Contributors: 36
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
R Sharada |
558 |
33.19% |
1 |
1.22% |
Sourabh Jain |
414 |
24.63% |
3 |
3.66% |
Michael Ellerman |
157 |
9.34% |
9 |
10.98% |
Matt Evans |
94 |
5.59% |
4 |
4.88% |
Anton Blanchard |
78 |
4.64% |
9 |
10.98% |
Michael Neuling |
75 |
4.46% |
1 |
1.22% |
Benjamin Herrenschmidt |
70 |
4.16% |
5 |
6.10% |
Hari Bathini |
34 |
2.02% |
7 |
8.54% |
Ram Pai |
34 |
2.02% |
1 |
1.22% |
Nicholas Piggin |
32 |
1.90% |
4 |
4.88% |
Milton D. Miller II |
25 |
1.49% |
1 |
1.22% |
Dale Farnsworth |
14 |
0.83% |
2 |
2.44% |
Paul Mackerras |
12 |
0.71% |
2 |
2.44% |
Phileas Fogg |
9 |
0.54% |
1 |
1.22% |
K.Prasad |
9 |
0.54% |
1 |
1.22% |
Andrew Morton |
8 |
0.48% |
4 |
4.88% |
Ian Munsie |
7 |
0.42% |
1 |
1.22% |
Christophe Leroy |
6 |
0.36% |
4 |
4.88% |
Stephen Rothwell |
6 |
0.36% |
3 |
3.66% |
Aneesh Kumar K.V |
5 |
0.30% |
2 |
2.44% |
Nathan Fontenot |
4 |
0.24% |
1 |
1.22% |
Thiago Jung Bauermann |
4 |
0.24% |
2 |
2.44% |
Srivatsa S. Bhat |
3 |
0.18% |
1 |
1.22% |
Daniel Axtens |
3 |
0.18% |
1 |
1.22% |
Chris Zankel |
3 |
0.18% |
1 |
1.22% |
Benjamin Gray |
2 |
0.12% |
1 |
1.22% |
Tiejun Chen |
2 |
0.12% |
1 |
1.22% |
kbuild test robot |
2 |
0.12% |
1 |
1.22% |
Olof Johansson |
2 |
0.12% |
1 |
1.22% |
Jeremy Kerr |
2 |
0.12% |
1 |
1.22% |
Thomas Gleixner |
2 |
0.12% |
1 |
1.22% |
Joe Perches |
1 |
0.06% |
1 |
1.22% |
Julia Lawall |
1 |
0.06% |
1 |
1.22% |
Suraj Jitindar Singh |
1 |
0.06% |
1 |
1.22% |
Qais Yousef |
1 |
0.06% |
1 |
1.22% |
Geert Uytterhoeven |
1 |
0.06% |
1 |
1.22% |
Total |
1681 |
|
82 |
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* PPC64 code to handle Linux booting another kernel.
*
* Copyright (C) 2004-2005, IBM Corp.
*
* Created by: Milton D Miller II
*/
#include <linux/kexec.h>
#include <linux/smp.h>
#include <linux/thread_info.h>
#include <linux/init_task.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/cpu.h>
#include <linux/hardirq.h>
#include <linux/of.h>
#include <linux/libfdt.h>
#include <asm/page.h>
#include <asm/current.h>
#include <asm/machdep.h>
#include <asm/cacheflush.h>
#include <asm/firmware.h>
#include <asm/paca.h>
#include <asm/mmu.h>
#include <asm/sections.h> /* _end */
#include <asm/setup.h>
#include <asm/smp.h>
#include <asm/hw_breakpoint.h>
#include <asm/svm.h>
#include <asm/ultravisor.h>
#include <asm/crashdump-ppc64.h>
int machine_kexec_prepare(struct kimage *image)
{
int i;
unsigned long begin, end; /* limits of segment */
unsigned long low, high; /* limits of blocked memory range */
struct device_node *node;
const unsigned long *basep;
const unsigned int *sizep;
/*
* Since we use the kernel fault handlers and paging code to
* handle the virtual mode, we must make sure no destination
* overlaps kernel static data or bss.
*/
for (i = 0; i < image->nr_segments; i++)
if (image->segment[i].mem < __pa(_end))
return -ETXTBSY;
/* We also should not overwrite the tce tables */
for_each_node_by_type(node, "pci") {
basep = of_get_property(node, "linux,tce-base", NULL);
sizep = of_get_property(node, "linux,tce-size", NULL);
if (basep == NULL || sizep == NULL)
continue;
low = *basep;
high = low + (*sizep);
for (i = 0; i < image->nr_segments; i++) {
begin = image->segment[i].mem;
end = begin + image->segment[i].memsz;
if ((begin < high) && (end > low)) {
of_node_put(node);
return -ETXTBSY;
}
}
}
return 0;
}
/* Called during kexec sequence with MMU off */
static notrace void copy_segments(unsigned long ind)
{
unsigned long entry;
unsigned long *ptr;
void *dest;
void *addr;
/*
* We rely on kexec_load to create a lists that properly
* initializes these pointers before they are used.
* We will still crash if the list is wrong, but at least
* the compiler will be quiet.
*/
ptr = NULL;
dest = NULL;
for (entry = ind; !(entry & IND_DONE); entry = *ptr++) {
addr = __va(entry & PAGE_MASK);
switch (entry & IND_FLAGS) {
case IND_DESTINATION:
dest = addr;
break;
case IND_INDIRECTION:
ptr = addr;
break;
case IND_SOURCE:
copy_page(dest, addr);
dest += PAGE_SIZE;
}
}
}
/* Called during kexec sequence with MMU off */
notrace void kexec_copy_flush(struct kimage *image)
{
long i, nr_segments = image->nr_segments;
struct kexec_segment ranges[KEXEC_SEGMENT_MAX];
/* save the ranges on the stack to efficiently flush the icache */
memcpy(ranges, image->segment, sizeof(ranges));
/*
* After this call we may not use anything allocated in dynamic
* memory, including *image.
*
* Only globals and the stack are allowed.
*/
copy_segments(image->head);
/*
* we need to clear the icache for all dest pages sometime,
* including ones that were in place on the original copy
*/
for (i = 0; i < nr_segments; i++)
flush_icache_range((unsigned long)__va(ranges[i].mem),
(unsigned long)__va(ranges[i].mem + ranges[i].memsz));
}
#ifdef CONFIG_SMP
static int kexec_all_irq_disabled = 0;
static void kexec_smp_down(void *arg)
{
local_irq_disable();
hard_irq_disable();
mb(); /* make sure our irqs are disabled before we say they are */
get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
while(kexec_all_irq_disabled == 0)
cpu_relax();
mb(); /* make sure all irqs are disabled before this */
hw_breakpoint_disable();
/*
* Now every CPU has IRQs off, we can clear out any pending
* IPIs and be sure that no more will come in after this.
*/
if (ppc_md.kexec_cpu_down)
ppc_md.kexec_cpu_down(0, 1);
reset_sprs();
kexec_smp_wait();
/* NOTREACHED */
}
static void kexec_prepare_cpus_wait(int wait_state)
{
int my_cpu, i, notified=-1;
hw_breakpoint_disable();
my_cpu = get_cpu();
/* Make sure each CPU has at least made it to the state we need.
*
* FIXME: There is a (slim) chance of a problem if not all of the CPUs
* are correctly onlined. If somehow we start a CPU on boot with RTAS
* start-cpu, but somehow that CPU doesn't write callin_cpu_map[] in
* time, the boot CPU will timeout. If it does eventually execute
* stuff, the secondary will start up (paca_ptrs[]->cpu_start was
* written) and get into a peculiar state.
* If the platform supports smp_ops->take_timebase(), the secondary CPU
* will probably be spinning in there. If not (i.e. pseries), the
* secondary will continue on and try to online itself/idle/etc. If it
* survives that, we need to find these
* possible-but-not-online-but-should-be CPUs and chaperone them into
* kexec_smp_wait().
*/
for_each_online_cpu(i) {
if (i == my_cpu)
continue;
while (paca_ptrs[i]->kexec_state < wait_state) {
barrier();
if (i != notified) {
printk(KERN_INFO "kexec: waiting for cpu %d "
"(physical %d) to enter %i state\n",
i, paca_ptrs[i]->hw_cpu_id, wait_state);
notified = i;
}
}
}
mb();
}
/*
* We need to make sure each present CPU is online. The next kernel will scan
* the device tree and assume primary threads are online and query secondary
* threads via RTAS to online them if required. If we don't online primary
* threads, they will be stuck. However, we also online secondary threads as we
* may be using 'cede offline'. In this case RTAS doesn't see the secondary
* threads as offline -- and again, these CPUs will be stuck.
*
* So, we online all CPUs that should be running, including secondary threads.
*/
static void wake_offline_cpus(void)
{
int cpu = 0;
for_each_present_cpu(cpu) {
if (!cpu_online(cpu)) {
printk(KERN_INFO "kexec: Waking offline cpu %d.\n",
cpu);
WARN_ON(add_cpu(cpu));
}
}
}
static void kexec_prepare_cpus(void)
{
wake_offline_cpus();
smp_call_function(kexec_smp_down, NULL, /* wait */0);
local_irq_disable();
hard_irq_disable();
mb(); /* make sure IRQs are disabled before we say they are */
get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
kexec_prepare_cpus_wait(KEXEC_STATE_IRQS_OFF);
/* we are sure every CPU has IRQs off at this point */
kexec_all_irq_disabled = 1;
/*
* Before removing MMU mappings make sure all CPUs have entered real
* mode:
*/
kexec_prepare_cpus_wait(KEXEC_STATE_REAL_MODE);
/* after we tell the others to go down */
if (ppc_md.kexec_cpu_down)
ppc_md.kexec_cpu_down(0, 0);
put_cpu();
}
#else /* ! SMP */
static void kexec_prepare_cpus(void)
{
/*
* move the secondarys to us so that we can copy
* the new kernel 0-0x100 safely
*
* do this if kexec in setup.c ?
*
* We need to release the cpus if we are ever going from an
* UP to an SMP kernel.
*/
smp_release_cpus();
if (ppc_md.kexec_cpu_down)
ppc_md.kexec_cpu_down(0, 0);
local_irq_disable();
hard_irq_disable();
}
#endif /* SMP */
/*
* kexec thread structure and stack.
*
* We need to make sure that this is 16384-byte aligned due to the
* way process stacks are handled. It also must be statically allocated
* or allocated as part of the kimage, because everything else may be
* overwritten when we copy the kexec image. We piggyback on the
* "init_task" linker section here to statically allocate a stack.
*
* We could use a smaller stack if we don't care about anything using
* current, but that audit has not been performed.
*/
static union thread_union kexec_stack = { };
/*
* For similar reasons to the stack above, the kexecing CPU needs to be on a
* static PACA; we switch to kexec_paca.
*/
static struct paca_struct kexec_paca;
/* Our assembly helper, in misc_64.S */
extern void kexec_sequence(void *newstack, unsigned long start,
void *image, void *control,
void (*clear_all)(void),
bool copy_with_mmu_off) __noreturn;
/* too late to fail here */
void default_machine_kexec(struct kimage *image)
{
bool copy_with_mmu_off;
/* prepare control code if any */
/*
* If the kexec boot is the normal one, need to shutdown other cpus
* into our wait loop and quiesce interrupts.
* Otherwise, in the case of crashed mode (crashing_cpu >= 0),
* stopping other CPUs and collecting their pt_regs is done before
* using debugger IPI.
*/
if (!kdump_in_progress())
kexec_prepare_cpus();
#ifdef CONFIG_PPC_PSERIES
/*
* This must be done after other CPUs have shut down, otherwise they
* could execute the 'scv' instruction, which is not supported with
* reloc disabled (see configure_exceptions()).
*/
if (firmware_has_feature(FW_FEATURE_SET_MODE))
pseries_disable_reloc_on_exc();
#endif
printk("kexec: Starting switchover sequence.\n");
/* switch to a staticly allocated stack. Based on irq stack code.
* We setup preempt_count to avoid using VMX in memcpy.
* XXX: the task struct will likely be invalid once we do the copy!
*/
current_thread_info()->flags = 0;
current_thread_info()->preempt_count = HARDIRQ_OFFSET;
/* We need a static PACA, too; copy this CPU's PACA over and switch to
* it. Also poison per_cpu_offset and NULL lppaca to catch anyone using
* non-static data.
*/
memcpy(&kexec_paca, get_paca(), sizeof(struct paca_struct));
kexec_paca.data_offset = 0xedeaddeadeeeeeeeUL;
#ifdef CONFIG_PPC_PSERIES
kexec_paca.lppaca_ptr = NULL;
#endif
if (is_secure_guest() && !(image->preserve_context ||
image->type == KEXEC_TYPE_CRASH)) {
uv_unshare_all_pages();
printk("kexec: Unshared all shared pages.\n");
}
paca_ptrs[kexec_paca.paca_index] = &kexec_paca;
setup_paca(&kexec_paca);
/*
* The lppaca should be unregistered at this point so the HV won't
* touch it. In the case of a crash, none of the lppacas are
* unregistered so there is not much we can do about it here.
*/
/*
* On Book3S, the copy must happen with the MMU off if we are either
* using Radix page tables or we are not in an LPAR since we can
* overwrite the page tables while copying.
*
* In an LPAR, we keep the MMU on otherwise we can't access beyond
* the RMA. On BookE there is no real MMU off mode, so we have to
* keep it enabled as well (but then we have bolted TLB entries).
*/
#ifdef CONFIG_PPC_BOOK3E_64
copy_with_mmu_off = false;
#else
copy_with_mmu_off = radix_enabled() ||
!(firmware_has_feature(FW_FEATURE_LPAR) ||
firmware_has_feature(FW_FEATURE_PS3_LV1));
#endif
/* Some things are best done in assembly. Finding globals with
* a toc is easier in C, so pass in what we can.
*/
kexec_sequence(&kexec_stack, image->start, image,
page_address(image->control_code_page),
mmu_cleanup_all, copy_with_mmu_off);
/* NOTREACHED */
}
#ifdef CONFIG_PPC_64S_HASH_MMU
/* Values we need to export to the second kernel via the device tree. */
static __be64 htab_base;
static __be64 htab_size;
static struct property htab_base_prop = {
.name = "linux,htab-base",
.length = sizeof(unsigned long),
.value = &htab_base,
};
static struct property htab_size_prop = {
.name = "linux,htab-size",
.length = sizeof(unsigned long),
.value = &htab_size,
};
static int __init export_htab_values(void)
{
struct device_node *node;
/* On machines with no htab htab_address is NULL */
if (!htab_address)
return -ENODEV;
node = of_find_node_by_path("/chosen");
if (!node)
return -ENODEV;
/* remove any stale properties so ours can be found */
of_remove_property(node, of_find_property(node, htab_base_prop.name, NULL));
of_remove_property(node, of_find_property(node, htab_size_prop.name, NULL));
htab_base = cpu_to_be64(__pa(htab_address));
of_add_property(node, &htab_base_prop);
htab_size = cpu_to_be64(htab_size_bytes);
of_add_property(node, &htab_size_prop);
of_node_put(node);
return 0;
}
late_initcall(export_htab_values);
#endif /* CONFIG_PPC_64S_HASH_MMU */
#if defined(CONFIG_KEXEC_FILE) || defined(CONFIG_CRASH_DUMP)
/**
* add_node_props - Reads node properties from device node structure and add
* them to fdt.
* @fdt: Flattened device tree of the kernel
* @node_offset: offset of the node to add a property at
* @dn: device node pointer
*
* Returns 0 on success, negative errno on error.
*/
static int add_node_props(void *fdt, int node_offset, const struct device_node *dn)
{
int ret = 0;
struct property *pp;
if (!dn)
return -EINVAL;
for_each_property_of_node(dn, pp) {
ret = fdt_setprop(fdt, node_offset, pp->name, pp->value, pp->length);
if (ret < 0) {
pr_err("Unable to add %s property: %s\n", pp->name, fdt_strerror(ret));
return ret;
}
}
return ret;
}
/**
* update_cpus_node - Update cpus node of flattened device tree using of_root
* device node.
* @fdt: Flattened device tree of the kernel.
*
* Returns 0 on success, negative errno on error.
*
* Note: expecting no subnodes under /cpus/<node> with device_type == "cpu".
* If this changes, update this function to include them.
*/
int update_cpus_node(void *fdt)
{
int prev_node_offset;
const char *device_type;
const struct fdt_property *prop;
struct device_node *cpus_node, *dn;
int cpus_offset, cpus_subnode_offset, ret = 0;
cpus_offset = fdt_path_offset(fdt, "/cpus");
if (cpus_offset < 0 && cpus_offset != -FDT_ERR_NOTFOUND) {
pr_err("Malformed device tree: error reading /cpus node: %s\n",
fdt_strerror(cpus_offset));
return cpus_offset;
}
prev_node_offset = cpus_offset;
/* Delete sub-nodes of /cpus node with device_type == "cpu" */
for (cpus_subnode_offset = fdt_first_subnode(fdt, cpus_offset); cpus_subnode_offset >= 0;) {
/* Ignore nodes that do not have a device_type property or device_type != "cpu" */
prop = fdt_get_property(fdt, cpus_subnode_offset, "device_type", NULL);
if (!prop || strcmp(prop->data, "cpu")) {
prev_node_offset = cpus_subnode_offset;
goto next_node;
}
ret = fdt_del_node(fdt, cpus_subnode_offset);
if (ret < 0) {
pr_err("Failed to delete a cpus sub-node: %s\n", fdt_strerror(ret));
return ret;
}
next_node:
if (prev_node_offset == cpus_offset)
cpus_subnode_offset = fdt_first_subnode(fdt, cpus_offset);
else
cpus_subnode_offset = fdt_next_subnode(fdt, prev_node_offset);
}
cpus_node = of_find_node_by_path("/cpus");
/* Fail here to avoid kexec/kdump kernel boot hung */
if (!cpus_node) {
pr_err("No /cpus node found\n");
return -EINVAL;
}
/* Add all /cpus sub-nodes of device_type == "cpu" to FDT */
for_each_child_of_node(cpus_node, dn) {
/* Ignore device nodes that do not have a device_type property
* or device_type != "cpu".
*/
device_type = of_get_property(dn, "device_type", NULL);
if (!device_type || strcmp(device_type, "cpu"))
continue;
cpus_subnode_offset = fdt_add_subnode(fdt, cpus_offset, dn->full_name);
if (cpus_subnode_offset < 0) {
pr_err("Unable to add %s subnode: %s\n", dn->full_name,
fdt_strerror(cpus_subnode_offset));
ret = cpus_subnode_offset;
goto out;
}
ret = add_node_props(fdt, cpus_subnode_offset, dn);
if (ret < 0)
goto out;
}
out:
of_node_put(cpus_node);
of_node_put(dn);
return ret;
}
#endif /* CONFIG_KEXEC_FILE || CONFIG_CRASH_DUMP */