Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alexander Graf | 1336 | 35.99% | 40 | 24.24% |
Paul Mackerras | 897 | 24.16% | 60 | 36.36% |
Jordan Niethe | 845 | 22.76% | 8 | 4.85% |
Suraj Jitindar Singh | 192 | 5.17% | 11 | 6.67% |
Sam Bobroff | 113 | 3.04% | 3 | 1.82% |
Simon Guo | 75 | 2.02% | 8 | 4.85% |
Hollis Blanchard | 68 | 1.83% | 3 | 1.82% |
Cédric Le Goater | 32 | 0.86% | 2 | 1.21% |
Nicholas Piggin | 28 | 0.75% | 3 | 1.82% |
David Gibson | 22 | 0.59% | 2 | 1.21% |
Greg Kurz | 21 | 0.57% | 1 | 0.61% |
Benjamin Herrenschmidt | 20 | 0.54% | 4 | 2.42% |
Bharata B Rao | 12 | 0.32% | 2 | 1.21% |
Aneesh Kumar K.V | 10 | 0.27% | 5 | 3.03% |
Linus Torvalds (pre-git) | 8 | 0.22% | 2 | 1.21% |
Gautam Menghani | 8 | 0.22% | 1 | 0.61% |
Bharat Bhushan | 5 | 0.13% | 1 | 0.61% |
Michael Neuling | 4 | 0.11% | 1 | 0.61% |
Suresh E. Warrier | 4 | 0.11% | 1 | 0.61% |
Jose Ricardo Ziviani | 3 | 0.08% | 1 | 0.61% |
Thomas Gleixner | 2 | 0.05% | 1 | 0.61% |
Sean Christopherson | 2 | 0.05% | 1 | 0.61% |
Davidlohr Bueso A | 2 | 0.05% | 1 | 0.61% |
Juergen Gross | 1 | 0.03% | 1 | 0.61% |
Carsten Otte | 1 | 0.03% | 1 | 0.61% |
Dan J Williams | 1 | 0.03% | 1 | 0.61% |
Total | 3712 | 165 |
/* SPDX-License-Identifier: GPL-2.0-only */ /* * * Copyright SUSE Linux Products GmbH 2009 * * Authors: Alexander Graf <agraf@suse.de> */ #ifndef __ASM_KVM_BOOK3S_H__ #define __ASM_KVM_BOOK3S_H__ #include <linux/types.h> #include <linux/kvm_host.h> #include <asm/kvm_book3s_asm.h> #include <asm/guest-state-buffer.h> struct kvmppc_bat { u64 raw; u32 bepi; u32 bepi_mask; u32 brpn; u8 wimg; u8 pp; bool vs : 1; bool vp : 1; }; struct kvmppc_sid_map { u64 guest_vsid; u64 guest_esid; u64 host_vsid; bool valid : 1; }; #define SID_MAP_BITS 9 #define SID_MAP_NUM (1 << SID_MAP_BITS) #define SID_MAP_MASK (SID_MAP_NUM - 1) #ifdef CONFIG_PPC_BOOK3S_64 #define SID_CONTEXTS 1 #else #define SID_CONTEXTS 128 #define VSID_POOL_SIZE (SID_CONTEXTS * 16) #endif struct hpte_cache { struct hlist_node list_pte; struct hlist_node list_pte_long; struct hlist_node list_vpte; struct hlist_node list_vpte_long; #ifdef CONFIG_PPC_BOOK3S_64 struct hlist_node list_vpte_64k; #endif struct rcu_head rcu_head; u64 host_vpn; u64 pfn; ulong slot; struct kvmppc_pte pte; int pagesize; }; /* * Struct for a virtual core. * Note: entry_exit_map combines a bitmap of threads that have entered * in the bottom 8 bits and a bitmap of threads that have exited in the * next 8 bits. This is so that we can atomically set the entry bit * iff the exit map is 0 without taking a lock. */ struct kvmppc_vcore { int n_runnable; int num_threads; int entry_exit_map; int napping_threads; int first_vcpuid; u16 pcpu; u16 last_cpu; u8 vcore_state; u8 in_guest; struct kvm_vcpu *runnable_threads[MAX_SMT_THREADS]; struct list_head preempt_list; spinlock_t lock; struct rcuwait wait; spinlock_t stoltb_lock; /* protects stolen_tb and preempt_tb */ u64 stolen_tb; u64 preempt_tb; struct kvm_vcpu *runner; struct kvm *kvm; u64 tb_offset; /* guest timebase - host timebase */ u64 tb_offset_applied; /* timebase offset currently in force */ ulong lpcr; u32 arch_compat; ulong pcr; ulong dpdes; /* doorbell state (POWER8) */ ulong vtb; /* virtual timebase */ ulong conferring_threads; unsigned int halt_poll_ns; atomic_t online_count; }; struct kvmppc_vcpu_book3s { struct kvmppc_sid_map sid_map[SID_MAP_NUM]; struct { u64 esid; u64 vsid; } slb_shadow[64]; u8 slb_shadow_max; struct kvmppc_bat ibat[8]; struct kvmppc_bat dbat[8]; u64 hid[6]; u64 gqr[8]; u64 sdr1; u64 hior; u64 msr_mask; u64 vtb; #ifdef CONFIG_PPC_BOOK3S_32 u32 vsid_pool[VSID_POOL_SIZE]; u32 vsid_next; #else u64 proto_vsid_first; u64 proto_vsid_max; u64 proto_vsid_next; #endif int context_id[SID_CONTEXTS]; bool hior_explicit; /* HIOR is set by ioctl, not PVR */ struct hlist_head hpte_hash_pte[HPTEG_HASH_NUM_PTE]; struct hlist_head hpte_hash_pte_long[HPTEG_HASH_NUM_PTE_LONG]; struct hlist_head hpte_hash_vpte[HPTEG_HASH_NUM_VPTE]; struct hlist_head hpte_hash_vpte_long[HPTEG_HASH_NUM_VPTE_LONG]; #ifdef CONFIG_PPC_BOOK3S_64 struct hlist_head hpte_hash_vpte_64k[HPTEG_HASH_NUM_VPTE_64K]; #endif int hpte_cache_count; spinlock_t mmu_lock; }; #define VSID_REAL 0x07ffffffffc00000ULL #define VSID_BAT 0x07ffffffffb00000ULL #define VSID_64K 0x0800000000000000ULL #define VSID_1T 0x1000000000000000ULL #define VSID_REAL_DR 0x2000000000000000ULL #define VSID_REAL_IR 0x4000000000000000ULL #define VSID_PR 0x8000000000000000ULL extern void kvmppc_mmu_pte_flush(struct kvm_vcpu *vcpu, ulong ea, ulong ea_mask); extern void kvmppc_mmu_pte_vflush(struct kvm_vcpu *vcpu, u64 vp, u64 vp_mask); extern void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end); extern void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 new_msr); extern void kvmppc_mmu_book3s_64_init(struct kvm_vcpu *vcpu); extern void kvmppc_mmu_book3s_32_init(struct kvm_vcpu *vcpu); extern void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu); extern int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte, bool iswrite); extern void kvmppc_mmu_unmap_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte); extern int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr); extern void kvmppc_mmu_flush_segment(struct kvm_vcpu *vcpu, ulong eaddr, ulong seg_size); extern void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu); extern int kvmppc_book3s_hv_page_fault(struct kvm_vcpu *vcpu, unsigned long addr, unsigned long status); extern long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v, unsigned long valid); extern int kvmppc_hv_emulate_mmio(struct kvm_vcpu *vcpu, unsigned long gpa, gva_t ea, int is_store); extern void kvmppc_mmu_hpte_cache_map(struct kvm_vcpu *vcpu, struct hpte_cache *pte); extern struct hpte_cache *kvmppc_mmu_hpte_cache_next(struct kvm_vcpu *vcpu); extern void kvmppc_mmu_hpte_cache_free(struct hpte_cache *pte); extern void kvmppc_mmu_hpte_destroy(struct kvm_vcpu *vcpu); extern int kvmppc_mmu_hpte_init(struct kvm_vcpu *vcpu); extern void kvmppc_mmu_invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte); extern int kvmppc_mmu_hpte_sysinit(void); extern void kvmppc_mmu_hpte_sysexit(void); extern int kvmppc_mmu_hv_init(void); extern int kvmppc_book3s_hcall_implemented(struct kvm *kvm, unsigned long hc); extern int kvmppc_book3s_radix_page_fault(struct kvm_vcpu *vcpu, unsigned long ea, unsigned long dsisr); extern unsigned long __kvmhv_copy_tofrom_guest_radix(int lpid, int pid, gva_t eaddr, void *to, void *from, unsigned long n); extern long kvmhv_copy_from_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *to, unsigned long n); extern long kvmhv_copy_to_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *from, unsigned long n); extern int kvmppc_mmu_walk_radix_tree(struct kvm_vcpu *vcpu, gva_t eaddr, struct kvmppc_pte *gpte, u64 root, u64 *pte_ret_p); extern int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr, struct kvmppc_pte *gpte, u64 table, int table_index, u64 *pte_ret_p); extern int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, struct kvmppc_pte *gpte, bool data, bool iswrite); extern void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr, unsigned int pshift, u64 lpid); extern void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte, unsigned long gpa, unsigned int shift, const struct kvm_memory_slot *memslot, u64 lpid); extern bool kvmppc_hv_handle_set_rc(struct kvm *kvm, bool nested, bool writing, unsigned long gpa, u64 lpid); extern int kvmppc_book3s_instantiate_page(struct kvm_vcpu *vcpu, unsigned long gpa, struct kvm_memory_slot *memslot, bool writing, bool kvm_ro, pte_t *inserted_pte, unsigned int *levelp); extern int kvmppc_init_vm_radix(struct kvm *kvm); extern void kvmppc_free_radix(struct kvm *kvm); extern void kvmppc_free_pgtable_radix(struct kvm *kvm, pgd_t *pgd, u64 lpid); extern int kvmppc_radix_init(void); extern void kvmppc_radix_exit(void); extern void kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, unsigned long gfn); extern bool kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, unsigned long gfn); extern bool kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, unsigned long gfn); extern long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, unsigned long *map); extern void kvmppc_radix_flush_memslot(struct kvm *kvm, const struct kvm_memory_slot *memslot); extern int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info); /* XXX remove this export when load_last_inst() is generic */ extern int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, bool data); extern void kvmppc_book3s_queue_irqprio(struct kvm_vcpu *vcpu, unsigned int vec); extern void kvmppc_book3s_dequeue_irqprio(struct kvm_vcpu *vcpu, unsigned int vec); extern void kvmppc_inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 flags); extern void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac); extern void kvmppc_set_bat(struct kvm_vcpu *vcpu, struct kvmppc_bat *bat, bool upper, u32 val); extern void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr); extern int kvmppc_emulate_paired_single(struct kvm_vcpu *vcpu); extern kvm_pfn_t kvmppc_gpa_to_pfn(struct kvm_vcpu *vcpu, gpa_t gpa, bool writing, bool *writable); extern void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev, unsigned long *rmap, long pte_index, int realmode); extern void kvmppc_update_dirty_map(const struct kvm_memory_slot *memslot, unsigned long gfn, unsigned long psize); extern void kvmppc_invalidate_hpte(struct kvm *kvm, __be64 *hptep, unsigned long pte_index); void kvmppc_clear_ref_hpte(struct kvm *kvm, __be64 *hptep, unsigned long pte_index); extern void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long addr, unsigned long *nb_ret); extern void kvmppc_unpin_guest_page(struct kvm *kvm, void *addr, unsigned long gpa, bool dirty); extern long kvmppc_do_h_enter(struct kvm *kvm, unsigned long flags, long pte_index, unsigned long pteh, unsigned long ptel, pgd_t *pgdir, bool realmode, unsigned long *idx_ret); extern long kvmppc_do_h_remove(struct kvm *kvm, unsigned long flags, unsigned long pte_index, unsigned long avpn, unsigned long *hpret); extern long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm, struct kvm_memory_slot *memslot, unsigned long *map); extern void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa, struct kvm_memory_slot *memslot, unsigned long *map); extern unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr); extern void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask); extern void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr); extern int kvmhv_p9_tm_emulation_early(struct kvm_vcpu *vcpu); extern int kvmhv_p9_tm_emulation(struct kvm_vcpu *vcpu); extern void kvmhv_emulate_tm_rollback(struct kvm_vcpu *vcpu); extern void kvmppc_entry_trampoline(void); extern void kvmppc_hv_entry_trampoline(void); extern u32 kvmppc_alignment_dsisr(struct kvm_vcpu *vcpu, unsigned int inst); extern ulong kvmppc_alignment_dar(struct kvm_vcpu *vcpu, unsigned int inst); extern int kvmppc_h_pr(struct kvm_vcpu *vcpu, unsigned long cmd); extern void kvmppc_pr_init_default_hcalls(struct kvm *kvm); extern int kvmppc_hcall_impl_pr(unsigned long cmd); extern int kvmppc_hcall_impl_hv_realmode(unsigned long cmd); extern void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu); extern void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu); long kvmppc_read_intr(void); void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr); void kvmppc_inject_interrupt_hv(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags); #ifdef CONFIG_PPC_TRANSACTIONAL_MEM void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu); void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu); void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu); void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu); #else static inline void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu) {} static inline void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu) {} static inline void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu) {} static inline void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu) {} #endif extern unsigned long nested_capabilities; long kvmhv_nested_init(void); void kvmhv_nested_exit(void); void kvmhv_vm_nested_init(struct kvm *kvm); long kvmhv_set_partition_table(struct kvm_vcpu *vcpu); long kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu *vcpu); void kvmhv_flush_lpid(u64 lpid); void kvmhv_set_ptbl_entry(u64 lpid, u64 dw0, u64 dw1); void kvmhv_release_all_nested(struct kvm *kvm); long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu); long kvmhv_do_nested_tlbie(struct kvm_vcpu *vcpu); long do_h_rpt_invalidate_pat(struct kvm_vcpu *vcpu, unsigned long lpid, unsigned long type, unsigned long pg_sizes, unsigned long start, unsigned long end); int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr); void kvmhv_save_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr); void kvmhv_restore_hv_return_state(struct kvm_vcpu *vcpu, struct hv_guest_state *hr); long int kvmhv_nested_page_fault(struct kvm_vcpu *vcpu); void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac); #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE extern struct static_key_false __kvmhv_is_nestedv2; static inline bool kvmhv_is_nestedv2(void) { return static_branch_unlikely(&__kvmhv_is_nestedv2); } static inline bool kvmhv_is_nestedv1(void) { return !static_branch_likely(&__kvmhv_is_nestedv2); } #else static inline bool kvmhv_is_nestedv2(void) { return false; } static inline bool kvmhv_is_nestedv1(void) { return false; } #endif int __kvmhv_nestedv2_reload_ptregs(struct kvm_vcpu *vcpu, struct pt_regs *regs); int __kvmhv_nestedv2_mark_dirty_ptregs(struct kvm_vcpu *vcpu, struct pt_regs *regs); int __kvmhv_nestedv2_mark_dirty(struct kvm_vcpu *vcpu, u16 iden); int __kvmhv_nestedv2_cached_reload(struct kvm_vcpu *vcpu, u16 iden); static inline int kvmhv_nestedv2_reload_ptregs(struct kvm_vcpu *vcpu, struct pt_regs *regs) { if (kvmhv_is_nestedv2()) return __kvmhv_nestedv2_reload_ptregs(vcpu, regs); return 0; } static inline int kvmhv_nestedv2_mark_dirty_ptregs(struct kvm_vcpu *vcpu, struct pt_regs *regs) { if (kvmhv_is_nestedv2()) return __kvmhv_nestedv2_mark_dirty_ptregs(vcpu, regs); return 0; } static inline int kvmhv_nestedv2_mark_dirty(struct kvm_vcpu *vcpu, u16 iden) { if (kvmhv_is_nestedv2()) return __kvmhv_nestedv2_mark_dirty(vcpu, iden); return 0; } static inline int kvmhv_nestedv2_cached_reload(struct kvm_vcpu *vcpu, u16 iden) { if (kvmhv_is_nestedv2()) return __kvmhv_nestedv2_cached_reload(vcpu, iden); return 0; } extern int kvm_irq_bypass; static inline struct kvmppc_vcpu_book3s *to_book3s(struct kvm_vcpu *vcpu) { return vcpu->arch.book3s; } /* Also add subarch specific defines */ #ifdef CONFIG_KVM_BOOK3S_32_HANDLER #include <asm/kvm_book3s_32.h> #endif #ifdef CONFIG_KVM_BOOK3S_64_HANDLER #include <asm/kvm_book3s_64.h> #endif static inline void kvmppc_set_gpr(struct kvm_vcpu *vcpu, int num, ulong val) { vcpu->arch.regs.gpr[num] = val; kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_GPR(num)); } static inline ulong kvmppc_get_gpr(struct kvm_vcpu *vcpu, int num) { WARN_ON(kvmhv_nestedv2_cached_reload(vcpu, KVMPPC_GSID_GPR(num)) < 0); return vcpu->arch.regs.gpr[num]; } static inline void kvmppc_set_cr(struct kvm_vcpu *vcpu, u32 val) { vcpu->arch.regs.ccr = val; kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_CR); } static inline u32 kvmppc_get_cr(struct kvm_vcpu *vcpu) { WARN_ON(kvmhv_nestedv2_cached_reload(vcpu, KVMPPC_GSID_CR) < 0); return vcpu->arch.regs.ccr; } static inline void kvmppc_set_xer(struct kvm_vcpu *vcpu, ulong val) { vcpu->arch.regs.xer = val; kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_XER); } static inline ulong kvmppc_get_xer(struct kvm_vcpu *vcpu) { WARN_ON(kvmhv_nestedv2_cached_reload(vcpu, KVMPPC_GSID_XER) < 0); return vcpu->arch.regs.xer; } static inline void kvmppc_set_ctr(struct kvm_vcpu *vcpu, ulong val) { vcpu->arch.regs.ctr = val; kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_CTR); } static inline ulong kvmppc_get_ctr(struct kvm_vcpu *vcpu) { WARN_ON(kvmhv_nestedv2_cached_reload(vcpu, KVMPPC_GSID_CTR) < 0); return vcpu->arch.regs.ctr; } static inline void kvmppc_set_lr(struct kvm_vcpu *vcpu, ulong val) { vcpu->arch.regs.link = val; kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LR); } static inline ulong kvmppc_get_lr(struct kvm_vcpu *vcpu) { WARN_ON(kvmhv_nestedv2_cached_reload(vcpu, KVMPPC_GSID_LR) < 0); return vcpu->arch.regs.link; } static inline void kvmppc_set_pc(struct kvm_vcpu *vcpu, ulong val) { vcpu->arch.regs.nip = val; kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_NIA); } static inline ulong kvmppc_get_pc(struct kvm_vcpu *vcpu) { WARN_ON(kvmhv_nestedv2_cached_reload(vcpu, KVMPPC_GSID_NIA) < 0); return vcpu->arch.regs.nip; } static inline u64 kvmppc_get_msr(struct kvm_vcpu *vcpu); static inline bool kvmppc_need_byteswap(struct kvm_vcpu *vcpu) { return (kvmppc_get_msr(vcpu) & MSR_LE) != (MSR_KERNEL & MSR_LE); } static inline ulong kvmppc_get_fault_dar(struct kvm_vcpu *vcpu) { return vcpu->arch.fault_dar; } static inline u64 kvmppc_get_fpr(struct kvm_vcpu *vcpu, int i) { WARN_ON(kvmhv_nestedv2_cached_reload(vcpu, KVMPPC_GSID_VSRS(i)) < 0); return vcpu->arch.fp.fpr[i][TS_FPROFFSET]; } static inline void kvmppc_set_fpr(struct kvm_vcpu *vcpu, int i, u64 val) { vcpu->arch.fp.fpr[i][TS_FPROFFSET] = val; kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_VSRS(i)); } static inline u64 kvmppc_get_fpscr(struct kvm_vcpu *vcpu) { WARN_ON(kvmhv_nestedv2_cached_reload(vcpu, KVMPPC_GSID_FPSCR) < 0); return vcpu->arch.fp.fpscr; } static inline void kvmppc_set_fpscr(struct kvm_vcpu *vcpu, u64 val) { vcpu->arch.fp.fpscr = val; kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_FPSCR); } static inline u64 kvmppc_get_vsx_fpr(struct kvm_vcpu *vcpu, int i, int j) { WARN_ON(kvmhv_nestedv2_cached_reload(vcpu, KVMPPC_GSID_VSRS(i)) < 0); return vcpu->arch.fp.fpr[i][j]; } static inline void kvmppc_set_vsx_fpr(struct kvm_vcpu *vcpu, int i, int j, u64 val) { vcpu->arch.fp.fpr[i][j] = val; kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_VSRS(i)); } #ifdef CONFIG_ALTIVEC static inline void kvmppc_get_vsx_vr(struct kvm_vcpu *vcpu, int i, vector128 *v) { WARN_ON(kvmhv_nestedv2_cached_reload(vcpu, KVMPPC_GSID_VSRS(32 + i)) < 0); *v = vcpu->arch.vr.vr[i]; } static inline void kvmppc_set_vsx_vr(struct kvm_vcpu *vcpu, int i, vector128 *val) { vcpu->arch.vr.vr[i] = *val; kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_VSRS(32 + i)); } static inline u32 kvmppc_get_vscr(struct kvm_vcpu *vcpu) { WARN_ON(kvmhv_nestedv2_cached_reload(vcpu, KVMPPC_GSID_VSCR) < 0); return vcpu->arch.vr.vscr.u[3]; } static inline void kvmppc_set_vscr(struct kvm_vcpu *vcpu, u32 val) { vcpu->arch.vr.vscr.u[3] = val; kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_VSCR); } #endif #define KVMPPC_BOOK3S_VCPU_ACCESSOR_SET(reg, size, iden) \ static inline void kvmppc_set_##reg(struct kvm_vcpu *vcpu, u##size val) \ { \ \ vcpu->arch.reg = val; \ kvmhv_nestedv2_mark_dirty(vcpu, iden); \ } #define KVMPPC_BOOK3S_VCPU_ACCESSOR_GET(reg, size, iden) \ static inline u##size kvmppc_get_##reg(struct kvm_vcpu *vcpu) \ { \ WARN_ON(kvmhv_nestedv2_cached_reload(vcpu, iden) < 0); \ return vcpu->arch.reg; \ } #define KVMPPC_BOOK3S_VCPU_ACCESSOR(reg, size, iden) \ KVMPPC_BOOK3S_VCPU_ACCESSOR_SET(reg, size, iden) \ KVMPPC_BOOK3S_VCPU_ACCESSOR_GET(reg, size, iden) \ KVMPPC_BOOK3S_VCPU_ACCESSOR(pid, 32, KVMPPC_GSID_PIDR) KVMPPC_BOOK3S_VCPU_ACCESSOR(tar, 64, KVMPPC_GSID_TAR) KVMPPC_BOOK3S_VCPU_ACCESSOR(ebbhr, 64, KVMPPC_GSID_EBBHR) KVMPPC_BOOK3S_VCPU_ACCESSOR(ebbrr, 64, KVMPPC_GSID_EBBRR) KVMPPC_BOOK3S_VCPU_ACCESSOR(bescr, 64, KVMPPC_GSID_BESCR) KVMPPC_BOOK3S_VCPU_ACCESSOR(ic, 64, KVMPPC_GSID_IC) KVMPPC_BOOK3S_VCPU_ACCESSOR(vrsave, 64, KVMPPC_GSID_VRSAVE) #define KVMPPC_BOOK3S_VCORE_ACCESSOR_SET(reg, size, iden) \ static inline void kvmppc_set_##reg(struct kvm_vcpu *vcpu, u##size val) \ { \ vcpu->arch.vcore->reg = val; \ kvmhv_nestedv2_mark_dirty(vcpu, iden); \ } #define KVMPPC_BOOK3S_VCORE_ACCESSOR_GET(reg, size, iden) \ static inline u##size kvmppc_get_##reg(struct kvm_vcpu *vcpu) \ { \ WARN_ON(kvmhv_nestedv2_cached_reload(vcpu, iden) < 0); \ return vcpu->arch.vcore->reg; \ } #define KVMPPC_BOOK3S_VCORE_ACCESSOR(reg, size, iden) \ KVMPPC_BOOK3S_VCORE_ACCESSOR_SET(reg, size, iden) \ KVMPPC_BOOK3S_VCORE_ACCESSOR_GET(reg, size, iden) \ KVMPPC_BOOK3S_VCORE_ACCESSOR(vtb, 64, KVMPPC_GSID_VTB) KVMPPC_BOOK3S_VCORE_ACCESSOR(dpdes, 64, KVMPPC_GSID_DPDES) KVMPPC_BOOK3S_VCORE_ACCESSOR_GET(arch_compat, 32, KVMPPC_GSID_LOGICAL_PVR) KVMPPC_BOOK3S_VCORE_ACCESSOR_GET(lpcr, 64, KVMPPC_GSID_LPCR) KVMPPC_BOOK3S_VCORE_ACCESSOR_SET(tb_offset, 64, KVMPPC_GSID_TB_OFFSET) static inline u64 kvmppc_get_tb_offset(struct kvm_vcpu *vcpu) { return vcpu->arch.vcore->tb_offset; } static inline u64 kvmppc_get_dec_expires(struct kvm_vcpu *vcpu) { WARN_ON(kvmhv_nestedv2_cached_reload(vcpu, KVMPPC_GSID_DEC_EXPIRY_TB) < 0); return vcpu->arch.dec_expires; } static inline void kvmppc_set_dec_expires(struct kvm_vcpu *vcpu, u64 val) { vcpu->arch.dec_expires = val; kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_DEC_EXPIRY_TB); } /* Expiry time of vcpu DEC relative to host TB */ static inline u64 kvmppc_dec_expires_host_tb(struct kvm_vcpu *vcpu) { return kvmppc_get_dec_expires(vcpu) - kvmppc_get_tb_offset(vcpu); } static inline bool is_kvmppc_resume_guest(int r) { return (r == RESUME_GUEST || r == RESUME_GUEST_NV); } static inline bool is_kvmppc_hv_enabled(struct kvm *kvm); static inline bool kvmppc_supports_magic_page(struct kvm_vcpu *vcpu) { /* Only PR KVM supports the magic page */ return !is_kvmppc_hv_enabled(vcpu->kvm); } extern int kvmppc_h_logical_ci_load(struct kvm_vcpu *vcpu); extern int kvmppc_h_logical_ci_store(struct kvm_vcpu *vcpu); /* Magic register values loaded into r3 and r4 before the 'sc' assembly * instruction for the OSI hypercalls */ #define OSI_SC_MAGIC_R3 0x113724FA #define OSI_SC_MAGIC_R4 0x77810F9B #define INS_DCBZ 0x7c0007ec /* TO = 31 for unconditional trap */ #define INS_TW 0x7fe00008 #define SPLIT_HACK_MASK 0xff000000 #define SPLIT_HACK_OFFS 0xfb000000 /* * This packs a VCPU ID from the [0..KVM_MAX_VCPU_IDS) space down to the * [0..KVM_MAX_VCPUS) space, using knowledge of the guest's core stride * (but not its actual threading mode, which is not available) to avoid * collisions. * * The implementation leaves VCPU IDs from the range [0..KVM_MAX_VCPUS) (block * 0) unchanged: if the guest is filling each VCORE completely then it will be * using consecutive IDs and it will fill the space without any packing. * * For higher VCPU IDs, the packed ID is based on the VCPU ID modulo * KVM_MAX_VCPUS (effectively masking off the top bits) and then an offset is * added to avoid collisions. * * VCPU IDs in the range [KVM_MAX_VCPUS..(KVM_MAX_VCPUS*2)) (block 1) are only * possible if the guest is leaving at least 1/2 of each VCORE empty, so IDs * can be safely packed into the second half of each VCORE by adding an offset * of (stride / 2). * * Similarly, if VCPU IDs in the range [(KVM_MAX_VCPUS*2)..(KVM_MAX_VCPUS*4)) * (blocks 2 and 3) are seen, the guest must be leaving at least 3/4 of each * VCORE empty so packed IDs can be offset by (stride / 4) and (stride * 3 / 4). * * Finally, VCPU IDs from blocks 5..7 will only be seen if the guest is using a * stride of 8 and 1 thread per core so the remaining offsets of 1, 5, 3 and 7 * must be free to use. * * (The offsets for each block are stored in block_offsets[], indexed by the * block number if the stride is 8. For cases where the guest's stride is less * than 8, we can re-use the block_offsets array by multiplying the block * number by (MAX_SMT_THREADS / stride) to reach the correct entry.) */ static inline u32 kvmppc_pack_vcpu_id(struct kvm *kvm, u32 id) { const int block_offsets[MAX_SMT_THREADS] = {0, 4, 2, 6, 1, 5, 3, 7}; int stride = kvm->arch.emul_smt_mode; int block = (id / KVM_MAX_VCPUS) * (MAX_SMT_THREADS / stride); u32 packed_id; if (WARN_ONCE(block >= MAX_SMT_THREADS, "VCPU ID too large to pack")) return 0; packed_id = (id % KVM_MAX_VCPUS) + block_offsets[block]; if (WARN_ONCE(packed_id >= KVM_MAX_VCPUS, "VCPU ID packing failed")) return 0; return packed_id; } #endif /* __ASM_KVM_BOOK3S_H__ */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1