Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Danny Tsen | 1742 | 100.00% | 1 | 100.00% |
Total | 1742 | 1 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright 2024- IBM Corp. * * X25519 scalar multiplication with 51 bits limbs for PPC64le. * Based on RFC7748 and AArch64 optimized implementation for X25519 * - Algorithm 1 Scalar multiplication of a variable point */ #include <crypto/curve25519.h> #include <crypto/internal/kpp.h> #include <linux/types.h> #include <linux/jump_label.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/scatterlist.h> #include <linux/cpufeature.h> #include <linux/processor.h> typedef uint64_t fe51[5]; asmlinkage void x25519_fe51_mul(fe51 h, const fe51 f, const fe51 g); asmlinkage void x25519_fe51_sqr(fe51 h, const fe51 f); asmlinkage void x25519_fe51_mul121666(fe51 h, fe51 f); asmlinkage void x25519_fe51_sqr_times(fe51 h, const fe51 f, int n); asmlinkage void x25519_fe51_frombytes(fe51 h, const uint8_t *s); asmlinkage void x25519_fe51_tobytes(uint8_t *s, const fe51 h); asmlinkage void x25519_cswap(fe51 p, fe51 q, unsigned int bit); #define fmul x25519_fe51_mul #define fsqr x25519_fe51_sqr #define fmul121666 x25519_fe51_mul121666 #define fe51_tobytes x25519_fe51_tobytes static void fadd(fe51 h, const fe51 f, const fe51 g) { h[0] = f[0] + g[0]; h[1] = f[1] + g[1]; h[2] = f[2] + g[2]; h[3] = f[3] + g[3]; h[4] = f[4] + g[4]; } /* * Prime = 2 ** 255 - 19, 255 bits * (0x7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffed) * * Prime in 5 51-bit limbs */ static fe51 prime51 = { 0x7ffffffffffed, 0x7ffffffffffff, 0x7ffffffffffff, 0x7ffffffffffff, 0x7ffffffffffff}; static void fsub(fe51 h, const fe51 f, const fe51 g) { h[0] = (f[0] + ((prime51[0] * 2))) - g[0]; h[1] = (f[1] + ((prime51[1] * 2))) - g[1]; h[2] = (f[2] + ((prime51[2] * 2))) - g[2]; h[3] = (f[3] + ((prime51[3] * 2))) - g[3]; h[4] = (f[4] + ((prime51[4] * 2))) - g[4]; } static void fe51_frombytes(fe51 h, const uint8_t *s) { /* * Make sure 64-bit aligned. */ unsigned char sbuf[32+8]; unsigned char *sb = PTR_ALIGN((void *)sbuf, 8); memcpy(sb, s, 32); x25519_fe51_frombytes(h, sb); } static void finv(fe51 o, const fe51 i) { fe51 a0, b, c, t00; fsqr(a0, i); x25519_fe51_sqr_times(t00, a0, 2); fmul(b, t00, i); fmul(a0, b, a0); fsqr(t00, a0); fmul(b, t00, b); x25519_fe51_sqr_times(t00, b, 5); fmul(b, t00, b); x25519_fe51_sqr_times(t00, b, 10); fmul(c, t00, b); x25519_fe51_sqr_times(t00, c, 20); fmul(t00, t00, c); x25519_fe51_sqr_times(t00, t00, 10); fmul(b, t00, b); x25519_fe51_sqr_times(t00, b, 50); fmul(c, t00, b); x25519_fe51_sqr_times(t00, c, 100); fmul(t00, t00, c); x25519_fe51_sqr_times(t00, t00, 50); fmul(t00, t00, b); x25519_fe51_sqr_times(t00, t00, 5); fmul(o, t00, a0); } static void curve25519_fe51(uint8_t out[32], const uint8_t scalar[32], const uint8_t point[32]) { fe51 x1, x2, z2, x3, z3; uint8_t s[32]; unsigned int swap = 0; int i; memcpy(s, scalar, 32); s[0] &= 0xf8; s[31] &= 0x7f; s[31] |= 0x40; fe51_frombytes(x1, point); z2[0] = z2[1] = z2[2] = z2[3] = z2[4] = 0; x3[0] = x1[0]; x3[1] = x1[1]; x3[2] = x1[2]; x3[3] = x1[3]; x3[4] = x1[4]; x2[0] = z3[0] = 1; x2[1] = z3[1] = 0; x2[2] = z3[2] = 0; x2[3] = z3[3] = 0; x2[4] = z3[4] = 0; for (i = 254; i >= 0; --i) { unsigned int k_t = 1 & (s[i / 8] >> (i & 7)); fe51 a, b, c, d, e; fe51 da, cb, aa, bb; fe51 dacb_p, dacb_m; swap ^= k_t; x25519_cswap(x2, x3, swap); x25519_cswap(z2, z3, swap); swap = k_t; fsub(b, x2, z2); // B = x_2 - z_2 fadd(a, x2, z2); // A = x_2 + z_2 fsub(d, x3, z3); // D = x_3 - z_3 fadd(c, x3, z3); // C = x_3 + z_3 fsqr(bb, b); // BB = B^2 fsqr(aa, a); // AA = A^2 fmul(da, d, a); // DA = D * A fmul(cb, c, b); // CB = C * B fsub(e, aa, bb); // E = AA - BB fmul(x2, aa, bb); // x2 = AA * BB fadd(dacb_p, da, cb); // DA + CB fsub(dacb_m, da, cb); // DA - CB fmul121666(z3, e); // 121666 * E fsqr(z2, dacb_m); // (DA - CB)^2 fsqr(x3, dacb_p); // x3 = (DA + CB)^2 fadd(b, bb, z3); // BB + 121666 * E fmul(z3, x1, z2); // z3 = x1 * (DA - CB)^2 fmul(z2, e, b); // z2 = e * (BB + (DA + CB)^2) } finv(z2, z2); fmul(x2, x2, z2); fe51_tobytes(out, x2); } void curve25519_arch(u8 mypublic[CURVE25519_KEY_SIZE], const u8 secret[CURVE25519_KEY_SIZE], const u8 basepoint[CURVE25519_KEY_SIZE]) { curve25519_fe51(mypublic, secret, basepoint); } EXPORT_SYMBOL(curve25519_arch); void curve25519_base_arch(u8 pub[CURVE25519_KEY_SIZE], const u8 secret[CURVE25519_KEY_SIZE]) { curve25519_fe51(pub, secret, curve25519_base_point); } EXPORT_SYMBOL(curve25519_base_arch); static int curve25519_set_secret(struct crypto_kpp *tfm, const void *buf, unsigned int len) { u8 *secret = kpp_tfm_ctx(tfm); if (!len) curve25519_generate_secret(secret); else if (len == CURVE25519_KEY_SIZE && crypto_memneq(buf, curve25519_null_point, CURVE25519_KEY_SIZE)) memcpy(secret, buf, CURVE25519_KEY_SIZE); else return -EINVAL; return 0; } static int curve25519_generate_public_key(struct kpp_request *req) { struct crypto_kpp *tfm = crypto_kpp_reqtfm(req); const u8 *secret = kpp_tfm_ctx(tfm); u8 buf[CURVE25519_KEY_SIZE]; int copied, nbytes; if (req->src) return -EINVAL; curve25519_base_arch(buf, secret); /* might want less than we've got */ nbytes = min_t(size_t, CURVE25519_KEY_SIZE, req->dst_len); copied = sg_copy_from_buffer(req->dst, sg_nents_for_len(req->dst, nbytes), buf, nbytes); if (copied != nbytes) return -EINVAL; return 0; } static int curve25519_compute_shared_secret(struct kpp_request *req) { struct crypto_kpp *tfm = crypto_kpp_reqtfm(req); const u8 *secret = kpp_tfm_ctx(tfm); u8 public_key[CURVE25519_KEY_SIZE]; u8 buf[CURVE25519_KEY_SIZE]; int copied, nbytes; if (!req->src) return -EINVAL; copied = sg_copy_to_buffer(req->src, sg_nents_for_len(req->src, CURVE25519_KEY_SIZE), public_key, CURVE25519_KEY_SIZE); if (copied != CURVE25519_KEY_SIZE) return -EINVAL; curve25519_arch(buf, secret, public_key); /* might want less than we've got */ nbytes = min_t(size_t, CURVE25519_KEY_SIZE, req->dst_len); copied = sg_copy_from_buffer(req->dst, sg_nents_for_len(req->dst, nbytes), buf, nbytes); if (copied != nbytes) return -EINVAL; return 0; } static unsigned int curve25519_max_size(struct crypto_kpp *tfm) { return CURVE25519_KEY_SIZE; } static struct kpp_alg curve25519_alg = { .base.cra_name = "curve25519", .base.cra_driver_name = "curve25519-ppc64le", .base.cra_priority = 200, .base.cra_module = THIS_MODULE, .base.cra_ctxsize = CURVE25519_KEY_SIZE, .set_secret = curve25519_set_secret, .generate_public_key = curve25519_generate_public_key, .compute_shared_secret = curve25519_compute_shared_secret, .max_size = curve25519_max_size, }; static int __init curve25519_mod_init(void) { return IS_REACHABLE(CONFIG_CRYPTO_KPP) ? crypto_register_kpp(&curve25519_alg) : 0; } static void __exit curve25519_mod_exit(void) { if (IS_REACHABLE(CONFIG_CRYPTO_KPP)) crypto_unregister_kpp(&curve25519_alg); } module_init(curve25519_mod_init); module_exit(curve25519_mod_exit); MODULE_ALIAS_CRYPTO("curve25519"); MODULE_ALIAS_CRYPTO("curve25519-ppc64le"); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Danny Tsen <dtsen@us.ibm.com>");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1