Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Benjamin Herrenschmidt | 1452 | 43.07% | 15 | 15.62% |
Christophe Leroy | 450 | 13.35% | 8 | 8.33% |
Anton Blanchard | 308 | 9.14% | 7 | 7.29% |
Stephen Rothwell | 244 | 7.24% | 5 | 5.21% |
Linus Torvalds | 141 | 4.18% | 3 | 3.12% |
Andrew Morton | 124 | 3.68% | 5 | 5.21% |
Timur Tabi | 96 | 2.85% | 1 | 1.04% |
Michael Ellerman | 95 | 2.82% | 5 | 5.21% |
Ian Munsie | 72 | 2.14% | 1 | 1.04% |
Vitaly Bordug | 47 | 1.39% | 1 | 1.04% |
Horia Geantă | 40 | 1.19% | 1 | 1.04% |
Will Deacon | 39 | 1.16% | 2 | 2.08% |
Paul Mackerras | 28 | 0.83% | 4 | 4.17% |
Arthur Othieno | 25 | 0.74% | 1 | 1.04% |
Nicholas Piggin | 24 | 0.71% | 3 | 3.12% |
Haren Myneni | 24 | 0.71% | 1 | 1.04% |
Logan Gunthorpe | 23 | 0.68% | 2 | 2.08% |
Alexey Kardashevskiy | 17 | 0.50% | 1 | 1.04% |
Ishizaki Kou | 16 | 0.47% | 1 | 1.04% |
Linus Torvalds (pre-git) | 11 | 0.33% | 4 | 4.17% |
Suresh E. Warrier | 11 | 0.33% | 1 | 1.04% |
Oliver O'Halloran | 10 | 0.30% | 1 | 1.04% |
Scott Wood | 9 | 0.27% | 2 | 2.08% |
Alan Cox | 8 | 0.24% | 1 | 1.04% |
Christoph Hellwig | 8 | 0.24% | 2 | 2.08% |
Anders Roxell | 8 | 0.24% | 1 | 1.04% |
Gavin Shan | 7 | 0.21% | 1 | 1.04% |
Krzysztof Kozlowski | 6 | 0.18% | 1 | 1.04% |
Al Viro | 4 | 0.12% | 1 | 1.04% |
Olaf Hering | 4 | 0.12% | 2 | 2.08% |
Emil Medve | 3 | 0.09% | 1 | 1.04% |
Arnd Bergmann | 3 | 0.09% | 1 | 1.04% |
Baoquan He | 2 | 0.06% | 1 | 1.04% |
Jes Sorensen | 2 | 0.06% | 1 | 1.04% |
Nick Desaulniers | 2 | 0.06% | 1 | 1.04% |
Thomas Gleixner | 2 | 0.06% | 1 | 1.04% |
Justin P. Mattock | 1 | 0.03% | 1 | 1.04% |
Björn Helgaas | 1 | 0.03% | 1 | 1.04% |
Jens Axboe | 1 | 0.03% | 1 | 1.04% |
Trent Piepho | 1 | 0.03% | 1 | 1.04% |
Alistair Popple | 1 | 0.03% | 1 | 1.04% |
Stanislav Kinsburskii | 1 | 0.03% | 1 | 1.04% |
Total | 3371 | 96 |
/* SPDX-License-Identifier: GPL-2.0-or-later */ #ifndef _ASM_POWERPC_IO_H #define _ASM_POWERPC_IO_H #ifdef __KERNEL__ /* */ /* Check of existence of legacy devices */ extern int check_legacy_ioport(unsigned long base_port); #define I8042_DATA_REG 0x60 #define FDC_BASE 0x3f0 #if defined(CONFIG_PPC64) && defined(CONFIG_PCI) extern struct pci_dev *isa_bridge_pcidev; /* * has legacy ISA devices ? */ #define arch_has_dev_port() (isa_bridge_pcidev != NULL || isa_io_special) #endif #include <linux/device.h> #include <linux/compiler.h> #include <linux/mm.h> #include <asm/page.h> #include <asm/byteorder.h> #include <asm/synch.h> #include <asm/delay.h> #include <asm/mmiowb.h> #include <asm/mmu.h> #define SIO_CONFIG_RA 0x398 #define SIO_CONFIG_RD 0x399 /* 32 bits uses slightly different variables for the various IO * bases. Most of this file only uses _IO_BASE though which we * define properly based on the platform */ #ifndef CONFIG_PCI #define _IO_BASE POISON_POINTER_DELTA #define _ISA_MEM_BASE 0 #define PCI_DRAM_OFFSET 0 #elif defined(CONFIG_PPC32) #define _IO_BASE isa_io_base #define _ISA_MEM_BASE isa_mem_base #define PCI_DRAM_OFFSET pci_dram_offset #else #define _IO_BASE pci_io_base #define _ISA_MEM_BASE isa_mem_base #define PCI_DRAM_OFFSET 0 #endif extern unsigned long isa_io_base; extern unsigned long pci_io_base; extern unsigned long pci_dram_offset; extern resource_size_t isa_mem_base; /* Boolean set by platform if PIO accesses are suppored while _IO_BASE * is not set or addresses cannot be translated to MMIO. This is typically * set when the platform supports "special" PIO accesses via a non memory * mapped mechanism, and allows things like the early udbg UART code to * function. */ extern bool isa_io_special; #ifdef CONFIG_PPC32 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO) #error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits #endif #endif /* * * Low level MMIO accessors * * This provides the non-bus specific accessors to MMIO. Those are PowerPC * specific and thus shouldn't be used in generic code. The accessors * provided here are: * * in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64 * out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64 * _insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns * * Those operate directly on a kernel virtual address. Note that the prototype * for the out_* accessors has the arguments in opposite order from the usual * linux PCI accessors. Unlike those, they take the address first and the value * next. * * Note: I might drop the _ns suffix on the stream operations soon as it is * simply normal for stream operations to not swap in the first place. * */ /* -mprefixed can generate offsets beyond range, fall back hack */ #ifdef CONFIG_PPC_KERNEL_PREFIXED #define DEF_MMIO_IN_X(name, size, insn) \ static inline u##size name(const volatile u##size __iomem *addr) \ { \ u##size ret; \ __asm__ __volatile__("sync;"#insn" %0,0,%1;twi 0,%0,0;isync" \ : "=r" (ret) : "r" (addr) : "memory"); \ return ret; \ } #define DEF_MMIO_OUT_X(name, size, insn) \ static inline void name(volatile u##size __iomem *addr, u##size val) \ { \ __asm__ __volatile__("sync;"#insn" %1,0,%0" \ : : "r" (addr), "r" (val) : "memory"); \ mmiowb_set_pending(); \ } #define DEF_MMIO_IN_D(name, size, insn) \ static inline u##size name(const volatile u##size __iomem *addr) \ { \ u##size ret; \ __asm__ __volatile__("sync;"#insn" %0,0(%1);twi 0,%0,0;isync"\ : "=r" (ret) : "b" (addr) : "memory"); \ return ret; \ } #define DEF_MMIO_OUT_D(name, size, insn) \ static inline void name(volatile u##size __iomem *addr, u##size val) \ { \ __asm__ __volatile__("sync;"#insn" %1,0(%0)" \ : : "b" (addr), "r" (val) : "memory"); \ mmiowb_set_pending(); \ } #else #define DEF_MMIO_IN_X(name, size, insn) \ static inline u##size name(const volatile u##size __iomem *addr) \ { \ u##size ret; \ __asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync" \ : "=r" (ret) : "Z" (*addr) : "memory"); \ return ret; \ } #define DEF_MMIO_OUT_X(name, size, insn) \ static inline void name(volatile u##size __iomem *addr, u##size val) \ { \ __asm__ __volatile__("sync;"#insn" %1,%y0" \ : "=Z" (*addr) : "r" (val) : "memory"); \ mmiowb_set_pending(); \ } #define DEF_MMIO_IN_D(name, size, insn) \ static inline u##size name(const volatile u##size __iomem *addr) \ { \ u##size ret; \ __asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\ : "=r" (ret) : "m<>" (*addr) : "memory"); \ return ret; \ } #define DEF_MMIO_OUT_D(name, size, insn) \ static inline void name(volatile u##size __iomem *addr, u##size val) \ { \ __asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0" \ : "=m<>" (*addr) : "r" (val) : "memory"); \ mmiowb_set_pending(); \ } #endif DEF_MMIO_IN_D(in_8, 8, lbz); DEF_MMIO_OUT_D(out_8, 8, stb); #ifdef __BIG_ENDIAN__ DEF_MMIO_IN_D(in_be16, 16, lhz); DEF_MMIO_IN_D(in_be32, 32, lwz); DEF_MMIO_IN_X(in_le16, 16, lhbrx); DEF_MMIO_IN_X(in_le32, 32, lwbrx); DEF_MMIO_OUT_D(out_be16, 16, sth); DEF_MMIO_OUT_D(out_be32, 32, stw); DEF_MMIO_OUT_X(out_le16, 16, sthbrx); DEF_MMIO_OUT_X(out_le32, 32, stwbrx); #else DEF_MMIO_IN_X(in_be16, 16, lhbrx); DEF_MMIO_IN_X(in_be32, 32, lwbrx); DEF_MMIO_IN_D(in_le16, 16, lhz); DEF_MMIO_IN_D(in_le32, 32, lwz); DEF_MMIO_OUT_X(out_be16, 16, sthbrx); DEF_MMIO_OUT_X(out_be32, 32, stwbrx); DEF_MMIO_OUT_D(out_le16, 16, sth); DEF_MMIO_OUT_D(out_le32, 32, stw); #endif /* __BIG_ENDIAN */ #ifdef __powerpc64__ #ifdef __BIG_ENDIAN__ DEF_MMIO_OUT_D(out_be64, 64, std); DEF_MMIO_IN_D(in_be64, 64, ld); /* There is no asm instructions for 64 bits reverse loads and stores */ static inline u64 in_le64(const volatile u64 __iomem *addr) { return swab64(in_be64(addr)); } static inline void out_le64(volatile u64 __iomem *addr, u64 val) { out_be64(addr, swab64(val)); } #else DEF_MMIO_OUT_D(out_le64, 64, std); DEF_MMIO_IN_D(in_le64, 64, ld); /* There is no asm instructions for 64 bits reverse loads and stores */ static inline u64 in_be64(const volatile u64 __iomem *addr) { return swab64(in_le64(addr)); } static inline void out_be64(volatile u64 __iomem *addr, u64 val) { out_le64(addr, swab64(val)); } #endif #endif /* __powerpc64__ */ /* * Low level IO stream instructions are defined out of line for now */ extern void _insb(const volatile u8 __iomem *addr, void *buf, long count); extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count); extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count); extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count); extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count); extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count); /* The _ns naming is historical and will be removed. For now, just #define * the non _ns equivalent names */ #define _insw _insw_ns #define _insl _insl_ns #define _outsw _outsw_ns #define _outsl _outsl_ns /* * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line */ extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n); extern void _memcpy_fromio(void *dest, const volatile void __iomem *src, unsigned long n); extern void _memcpy_toio(volatile void __iomem *dest, const void *src, unsigned long n); /* * * PCI and standard ISA accessors * * Those are globally defined linux accessors for devices on PCI or ISA * busses. They follow the Linux defined semantics. The current implementation * for PowerPC is as close as possible to the x86 version of these, and thus * provides fairly heavy weight barriers for the non-raw versions * * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its * own implementation of some or all of the accessors. */ /* * Include the EEH definitions when EEH is enabled only so they don't get * in the way when building for 32 bits */ #ifdef CONFIG_EEH #include <asm/eeh.h> #endif /* Shortcut to the MMIO argument pointer */ #define PCI_IO_ADDR volatile void __iomem * /* Indirect IO address tokens: * * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks * on all MMIOs. (Note that this is all 64 bits only for now) * * To help platforms who may need to differentiate MMIO addresses in * their hooks, a bitfield is reserved for use by the platform near the * top of MMIO addresses (not PIO, those have to cope the hard way). * * The highest address in the kernel virtual space are: * * d0003fffffffffff # with Hash MMU * c00fffffffffffff # with Radix MMU * * The top 4 bits are reserved as the region ID on hash, leaving us 8 bits * that can be used for the field. * * The direct IO mapping operations will then mask off those bits * before doing the actual access, though that only happen when * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that * mechanism * * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes * all PIO functions call through a hook. */ #ifdef CONFIG_PPC_INDIRECT_MMIO #define PCI_IO_IND_TOKEN_SHIFT 52 #define PCI_IO_IND_TOKEN_MASK (0xfful << PCI_IO_IND_TOKEN_SHIFT) #define PCI_FIX_ADDR(addr) \ ((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK)) #define PCI_GET_ADDR_TOKEN(addr) \ (((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> \ PCI_IO_IND_TOKEN_SHIFT) #define PCI_SET_ADDR_TOKEN(addr, token) \ do { \ unsigned long __a = (unsigned long)(addr); \ __a &= ~PCI_IO_IND_TOKEN_MASK; \ __a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT; \ (addr) = (void __iomem *)__a; \ } while(0) #else #define PCI_FIX_ADDR(addr) (addr) #endif /* * Non ordered and non-swapping "raw" accessors */ static inline unsigned char __raw_readb(const volatile void __iomem *addr) { return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr); } #define __raw_readb __raw_readb static inline unsigned short __raw_readw(const volatile void __iomem *addr) { return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr); } #define __raw_readw __raw_readw static inline unsigned int __raw_readl(const volatile void __iomem *addr) { return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr); } #define __raw_readl __raw_readl static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr) { *(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v; } #define __raw_writeb __raw_writeb static inline void __raw_writew(unsigned short v, volatile void __iomem *addr) { *(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v; } #define __raw_writew __raw_writew static inline void __raw_writel(unsigned int v, volatile void __iomem *addr) { *(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v; } #define __raw_writel __raw_writel #ifdef __powerpc64__ static inline unsigned long __raw_readq(const volatile void __iomem *addr) { return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr); } #define __raw_readq __raw_readq static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr) { *(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v; } #define __raw_writeq __raw_writeq static inline void __raw_writeq_be(unsigned long v, volatile void __iomem *addr) { __raw_writeq((__force unsigned long)cpu_to_be64(v), addr); } #define __raw_writeq_be __raw_writeq_be /* * Real mode versions of the above. Those instructions are only supposed * to be used in hypervisor real mode as per the architecture spec. */ static inline void __raw_rm_writeb(u8 val, volatile void __iomem *paddr) { __asm__ __volatile__(".machine push; \ .machine power6; \ stbcix %0,0,%1; \ .machine pop;" : : "r" (val), "r" (paddr) : "memory"); } static inline void __raw_rm_writew(u16 val, volatile void __iomem *paddr) { __asm__ __volatile__(".machine push; \ .machine power6; \ sthcix %0,0,%1; \ .machine pop;" : : "r" (val), "r" (paddr) : "memory"); } static inline void __raw_rm_writel(u32 val, volatile void __iomem *paddr) { __asm__ __volatile__(".machine push; \ .machine power6; \ stwcix %0,0,%1; \ .machine pop;" : : "r" (val), "r" (paddr) : "memory"); } static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr) { __asm__ __volatile__(".machine push; \ .machine power6; \ stdcix %0,0,%1; \ .machine pop;" : : "r" (val), "r" (paddr) : "memory"); } static inline void __raw_rm_writeq_be(u64 val, volatile void __iomem *paddr) { __raw_rm_writeq((__force u64)cpu_to_be64(val), paddr); } static inline u8 __raw_rm_readb(volatile void __iomem *paddr) { u8 ret; __asm__ __volatile__(".machine push; \ .machine power6; \ lbzcix %0,0, %1; \ .machine pop;" : "=r" (ret) : "r" (paddr) : "memory"); return ret; } static inline u16 __raw_rm_readw(volatile void __iomem *paddr) { u16 ret; __asm__ __volatile__(".machine push; \ .machine power6; \ lhzcix %0,0, %1; \ .machine pop;" : "=r" (ret) : "r" (paddr) : "memory"); return ret; } static inline u32 __raw_rm_readl(volatile void __iomem *paddr) { u32 ret; __asm__ __volatile__(".machine push; \ .machine power6; \ lwzcix %0,0, %1; \ .machine pop;" : "=r" (ret) : "r" (paddr) : "memory"); return ret; } static inline u64 __raw_rm_readq(volatile void __iomem *paddr) { u64 ret; __asm__ __volatile__(".machine push; \ .machine power6; \ ldcix %0,0, %1; \ .machine pop;" : "=r" (ret) : "r" (paddr) : "memory"); return ret; } #endif /* __powerpc64__ */ /* * * PCI PIO and MMIO accessors. * * * On 32 bits, PIO operations have a recovery mechanism in case they trigger * machine checks (which they occasionally do when probing non existing * IO ports on some platforms, like PowerMac and 8xx). * I always found it to be of dubious reliability and I am tempted to get * rid of it one of these days. So if you think it's important to keep it, * please voice up asap. We never had it for 64 bits and I do not intend * to port it over */ #ifdef CONFIG_PPC32 #define __do_in_asm(name, op) \ static inline unsigned int name(unsigned int port) \ { \ unsigned int x; \ __asm__ __volatile__( \ "sync\n" \ "0:" op " %0,0,%1\n" \ "1: twi 0,%0,0\n" \ "2: isync\n" \ "3: nop\n" \ "4:\n" \ ".section .fixup,\"ax\"\n" \ "5: li %0,-1\n" \ " b 4b\n" \ ".previous\n" \ EX_TABLE(0b, 5b) \ EX_TABLE(1b, 5b) \ EX_TABLE(2b, 5b) \ EX_TABLE(3b, 5b) \ : "=&r" (x) \ : "r" (port + _IO_BASE) \ : "memory"); \ return x; \ } #define __do_out_asm(name, op) \ static inline void name(unsigned int val, unsigned int port) \ { \ __asm__ __volatile__( \ "sync\n" \ "0:" op " %0,0,%1\n" \ "1: sync\n" \ "2:\n" \ EX_TABLE(0b, 2b) \ EX_TABLE(1b, 2b) \ : : "r" (val), "r" (port + _IO_BASE) \ : "memory"); \ } __do_in_asm(_rec_inb, "lbzx") __do_in_asm(_rec_inw, "lhbrx") __do_in_asm(_rec_inl, "lwbrx") __do_out_asm(_rec_outb, "stbx") __do_out_asm(_rec_outw, "sthbrx") __do_out_asm(_rec_outl, "stwbrx") #endif /* CONFIG_PPC32 */ /* The "__do_*" operations below provide the actual "base" implementation * for each of the defined accessors. Some of them use the out_* functions * directly, some of them still use EEH, though we might change that in the * future. Those macros below provide the necessary argument swapping and * handling of the IO base for PIO. * * They are themselves used by the macros that define the actual accessors * and can be used by the hooks if any. * * Note that PIO operations are always defined in terms of their corresonding * MMIO operations. That allows platforms like iSeries who want to modify the * behaviour of both to only hook on the MMIO version and get both. It's also * possible to hook directly at the toplevel PIO operation if they have to * be handled differently */ #define __do_writeb(val, addr) out_8(PCI_FIX_ADDR(addr), val) #define __do_writew(val, addr) out_le16(PCI_FIX_ADDR(addr), val) #define __do_writel(val, addr) out_le32(PCI_FIX_ADDR(addr), val) #define __do_writeq(val, addr) out_le64(PCI_FIX_ADDR(addr), val) #define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val) #define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val) #define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val) #ifdef CONFIG_EEH #define __do_readb(addr) eeh_readb(PCI_FIX_ADDR(addr)) #define __do_readw(addr) eeh_readw(PCI_FIX_ADDR(addr)) #define __do_readl(addr) eeh_readl(PCI_FIX_ADDR(addr)) #define __do_readq(addr) eeh_readq(PCI_FIX_ADDR(addr)) #define __do_readw_be(addr) eeh_readw_be(PCI_FIX_ADDR(addr)) #define __do_readl_be(addr) eeh_readl_be(PCI_FIX_ADDR(addr)) #define __do_readq_be(addr) eeh_readq_be(PCI_FIX_ADDR(addr)) #else /* CONFIG_EEH */ #define __do_readb(addr) in_8(PCI_FIX_ADDR(addr)) #define __do_readw(addr) in_le16(PCI_FIX_ADDR(addr)) #define __do_readl(addr) in_le32(PCI_FIX_ADDR(addr)) #define __do_readq(addr) in_le64(PCI_FIX_ADDR(addr)) #define __do_readw_be(addr) in_be16(PCI_FIX_ADDR(addr)) #define __do_readl_be(addr) in_be32(PCI_FIX_ADDR(addr)) #define __do_readq_be(addr) in_be64(PCI_FIX_ADDR(addr)) #endif /* !defined(CONFIG_EEH) */ #ifdef CONFIG_PPC32 #define __do_outb(val, port) _rec_outb(val, port) #define __do_outw(val, port) _rec_outw(val, port) #define __do_outl(val, port) _rec_outl(val, port) #define __do_inb(port) _rec_inb(port) #define __do_inw(port) _rec_inw(port) #define __do_inl(port) _rec_inl(port) #else /* CONFIG_PPC32 */ #define __do_outb(val, port) writeb(val,(PCI_IO_ADDR)(_IO_BASE+port)); #define __do_outw(val, port) writew(val,(PCI_IO_ADDR)(_IO_BASE+port)); #define __do_outl(val, port) writel(val,(PCI_IO_ADDR)(_IO_BASE+port)); #define __do_inb(port) readb((PCI_IO_ADDR)(_IO_BASE + port)); #define __do_inw(port) readw((PCI_IO_ADDR)(_IO_BASE + port)); #define __do_inl(port) readl((PCI_IO_ADDR)(_IO_BASE + port)); #endif /* !CONFIG_PPC32 */ #ifdef CONFIG_EEH #define __do_readsb(a, b, n) eeh_readsb(PCI_FIX_ADDR(a), (b), (n)) #define __do_readsw(a, b, n) eeh_readsw(PCI_FIX_ADDR(a), (b), (n)) #define __do_readsl(a, b, n) eeh_readsl(PCI_FIX_ADDR(a), (b), (n)) #else /* CONFIG_EEH */ #define __do_readsb(a, b, n) _insb(PCI_FIX_ADDR(a), (b), (n)) #define __do_readsw(a, b, n) _insw(PCI_FIX_ADDR(a), (b), (n)) #define __do_readsl(a, b, n) _insl(PCI_FIX_ADDR(a), (b), (n)) #endif /* !CONFIG_EEH */ #define __do_writesb(a, b, n) _outsb(PCI_FIX_ADDR(a),(b),(n)) #define __do_writesw(a, b, n) _outsw(PCI_FIX_ADDR(a),(b),(n)) #define __do_writesl(a, b, n) _outsl(PCI_FIX_ADDR(a),(b),(n)) #define __do_insb(p, b, n) readsb((PCI_IO_ADDR)(_IO_BASE+(p)), (b), (n)) #define __do_insw(p, b, n) readsw((PCI_IO_ADDR)(_IO_BASE+(p)), (b), (n)) #define __do_insl(p, b, n) readsl((PCI_IO_ADDR)(_IO_BASE+(p)), (b), (n)) #define __do_outsb(p, b, n) writesb((PCI_IO_ADDR)(_IO_BASE+(p)),(b),(n)) #define __do_outsw(p, b, n) writesw((PCI_IO_ADDR)(_IO_BASE+(p)),(b),(n)) #define __do_outsl(p, b, n) writesl((PCI_IO_ADDR)(_IO_BASE+(p)),(b),(n)) #define __do_memset_io(addr, c, n) \ _memset_io(PCI_FIX_ADDR(addr), c, n) #define __do_memcpy_toio(dst, src, n) \ _memcpy_toio(PCI_FIX_ADDR(dst), src, n) #ifdef CONFIG_EEH #define __do_memcpy_fromio(dst, src, n) \ eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n) #else /* CONFIG_EEH */ #define __do_memcpy_fromio(dst, src, n) \ _memcpy_fromio(dst,PCI_FIX_ADDR(src),n) #endif /* !CONFIG_EEH */ #ifdef CONFIG_PPC_INDIRECT_PIO #define DEF_PCI_HOOK_pio(x) x #else #define DEF_PCI_HOOK_pio(x) NULL #endif #ifdef CONFIG_PPC_INDIRECT_MMIO #define DEF_PCI_HOOK_mem(x) x #else #define DEF_PCI_HOOK_mem(x) NULL #endif /* Structure containing all the hooks */ extern struct ppc_pci_io { #define DEF_PCI_AC_RET(name, ret, at, al, space, aa) ret (*name) at; #define DEF_PCI_AC_NORET(name, at, al, space, aa) void (*name) at; #include <asm/io-defs.h> #undef DEF_PCI_AC_RET #undef DEF_PCI_AC_NORET } ppc_pci_io; /* The inline wrappers */ #define DEF_PCI_AC_RET(name, ret, at, al, space, aa) \ static inline ret name at \ { \ if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \ return ppc_pci_io.name al; \ return __do_##name al; \ } #define DEF_PCI_AC_NORET(name, at, al, space, aa) \ static inline void name at \ { \ if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \ ppc_pci_io.name al; \ else \ __do_##name al; \ } #include <asm/io-defs.h> #undef DEF_PCI_AC_RET #undef DEF_PCI_AC_NORET /* Some drivers check for the presence of readq & writeq with * a #ifdef, so we make them happy here. */ #define readb readb #define readw readw #define readl readl #define writeb writeb #define writew writew #define writel writel #define readsb readsb #define readsw readsw #define readsl readsl #define writesb writesb #define writesw writesw #define writesl writesl #define inb inb #define inw inw #define inl inl #define outb outb #define outw outw #define outl outl #define insb insb #define insw insw #define insl insl #define outsb outsb #define outsw outsw #define outsl outsl #ifdef __powerpc64__ #define readq readq #define writeq writeq #endif #define memset_io memset_io #define memcpy_fromio memcpy_fromio #define memcpy_toio memcpy_toio /* * We don't do relaxed operations yet, at least not with this semantic */ #define readb_relaxed(addr) readb(addr) #define readw_relaxed(addr) readw(addr) #define readl_relaxed(addr) readl(addr) #define readq_relaxed(addr) readq(addr) #define writeb_relaxed(v, addr) writeb(v, addr) #define writew_relaxed(v, addr) writew(v, addr) #define writel_relaxed(v, addr) writel(v, addr) #define writeq_relaxed(v, addr) writeq(v, addr) #ifndef CONFIG_GENERIC_IOMAP /* * Here comes the implementation of the IOMAP interfaces. */ static inline unsigned int ioread16be(const void __iomem *addr) { return readw_be(addr); } #define ioread16be ioread16be static inline unsigned int ioread32be(const void __iomem *addr) { return readl_be(addr); } #define ioread32be ioread32be #ifdef __powerpc64__ static inline u64 ioread64_lo_hi(const void __iomem *addr) { return readq(addr); } #define ioread64_lo_hi ioread64_lo_hi static inline u64 ioread64_hi_lo(const void __iomem *addr) { return readq(addr); } #define ioread64_hi_lo ioread64_hi_lo static inline u64 ioread64be(const void __iomem *addr) { return readq_be(addr); } #define ioread64be ioread64be static inline u64 ioread64be_lo_hi(const void __iomem *addr) { return readq_be(addr); } #define ioread64be_lo_hi ioread64be_lo_hi static inline u64 ioread64be_hi_lo(const void __iomem *addr) { return readq_be(addr); } #define ioread64be_hi_lo ioread64be_hi_lo #endif /* __powerpc64__ */ static inline void iowrite16be(u16 val, void __iomem *addr) { writew_be(val, addr); } #define iowrite16be iowrite16be static inline void iowrite32be(u32 val, void __iomem *addr) { writel_be(val, addr); } #define iowrite32be iowrite32be #ifdef __powerpc64__ static inline void iowrite64_lo_hi(u64 val, void __iomem *addr) { writeq(val, addr); } #define iowrite64_lo_hi iowrite64_lo_hi static inline void iowrite64_hi_lo(u64 val, void __iomem *addr) { writeq(val, addr); } #define iowrite64_hi_lo iowrite64_hi_lo static inline void iowrite64be(u64 val, void __iomem *addr) { writeq_be(val, addr); } #define iowrite64be iowrite64be static inline void iowrite64be_lo_hi(u64 val, void __iomem *addr) { writeq_be(val, addr); } #define iowrite64be_lo_hi iowrite64be_lo_hi static inline void iowrite64be_hi_lo(u64 val, void __iomem *addr) { writeq_be(val, addr); } #define iowrite64be_hi_lo iowrite64be_hi_lo #endif /* __powerpc64__ */ struct pci_dev; void pci_iounmap(struct pci_dev *dev, void __iomem *addr); #define pci_iounmap pci_iounmap void __iomem *ioport_map(unsigned long port, unsigned int len); #define ioport_map ioport_map #endif static inline void iosync(void) { __asm__ __volatile__ ("sync" : : : "memory"); } /* Enforce in-order execution of data I/O. * No distinction between read/write on PPC; use eieio for all three. * Those are fairly week though. They don't provide a barrier between * MMIO and cacheable storage nor do they provide a barrier vs. locks, * they only provide barriers between 2 __raw MMIO operations and * possibly break write combining. */ #define iobarrier_rw() eieio() #define iobarrier_r() eieio() #define iobarrier_w() eieio() /* * output pause versions need a delay at least for the * w83c105 ide controller in a p610. */ #define inb_p(port) inb(port) #define outb_p(val, port) (udelay(1), outb((val), (port))) #define inw_p(port) inw(port) #define outw_p(val, port) (udelay(1), outw((val), (port))) #define inl_p(port) inl(port) #define outl_p(val, port) (udelay(1), outl((val), (port))) #define IO_SPACE_LIMIT ~(0UL) /** * ioremap - map bus memory into CPU space * @address: bus address of the memory * @size: size of the resource to map * * ioremap performs a platform specific sequence of operations to * make bus memory CPU accessible via the readb/readw/readl/writeb/ * writew/writel functions and the other mmio helpers. The returned * address is not guaranteed to be usable directly as a virtual * address. * * We provide a few variations of it: * * * ioremap is the standard one and provides non-cacheable guarded mappings * and can be hooked by the platform via ppc_md * * * ioremap_prot allows to specify the page flags as an argument and can * also be hooked by the platform via ppc_md. * * * ioremap_wc enables write combining * * * ioremap_wt enables write through * * * ioremap_coherent maps coherent cached memory * * * iounmap undoes such a mapping and can be hooked * * * __ioremap_caller is the same as above but takes an explicit caller * reference rather than using __builtin_return_address(0) * */ extern void __iomem *ioremap(phys_addr_t address, unsigned long size); #define ioremap ioremap #define ioremap_prot ioremap_prot extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size); #define ioremap_wc ioremap_wc #ifdef CONFIG_PPC32 void __iomem *ioremap_wt(phys_addr_t address, unsigned long size); #define ioremap_wt ioremap_wt #endif void __iomem *ioremap_coherent(phys_addr_t address, unsigned long size); #define ioremap_cache(addr, size) \ ioremap_prot((addr), (size), pgprot_val(PAGE_KERNEL)) #define iounmap iounmap void __iomem *ioremap_phb(phys_addr_t paddr, unsigned long size); int early_ioremap_range(unsigned long ea, phys_addr_t pa, unsigned long size, pgprot_t prot); extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size, pgprot_t prot, void *caller); /* * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation * which needs some additional definitions here. They basically allow PIO * space overall to be 1GB. This will work as long as we never try to use * iomap to map MMIO below 1GB which should be fine on ppc64 */ #define HAVE_ARCH_PIO_SIZE 1 #define PIO_OFFSET 0x00000000UL #define PIO_MASK (FULL_IO_SIZE - 1) #define PIO_RESERVED (FULL_IO_SIZE) #define mmio_read16be(addr) readw_be(addr) #define mmio_read32be(addr) readl_be(addr) #define mmio_read64be(addr) readq_be(addr) #define mmio_write16be(val, addr) writew_be(val, addr) #define mmio_write32be(val, addr) writel_be(val, addr) #define mmio_write64be(val, addr) writeq_be(val, addr) #define mmio_insb(addr, dst, count) readsb(addr, dst, count) #define mmio_insw(addr, dst, count) readsw(addr, dst, count) #define mmio_insl(addr, dst, count) readsl(addr, dst, count) #define mmio_outsb(addr, src, count) writesb(addr, src, count) #define mmio_outsw(addr, src, count) writesw(addr, src, count) #define mmio_outsl(addr, src, count) writesl(addr, src, count) /** * virt_to_phys - map virtual addresses to physical * @address: address to remap * * The returned physical address is the physical (CPU) mapping for * the memory address given. It is only valid to use this function on * addresses directly mapped or allocated via kmalloc. * * This function does not give bus mappings for DMA transfers. In * almost all conceivable cases a device driver should not be using * this function */ static inline unsigned long virt_to_phys(const volatile void * address) { WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && !virt_addr_valid(address)); return __pa((unsigned long)address); } #define virt_to_phys virt_to_phys /** * phys_to_virt - map physical address to virtual * @address: address to remap * * The returned virtual address is a current CPU mapping for * the memory address given. It is only valid to use this function on * addresses that have a kernel mapping * * This function does not handle bus mappings for DMA transfers. In * almost all conceivable cases a device driver should not be using * this function */ static inline void * phys_to_virt(unsigned long address) { return (void *)__va(address); } #define phys_to_virt phys_to_virt /* * Change "struct page" to physical address. */ static inline phys_addr_t page_to_phys(struct page *page) { unsigned long pfn = page_to_pfn(page); WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && !pfn_valid(pfn)); return PFN_PHYS(pfn); } /* * 32 bits still uses virt_to_bus() for its implementation of DMA * mappings se we have to keep it defined here. We also have some old * drivers (shame shame shame) that use bus_to_virt() and haven't been * fixed yet so I need to define it here. */ #ifdef CONFIG_PPC32 static inline unsigned long virt_to_bus(volatile void * address) { if (address == NULL) return 0; return __pa(address) + PCI_DRAM_OFFSET; } #define virt_to_bus virt_to_bus static inline void * bus_to_virt(unsigned long address) { if (address == 0) return NULL; return __va(address - PCI_DRAM_OFFSET); } #define bus_to_virt bus_to_virt #endif /* CONFIG_PPC32 */ /* access ports */ #define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) | (_v)) #define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v)) #define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) | (_v)) #define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v)) #define setbits8(_addr, _v) out_8((_addr), in_8(_addr) | (_v)) #define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v)) /* Clear and set bits in one shot. These macros can be used to clear and * set multiple bits in a register using a single read-modify-write. These * macros can also be used to set a multiple-bit bit pattern using a mask, * by specifying the mask in the 'clear' parameter and the new bit pattern * in the 'set' parameter. */ #define clrsetbits(type, addr, clear, set) \ out_##type((addr), (in_##type(addr) & ~(clear)) | (set)) #ifdef __powerpc64__ #define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set) #define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set) #endif #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set) #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set) #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set) #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set) #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set) #include <asm-generic/io.h> #endif /* __KERNEL__ */ #endif /* _ASM_POWERPC_IO_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1