(MAX_TAIL_CALL_CNT, HPPA_REG_TCC_IN_INIT), ctx); /* * Skip all initializations when called as BPF TAIL call. */ emit(hppa_ldi(MAX_TAIL_CALL_CNT, HPPA_REG_R1), ctx); emit(hppa_beq(HPPA_REG_TCC_IN_INIT, HPPA_REG_R1, 6 - HPPA_BRANCH_DISPLACEMENT), ctx); emit(hppa64_bl_long(ctx->prologue_len - 3 - HPPA_BRANCH_DISPLACEMENT), ctx); /* store entry address of this eBPF function */ addr = (uintptr_t) &ctx->insns[0]; emit(addr >> 32, ctx); emit(addr & 0xffffffff, ctx); /* store gp of this eBPF function */ asm("copy %%r27,%0" : "=r" (addr) ); emit(addr >> 32, ctx); emit(addr & 0xffffffff, ctx); /* Set up hppa stack frame. */ emit_hppa_copy(HPPA_REG_SP, HPPA_REG_R1, ctx); emit(hppa_ldo(stack_adjust, HPPA_REG_SP, HPPA_REG_SP), ctx); emit(hppa64_std_im5 (HPPA_REG_R1, -REG_SIZE, HPPA_REG_SP), ctx); emit(hppa64_std_im16(HPPA_REG_RP, -2*REG_SIZE, HPPA_REG_SP), ctx); /* Save callee-save registers. */ for (i = 3; i <= 15; i++) { if (OPTIMIZE_HPPA && !REG_WAS_SEEN(ctx, HPPA_R(i))) continue; emit(hppa64_std_im16(HPPA_R(i), -REG_SIZE * i, HPPA_REG_SP), ctx); } /* load function parameters; load all if we use tail functions */ #define LOAD_PARAM(arg, dst) \ if (REG_WAS_SEEN(ctx, regmap[dst]) || \ REG_WAS_SEEN(ctx, HPPA_REG_TCC)) \ emit_hppa_copy(arg, regmap[dst], ctx) LOAD_PARAM(HPPA_REG_ARG0, BPF_REG_1); LOAD_PARAM(HPPA_REG_ARG1, BPF_REG_2); LOAD_PARAM(HPPA_REG_ARG2, BPF_REG_3); LOAD_PARAM(HPPA_REG_ARG3, BPF_REG_4); LOAD_PARAM(HPPA_REG_ARG4, BPF_REG_5); #undef LOAD_PARAM REG_FORCE_SEEN(ctx, HPPA_REG_T0); REG_FORCE_SEEN(ctx, HPPA_REG_T1); REG_FORCE_SEEN(ctx, HPPA_REG_T2); /* * Now really set the tail call counter (TCC) register. */ if (REG_WAS_SEEN(ctx, HPPA_REG_TCC)) emit(hppa_ldi(MAX_TAIL_CALL_CNT, HPPA_REG_TCC), ctx); /* * Save epilogue function pointer for outer TCC call chain. * The main TCC call stores the final RP on stack. */ addr = (uintptr_t) &ctx->insns[ctx->epilogue_offset]; /* skip first two instructions which jump to exit */ addr += 2 * HPPA_INSN_SIZE; emit_imm(HPPA_REG_T2, addr, HPPA_REG_T1, ctx); emit(EXIT_PTR_STORE(HPPA_REG_T2), ctx); /* Set up BPF frame pointer. */ reg = regmap[BPF_REG_FP]; /* -> HPPA_REG_FP */ if (REG_WAS_SEEN(ctx, reg)) { emit(hppa_ldo(-FRAME_SIZE, HPPA_REG_SP, reg), ctx); } } void bpf_jit_build_epilogue(struct hppa_jit_context *ctx) { __build_epilogue(false, ctx); } bool bpf_jit_supports_kfunc_call(void) { return true; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1