Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Paul Mackerras | 4025 | 41.02% | 40 | 19.32% |
Alexander Graf | 2397 | 24.43% | 64 | 30.92% |
Simon Guo | 1459 | 14.87% | 13 | 6.28% |
Aneesh Kumar K.V | 477 | 4.86% | 11 | 5.31% |
Benjamin Herrenschmidt | 256 | 2.61% | 6 | 2.90% |
Thomas Huth | 238 | 2.43% | 3 | 1.45% |
Nicholas Piggin | 203 | 2.07% | 5 | 2.42% |
Mihai Caraman | 115 | 1.17% | 2 | 0.97% |
Laurent Vivier | 97 | 0.99% | 1 | 0.48% |
Sean Christopherson | 93 | 0.95% | 10 | 4.83% |
Ian Munsie | 83 | 0.85% | 1 | 0.48% |
Hollis Blanchard | 69 | 0.70% | 2 | 0.97% |
Greg Kurz | 67 | 0.68% | 3 | 1.45% |
Alexey Kardashevskiy | 36 | 0.37% | 4 | 1.93% |
Michael Ellerman | 29 | 0.30% | 3 | 1.45% |
Cameron Kaiser | 26 | 0.26% | 2 | 0.97% |
David Gibson | 20 | 0.20% | 1 | 0.48% |
Madhavan Srinivasan | 14 | 0.14% | 1 | 0.48% |
Anton Blanchard | 14 | 0.14% | 2 | 0.97% |
Andreas Schwab | 12 | 0.12% | 2 | 0.97% |
Tianjia Zhang | 8 | 0.08% | 2 | 0.97% |
Thadeu Lima de Souza Cascardo | 7 | 0.07% | 1 | 0.48% |
Avi Kivity | 7 | 0.07% | 2 | 0.97% |
Jeff Johnson | 5 | 0.05% | 1 | 0.48% |
Michael Neuling | 5 | 0.05% | 1 | 0.48% |
Scott Wood | 4 | 0.04% | 2 | 0.97% |
Marcelo Tosatti | 4 | 0.04% | 2 | 0.97% |
Bharata B Rao | 4 | 0.04% | 1 | 0.48% |
Carsten Otte | 4 | 0.04% | 1 | 0.48% |
Paul Gortmaker | 3 | 0.03% | 1 | 0.48% |
Zhao Ke | 3 | 0.03% | 1 | 0.48% |
Takuya Yoshikawa | 3 | 0.03% | 2 | 0.97% |
Stephen Rothwell | 3 | 0.03% | 1 | 0.48% |
Paolo Bonzini | 3 | 0.03% | 2 | 0.97% |
Suraj Jitindar Singh | 3 | 0.03% | 1 | 0.48% |
David Michael | 3 | 0.03% | 1 | 0.48% |
Jing Zhang | 2 | 0.02% | 1 | 0.48% |
Joe Perches | 2 | 0.02% | 1 | 0.48% |
Yaowei Bai | 2 | 0.02% | 1 | 0.48% |
Thomas Gleixner | 2 | 0.02% | 1 | 0.48% |
Marc Zyngier | 1 | 0.01% | 1 | 0.48% |
Linus Torvalds | 1 | 0.01% | 1 | 0.48% |
Julia Lawall | 1 | 0.01% | 1 | 0.48% |
Wang Wensheng | 1 | 0.01% | 1 | 0.48% |
Finn Thain | 1 | 0.01% | 1 | 0.48% |
Total | 9812 | 207 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. * * Authors: * Alexander Graf <agraf@suse.de> * Kevin Wolf <mail@kevin-wolf.de> * Paul Mackerras <paulus@samba.org> * * Description: * Functions relating to running KVM on Book 3S processors where * we don't have access to hypervisor mode, and we run the guest * in problem state (user mode). * * This file is derived from arch/powerpc/kvm/44x.c, * by Hollis Blanchard <hollisb@us.ibm.com>. */ #include <linux/kvm_host.h> #include <linux/export.h> #include <linux/err.h> #include <linux/slab.h> #include <asm/reg.h> #include <asm/cputable.h> #include <asm/cacheflush.h> #include <linux/uaccess.h> #include <asm/interrupt.h> #include <asm/io.h> #include <asm/kvm_ppc.h> #include <asm/kvm_book3s.h> #include <asm/mmu_context.h> #include <asm/switch_to.h> #include <asm/firmware.h> #include <asm/setup.h> #include <linux/gfp.h> #include <linux/sched.h> #include <linux/vmalloc.h> #include <linux/highmem.h> #include <linux/module.h> #include <linux/miscdevice.h> #include <asm/asm-prototypes.h> #include <asm/tm.h> #include "book3s.h" #define CREATE_TRACE_POINTS #include "trace_pr.h" /* #define EXIT_DEBUG */ /* #define DEBUG_EXT */ static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr, ulong msr); #ifdef CONFIG_PPC_BOOK3S_64 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac); #endif /* Some compatibility defines */ #ifdef CONFIG_PPC_BOOK3S_32 #define MSR_USER32 MSR_USER #define MSR_USER64 MSR_USER #define HW_PAGE_SIZE PAGE_SIZE #define HPTE_R_M _PAGE_COHERENT #endif static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu) { ulong msr = kvmppc_get_msr(vcpu); return (msr & (MSR_IR|MSR_DR)) == MSR_DR; } static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu) { ulong msr = kvmppc_get_msr(vcpu); ulong pc = kvmppc_get_pc(vcpu); /* We are in DR only split real mode */ if ((msr & (MSR_IR|MSR_DR)) != MSR_DR) return; /* We have not fixed up the guest already */ if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) return; /* The code is in fixupable address space */ if (pc & SPLIT_HACK_MASK) return; vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK; kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS); } static void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu) { if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) { ulong pc = kvmppc_get_pc(vcpu); ulong lr = kvmppc_get_lr(vcpu); if ((pc & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS) kvmppc_set_pc(vcpu, pc & ~SPLIT_HACK_MASK); if ((lr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS) kvmppc_set_lr(vcpu, lr & ~SPLIT_HACK_MASK); vcpu->arch.hflags &= ~BOOK3S_HFLAG_SPLIT_HACK; } } static void kvmppc_inject_interrupt_pr(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags) { unsigned long msr, pc, new_msr, new_pc; kvmppc_unfixup_split_real(vcpu); msr = kvmppc_get_msr(vcpu); pc = kvmppc_get_pc(vcpu); new_msr = vcpu->arch.intr_msr; new_pc = to_book3s(vcpu)->hior + vec; #ifdef CONFIG_PPC_BOOK3S_64 /* If transactional, change to suspend mode on IRQ delivery */ if (MSR_TM_TRANSACTIONAL(msr)) new_msr |= MSR_TS_S; else new_msr |= msr & MSR_TS_MASK; #endif kvmppc_set_srr0(vcpu, pc); kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags); kvmppc_set_pc(vcpu, new_pc); kvmppc_set_msr(vcpu, new_msr); } static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu) { #ifdef CONFIG_PPC_BOOK3S_64 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb)); svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max; svcpu->in_use = 0; svcpu_put(svcpu); /* Disable AIL if supported */ if (cpu_has_feature(CPU_FTR_HVMODE)) { if (cpu_has_feature(CPU_FTR_ARCH_207S)) mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL); if (cpu_has_feature(CPU_FTR_ARCH_300) && (current->thread.fscr & FSCR_SCV)) mtspr(SPRN_FSCR, mfspr(SPRN_FSCR) & ~FSCR_SCV); } #endif vcpu->cpu = smp_processor_id(); #ifdef CONFIG_PPC_BOOK3S_32 current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu; #endif if (kvmppc_is_split_real(vcpu)) kvmppc_fixup_split_real(vcpu); kvmppc_restore_tm_pr(vcpu); } static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu) { #ifdef CONFIG_PPC_BOOK3S_64 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); if (svcpu->in_use) { kvmppc_copy_from_svcpu(vcpu); } memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb)); to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max; svcpu_put(svcpu); /* Enable AIL if supported */ if (cpu_has_feature(CPU_FTR_HVMODE)) { if (cpu_has_feature(CPU_FTR_ARCH_207S)) mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3); if (cpu_has_feature(CPU_FTR_ARCH_300) && (current->thread.fscr & FSCR_SCV)) mtspr(SPRN_FSCR, mfspr(SPRN_FSCR) | FSCR_SCV); } #endif if (kvmppc_is_split_real(vcpu)) kvmppc_unfixup_split_real(vcpu); kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX); kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); kvmppc_save_tm_pr(vcpu); vcpu->cpu = -1; } /* Copy data needed by real-mode code from vcpu to shadow vcpu */ void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu) { struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); svcpu->gpr[0] = vcpu->arch.regs.gpr[0]; svcpu->gpr[1] = vcpu->arch.regs.gpr[1]; svcpu->gpr[2] = vcpu->arch.regs.gpr[2]; svcpu->gpr[3] = vcpu->arch.regs.gpr[3]; svcpu->gpr[4] = vcpu->arch.regs.gpr[4]; svcpu->gpr[5] = vcpu->arch.regs.gpr[5]; svcpu->gpr[6] = vcpu->arch.regs.gpr[6]; svcpu->gpr[7] = vcpu->arch.regs.gpr[7]; svcpu->gpr[8] = vcpu->arch.regs.gpr[8]; svcpu->gpr[9] = vcpu->arch.regs.gpr[9]; svcpu->gpr[10] = vcpu->arch.regs.gpr[10]; svcpu->gpr[11] = vcpu->arch.regs.gpr[11]; svcpu->gpr[12] = vcpu->arch.regs.gpr[12]; svcpu->gpr[13] = vcpu->arch.regs.gpr[13]; svcpu->cr = vcpu->arch.regs.ccr; svcpu->xer = vcpu->arch.regs.xer; svcpu->ctr = vcpu->arch.regs.ctr; svcpu->lr = vcpu->arch.regs.link; svcpu->pc = vcpu->arch.regs.nip; #ifdef CONFIG_PPC_BOOK3S_64 svcpu->shadow_fscr = vcpu->arch.shadow_fscr; #endif /* * Now also save the current time base value. We use this * to find the guest purr and spurr value. */ vcpu->arch.entry_tb = get_tb(); vcpu->arch.entry_vtb = get_vtb(); if (cpu_has_feature(CPU_FTR_ARCH_207S)) vcpu->arch.entry_ic = mfspr(SPRN_IC); svcpu->in_use = true; svcpu_put(svcpu); } static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu) { ulong guest_msr = kvmppc_get_msr(vcpu); ulong smsr = guest_msr; /* Guest MSR values */ #ifdef CONFIG_PPC_TRANSACTIONAL_MEM smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE | MSR_TM | MSR_TS_MASK; #else smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE; #endif /* Process MSR values */ smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE; /* External providers the guest reserved */ smsr |= (guest_msr & vcpu->arch.guest_owned_ext); /* 64-bit Process MSR values */ #ifdef CONFIG_PPC_BOOK3S_64 smsr |= MSR_HV; #endif #ifdef CONFIG_PPC_TRANSACTIONAL_MEM /* * in guest privileged state, we want to fail all TM transactions. * So disable MSR TM bit so that all tbegin. will be able to be * trapped into host. */ if (!(guest_msr & MSR_PR)) smsr &= ~MSR_TM; #endif vcpu->arch.shadow_msr = smsr; } /* Copy data touched by real-mode code from shadow vcpu back to vcpu */ void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu) { struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); #ifdef CONFIG_PPC_TRANSACTIONAL_MEM ulong old_msr; #endif /* * Maybe we were already preempted and synced the svcpu from * our preempt notifiers. Don't bother touching this svcpu then. */ if (!svcpu->in_use) goto out; vcpu->arch.regs.gpr[0] = svcpu->gpr[0]; vcpu->arch.regs.gpr[1] = svcpu->gpr[1]; vcpu->arch.regs.gpr[2] = svcpu->gpr[2]; vcpu->arch.regs.gpr[3] = svcpu->gpr[3]; vcpu->arch.regs.gpr[4] = svcpu->gpr[4]; vcpu->arch.regs.gpr[5] = svcpu->gpr[5]; vcpu->arch.regs.gpr[6] = svcpu->gpr[6]; vcpu->arch.regs.gpr[7] = svcpu->gpr[7]; vcpu->arch.regs.gpr[8] = svcpu->gpr[8]; vcpu->arch.regs.gpr[9] = svcpu->gpr[9]; vcpu->arch.regs.gpr[10] = svcpu->gpr[10]; vcpu->arch.regs.gpr[11] = svcpu->gpr[11]; vcpu->arch.regs.gpr[12] = svcpu->gpr[12]; vcpu->arch.regs.gpr[13] = svcpu->gpr[13]; vcpu->arch.regs.ccr = svcpu->cr; vcpu->arch.regs.xer = svcpu->xer; vcpu->arch.regs.ctr = svcpu->ctr; vcpu->arch.regs.link = svcpu->lr; vcpu->arch.regs.nip = svcpu->pc; vcpu->arch.shadow_srr1 = svcpu->shadow_srr1; vcpu->arch.fault_dar = svcpu->fault_dar; vcpu->arch.fault_dsisr = svcpu->fault_dsisr; vcpu->arch.last_inst = svcpu->last_inst; #ifdef CONFIG_PPC_BOOK3S_64 vcpu->arch.shadow_fscr = svcpu->shadow_fscr; #endif /* * Update purr and spurr using time base on exit. */ vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb; vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb; to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb; if (cpu_has_feature(CPU_FTR_ARCH_207S)) vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic; #ifdef CONFIG_PPC_TRANSACTIONAL_MEM /* * Unlike other MSR bits, MSR[TS]bits can be changed at guest without * notifying host: * modified by unprivileged instructions like "tbegin"/"tend"/ * "tresume"/"tsuspend" in PR KVM guest. * * It is necessary to sync here to calculate a correct shadow_msr. * * privileged guest's tbegin will be failed at present. So we * only take care of problem state guest. */ old_msr = kvmppc_get_msr(vcpu); if (unlikely((old_msr & MSR_PR) && (vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) != (old_msr & (MSR_TS_MASK)))) { old_msr &= ~(MSR_TS_MASK); old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK)); kvmppc_set_msr_fast(vcpu, old_msr); kvmppc_recalc_shadow_msr(vcpu); } #endif svcpu->in_use = false; out: svcpu_put(svcpu); } #ifdef CONFIG_PPC_TRANSACTIONAL_MEM void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu) { tm_enable(); vcpu->arch.tfhar = mfspr(SPRN_TFHAR); vcpu->arch.texasr = mfspr(SPRN_TEXASR); vcpu->arch.tfiar = mfspr(SPRN_TFIAR); tm_disable(); } void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu) { tm_enable(); mtspr(SPRN_TFHAR, vcpu->arch.tfhar); mtspr(SPRN_TEXASR, vcpu->arch.texasr); mtspr(SPRN_TFIAR, vcpu->arch.tfiar); tm_disable(); } /* loadup math bits which is enabled at kvmppc_get_msr() but not enabled at * hardware. */ static void kvmppc_handle_lost_math_exts(struct kvm_vcpu *vcpu) { ulong exit_nr; ulong ext_diff = (kvmppc_get_msr(vcpu) & ~vcpu->arch.guest_owned_ext) & (MSR_FP | MSR_VEC | MSR_VSX); if (!ext_diff) return; if (ext_diff == MSR_FP) exit_nr = BOOK3S_INTERRUPT_FP_UNAVAIL; else if (ext_diff == MSR_VEC) exit_nr = BOOK3S_INTERRUPT_ALTIVEC; else exit_nr = BOOK3S_INTERRUPT_VSX; kvmppc_handle_ext(vcpu, exit_nr, ext_diff); } void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu) { if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) { kvmppc_save_tm_sprs(vcpu); return; } kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); kvmppc_giveup_ext(vcpu, MSR_VSX); preempt_disable(); _kvmppc_save_tm_pr(vcpu, mfmsr()); preempt_enable(); } void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu) { if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) { kvmppc_restore_tm_sprs(vcpu); if (kvmppc_get_msr(vcpu) & MSR_TM) { kvmppc_handle_lost_math_exts(vcpu); if (vcpu->arch.fscr & FSCR_TAR) kvmppc_handle_fac(vcpu, FSCR_TAR_LG); } return; } preempt_disable(); _kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu)); preempt_enable(); if (kvmppc_get_msr(vcpu) & MSR_TM) { kvmppc_handle_lost_math_exts(vcpu); if (vcpu->arch.fscr & FSCR_TAR) kvmppc_handle_fac(vcpu, FSCR_TAR_LG); } } #endif static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu) { int r = 1; /* Indicate we want to get back into the guest */ /* We misuse TLB_FLUSH to indicate that we want to clear all shadow cache entries */ if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) kvmppc_mmu_pte_flush(vcpu, 0, 0); return r; } /************* MMU Notifiers *************/ static bool do_kvm_unmap_gfn(struct kvm *kvm, struct kvm_gfn_range *range) { unsigned long i; struct kvm_vcpu *vcpu; kvm_for_each_vcpu(i, vcpu, kvm) kvmppc_mmu_pte_pflush(vcpu, range->start << PAGE_SHIFT, range->end << PAGE_SHIFT); return false; } static bool kvm_unmap_gfn_range_pr(struct kvm *kvm, struct kvm_gfn_range *range) { return do_kvm_unmap_gfn(kvm, range); } static bool kvm_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range) { /* XXX could be more clever ;) */ return false; } static bool kvm_test_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range) { /* XXX could be more clever ;) */ return false; } /*****************************************/ static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr) { ulong old_msr; /* For PAPR guest, make sure MSR reflects guest mode */ if (vcpu->arch.papr_enabled) msr = (msr & ~MSR_HV) | MSR_ME; #ifdef EXIT_DEBUG printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr); #endif #ifdef CONFIG_PPC_TRANSACTIONAL_MEM /* We should never target guest MSR to TS=10 && PR=0, * since we always fail transaction for guest privilege * state. */ if (!(msr & MSR_PR) && MSR_TM_TRANSACTIONAL(msr)) kvmppc_emulate_tabort(vcpu, TM_CAUSE_KVM_FAC_UNAV | TM_CAUSE_PERSISTENT); #endif old_msr = kvmppc_get_msr(vcpu); msr &= to_book3s(vcpu)->msr_mask; kvmppc_set_msr_fast(vcpu, msr); kvmppc_recalc_shadow_msr(vcpu); if (msr & MSR_POW) { if (!vcpu->arch.pending_exceptions) { kvm_vcpu_halt(vcpu); vcpu->stat.generic.halt_wakeup++; /* Unset POW bit after we woke up */ msr &= ~MSR_POW; kvmppc_set_msr_fast(vcpu, msr); } } if (kvmppc_is_split_real(vcpu)) kvmppc_fixup_split_real(vcpu); else kvmppc_unfixup_split_real(vcpu); if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) != (old_msr & (MSR_PR|MSR_IR|MSR_DR))) { kvmppc_mmu_flush_segments(vcpu); kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)); /* Preload magic page segment when in kernel mode */ if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) { struct kvm_vcpu_arch *a = &vcpu->arch; if (msr & MSR_DR) kvmppc_mmu_map_segment(vcpu, a->magic_page_ea); else kvmppc_mmu_map_segment(vcpu, a->magic_page_pa); } } /* * When switching from 32 to 64-bit, we may have a stale 32-bit * magic page around, we need to flush it. Typically 32-bit magic * page will be instantiated when calling into RTAS. Note: We * assume that such transition only happens while in kernel mode, * ie, we never transition from user 32-bit to kernel 64-bit with * a 32-bit magic page around. */ if (vcpu->arch.magic_page_pa && !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) { /* going from RTAS to normal kernel code */ kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa, ~0xFFFUL); } /* Preload FPU if it's enabled */ if (kvmppc_get_msr(vcpu) & MSR_FP) kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP); #ifdef CONFIG_PPC_TRANSACTIONAL_MEM if (kvmppc_get_msr(vcpu) & MSR_TM) kvmppc_handle_lost_math_exts(vcpu); #endif } static void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr) { u32 host_pvr; vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB; vcpu->arch.pvr = pvr; #ifdef CONFIG_PPC_BOOK3S_64 if ((pvr >= 0x330000) && (pvr < 0x70330000)) { kvmppc_mmu_book3s_64_init(vcpu); if (!to_book3s(vcpu)->hior_explicit) to_book3s(vcpu)->hior = 0xfff00000; to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL; vcpu->arch.cpu_type = KVM_CPU_3S_64; } else #endif { kvmppc_mmu_book3s_32_init(vcpu); if (!to_book3s(vcpu)->hior_explicit) to_book3s(vcpu)->hior = 0; to_book3s(vcpu)->msr_mask = 0xffffffffULL; vcpu->arch.cpu_type = KVM_CPU_3S_32; } kvmppc_sanity_check(vcpu); /* If we are in hypervisor level on 970, we can tell the CPU to * treat DCBZ as 32 bytes store */ vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32; if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) && !strcmp(cur_cpu_spec->platform, "ppc970")) vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32; /* Cell performs badly if MSR_FEx are set. So let's hope nobody really needs them in a VM on Cell and force disable them. */ if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be")) to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1); /* * If they're asking for POWER6 or later, set the flag * indicating that we can do multiple large page sizes * and 1TB segments. * Also set the flag that indicates that tlbie has the large * page bit in the RB operand instead of the instruction. */ switch (PVR_VER(pvr)) { case PVR_POWER6: case PVR_POWER7: case PVR_POWER7p: case PVR_POWER8: case PVR_POWER8E: case PVR_POWER8NVL: case PVR_HX_C2000: case PVR_POWER9: vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE | BOOK3S_HFLAG_NEW_TLBIE; break; } #ifdef CONFIG_PPC_BOOK3S_32 /* 32 bit Book3S always has 32 byte dcbz */ vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32; #endif /* On some CPUs we can execute paired single operations natively */ asm ( "mfpvr %0" : "=r"(host_pvr)); switch (host_pvr) { case 0x00080200: /* lonestar 2.0 */ case 0x00088202: /* lonestar 2.2 */ case 0x70000100: /* gekko 1.0 */ case 0x00080100: /* gekko 2.0 */ case 0x00083203: /* gekko 2.3a */ case 0x00083213: /* gekko 2.3b */ case 0x00083204: /* gekko 2.4 */ case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */ case 0x00087200: /* broadway */ vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS; /* Enable HID2.PSE - in case we need it later */ mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29)); } } /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to * emulate 32 bytes dcbz length. * * The Book3s_64 inventors also realized this case and implemented a special bit * in the HID5 register, which is a hypervisor ressource. Thus we can't use it. * * My approach here is to patch the dcbz instruction on executing pages. */ static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte) { struct page *hpage; u64 hpage_offset; u32 *page; int i; hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT); if (is_error_page(hpage)) return; hpage_offset = pte->raddr & ~PAGE_MASK; hpage_offset &= ~0xFFFULL; hpage_offset /= 4; get_page(hpage); page = kmap_atomic(hpage); /* patch dcbz into reserved instruction, so we trap */ for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++) if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ) page[i] &= cpu_to_be32(0xfffffff7); kunmap_atomic(page); put_page(hpage); } static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa) { ulong mp_pa = vcpu->arch.magic_page_pa; if (!(kvmppc_get_msr(vcpu) & MSR_SF)) mp_pa = (uint32_t)mp_pa; gpa &= ~0xFFFULL; if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) { return true; } return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT); } static int kvmppc_handle_pagefault(struct kvm_vcpu *vcpu, ulong eaddr, int vec) { bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE); bool iswrite = false; int r = RESUME_GUEST; int relocated; int page_found = 0; struct kvmppc_pte pte = { 0 }; bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false; bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false; u64 vsid; relocated = data ? dr : ir; if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE)) iswrite = true; /* Resolve real address if translation turned on */ if (relocated) { page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite); } else { pte.may_execute = true; pte.may_read = true; pte.may_write = true; pte.raddr = eaddr & KVM_PAM; pte.eaddr = eaddr; pte.vpage = eaddr >> 12; pte.page_size = MMU_PAGE_64K; pte.wimg = HPTE_R_M; } switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) { case 0: pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12)); break; case MSR_DR: if (!data && (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) && ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)) pte.raddr &= ~SPLIT_HACK_MASK; fallthrough; case MSR_IR: vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid); if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR) pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12)); else pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12)); pte.vpage |= vsid; if (vsid == -1) page_found = -EINVAL; break; } if (vcpu->arch.mmu.is_dcbz32(vcpu) && (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) { /* * If we do the dcbz hack, we have to NX on every execution, * so we can patch the executing code. This renders our guest * NX-less. */ pte.may_execute = !data; } if (page_found == -ENOENT || page_found == -EPERM) { /* Page not found in guest PTE entries, or protection fault */ u64 flags; if (page_found == -EPERM) flags = DSISR_PROTFAULT; else flags = DSISR_NOHPTE; if (data) { flags |= vcpu->arch.fault_dsisr & DSISR_ISSTORE; kvmppc_core_queue_data_storage(vcpu, 0, eaddr, flags); } else { kvmppc_core_queue_inst_storage(vcpu, flags); } } else if (page_found == -EINVAL) { /* Page not found in guest SLB */ kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu)); kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80); } else if (kvmppc_visible_gpa(vcpu, pte.raddr)) { if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) { /* * There is already a host HPTE there, presumably * a read-only one for a page the guest thinks * is writable, so get rid of it first. */ kvmppc_mmu_unmap_page(vcpu, &pte); } /* The guest's PTE is not mapped yet. Map on the host */ if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) { /* Exit KVM if mapping failed */ vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; return RESUME_HOST; } if (data) vcpu->stat.sp_storage++; else if (vcpu->arch.mmu.is_dcbz32(vcpu) && (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) kvmppc_patch_dcbz(vcpu, &pte); } else { /* MMIO */ vcpu->stat.mmio_exits++; vcpu->arch.paddr_accessed = pte.raddr; vcpu->arch.vaddr_accessed = pte.eaddr; r = kvmppc_emulate_mmio(vcpu); if ( r == RESUME_HOST_NV ) r = RESUME_HOST; } return r; } /* Give up external provider (FPU, Altivec, VSX) */ void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr) { struct thread_struct *t = ¤t->thread; /* * VSX instructions can access FP and vector registers, so if * we are giving up VSX, make sure we give up FP and VMX as well. */ if (msr & MSR_VSX) msr |= MSR_FP | MSR_VEC; msr &= vcpu->arch.guest_owned_ext; if (!msr) return; #ifdef DEBUG_EXT printk(KERN_INFO "Giving up ext 0x%lx\n", msr); #endif if (msr & MSR_FP) { /* * Note that on CPUs with VSX, giveup_fpu stores * both the traditional FP registers and the added VSX * registers into thread.fp_state.fpr[]. */ if (t->regs->msr & MSR_FP) giveup_fpu(current); t->fp_save_area = NULL; } #ifdef CONFIG_ALTIVEC if (msr & MSR_VEC) { if (current->thread.regs->msr & MSR_VEC) giveup_altivec(current); t->vr_save_area = NULL; } #endif vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX); kvmppc_recalc_shadow_msr(vcpu); } /* Give up facility (TAR / EBB / DSCR) */ void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac) { #ifdef CONFIG_PPC_BOOK3S_64 if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) { /* Facility not available to the guest, ignore giveup request*/ return; } switch (fac) { case FSCR_TAR_LG: vcpu->arch.tar = mfspr(SPRN_TAR); mtspr(SPRN_TAR, current->thread.tar); vcpu->arch.shadow_fscr &= ~FSCR_TAR; break; } #endif } /* Handle external providers (FPU, Altivec, VSX) */ static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr, ulong msr) { struct thread_struct *t = ¤t->thread; /* When we have paired singles, we emulate in software */ if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) return RESUME_GUEST; if (!(kvmppc_get_msr(vcpu) & msr)) { kvmppc_book3s_queue_irqprio(vcpu, exit_nr); return RESUME_GUEST; } if (msr == MSR_VSX) { /* No VSX? Give an illegal instruction interrupt */ #ifdef CONFIG_VSX if (!cpu_has_feature(CPU_FTR_VSX)) #endif { kvmppc_core_queue_program(vcpu, SRR1_PROGILL); return RESUME_GUEST; } /* * We have to load up all the FP and VMX registers before * we can let the guest use VSX instructions. */ msr = MSR_FP | MSR_VEC | MSR_VSX; } /* See if we already own all the ext(s) needed */ msr &= ~vcpu->arch.guest_owned_ext; if (!msr) return RESUME_GUEST; #ifdef DEBUG_EXT printk(KERN_INFO "Loading up ext 0x%lx\n", msr); #endif if (msr & MSR_FP) { preempt_disable(); enable_kernel_fp(); load_fp_state(&vcpu->arch.fp); disable_kernel_fp(); t->fp_save_area = &vcpu->arch.fp; preempt_enable(); } if (msr & MSR_VEC) { #ifdef CONFIG_ALTIVEC preempt_disable(); enable_kernel_altivec(); load_vr_state(&vcpu->arch.vr); disable_kernel_altivec(); t->vr_save_area = &vcpu->arch.vr; preempt_enable(); #endif } t->regs->msr |= msr; vcpu->arch.guest_owned_ext |= msr; kvmppc_recalc_shadow_msr(vcpu); return RESUME_GUEST; } /* * Kernel code using FP or VMX could have flushed guest state to * the thread_struct; if so, get it back now. */ static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu) { unsigned long lost_ext; lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr; if (!lost_ext) return; if (lost_ext & MSR_FP) { preempt_disable(); enable_kernel_fp(); load_fp_state(&vcpu->arch.fp); disable_kernel_fp(); preempt_enable(); } #ifdef CONFIG_ALTIVEC if (lost_ext & MSR_VEC) { preempt_disable(); enable_kernel_altivec(); load_vr_state(&vcpu->arch.vr); disable_kernel_altivec(); preempt_enable(); } #endif current->thread.regs->msr |= lost_ext; } #ifdef CONFIG_PPC_BOOK3S_64 void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac) { /* Inject the Interrupt Cause field and trigger a guest interrupt */ vcpu->arch.fscr &= ~(0xffULL << 56); vcpu->arch.fscr |= (fac << 56); kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL); } static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac) { enum emulation_result er = EMULATE_FAIL; if (!(kvmppc_get_msr(vcpu) & MSR_PR)) er = kvmppc_emulate_instruction(vcpu); if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) { /* Couldn't emulate, trigger interrupt in guest */ kvmppc_trigger_fac_interrupt(vcpu, fac); } } /* Enable facilities (TAR, EBB, DSCR) for the guest */ static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac) { bool guest_fac_enabled; BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S)); /* * Not every facility is enabled by FSCR bits, check whether the * guest has this facility enabled at all. */ switch (fac) { case FSCR_TAR_LG: case FSCR_EBB_LG: guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac)); break; case FSCR_TM_LG: guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM; break; default: guest_fac_enabled = false; break; } if (!guest_fac_enabled) { /* Facility not enabled by the guest */ kvmppc_trigger_fac_interrupt(vcpu, fac); return RESUME_GUEST; } switch (fac) { case FSCR_TAR_LG: /* TAR switching isn't lazy in Linux yet */ current->thread.tar = mfspr(SPRN_TAR); mtspr(SPRN_TAR, vcpu->arch.tar); vcpu->arch.shadow_fscr |= FSCR_TAR; break; default: kvmppc_emulate_fac(vcpu, fac); break; } #ifdef CONFIG_PPC_TRANSACTIONAL_MEM /* Since we disabled MSR_TM at privilege state, the mfspr instruction * for TM spr can trigger TM fac unavailable. In this case, the * emulation is handled by kvmppc_emulate_fac(), which invokes * kvmppc_emulate_mfspr() finally. But note the mfspr can include * RT for NV registers. So it need to restore those NV reg to reflect * the update. */ if ((fac == FSCR_TM_LG) && !(kvmppc_get_msr(vcpu) & MSR_PR)) return RESUME_GUEST_NV; #endif return RESUME_GUEST; } void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr) { if (fscr & FSCR_SCV) fscr &= ~FSCR_SCV; /* SCV must not be enabled */ /* Prohibit prefixed instructions for now */ fscr &= ~FSCR_PREFIX; if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) { /* TAR got dropped, drop it in shadow too */ kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); } else if (!(vcpu->arch.fscr & FSCR_TAR) && (fscr & FSCR_TAR)) { vcpu->arch.fscr = fscr; kvmppc_handle_fac(vcpu, FSCR_TAR_LG); return; } vcpu->arch.fscr = fscr; } #endif static void kvmppc_setup_debug(struct kvm_vcpu *vcpu) { if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { u64 msr = kvmppc_get_msr(vcpu); kvmppc_set_msr(vcpu, msr | MSR_SE); } } static void kvmppc_clear_debug(struct kvm_vcpu *vcpu) { if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { u64 msr = kvmppc_get_msr(vcpu); kvmppc_set_msr(vcpu, msr & ~MSR_SE); } } static int kvmppc_exit_pr_progint(struct kvm_vcpu *vcpu, unsigned int exit_nr) { enum emulation_result er; ulong flags; ppc_inst_t last_inst; int emul, r; /* * shadow_srr1 only contains valid flags if we came here via a program * exception. The other exceptions (emulation assist, FP unavailable, * etc.) do not provide flags in SRR1, so use an illegal-instruction * exception when injecting a program interrupt into the guest. */ if (exit_nr == BOOK3S_INTERRUPT_PROGRAM) flags = vcpu->arch.shadow_srr1 & 0x1f0000ull; else flags = SRR1_PROGILL; emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); if (emul != EMULATE_DONE) return RESUME_GUEST; if (kvmppc_get_msr(vcpu) & MSR_PR) { #ifdef EXIT_DEBUG pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n", kvmppc_get_pc(vcpu), ppc_inst_val(last_inst)); #endif if ((ppc_inst_val(last_inst) & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) { kvmppc_core_queue_program(vcpu, flags); return RESUME_GUEST; } } vcpu->stat.emulated_inst_exits++; er = kvmppc_emulate_instruction(vcpu); switch (er) { case EMULATE_DONE: r = RESUME_GUEST_NV; break; case EMULATE_AGAIN: r = RESUME_GUEST; break; case EMULATE_FAIL: pr_crit("%s: emulation at %lx failed (%08x)\n", __func__, kvmppc_get_pc(vcpu), ppc_inst_val(last_inst)); kvmppc_core_queue_program(vcpu, flags); r = RESUME_GUEST; break; case EMULATE_DO_MMIO: vcpu->run->exit_reason = KVM_EXIT_MMIO; r = RESUME_HOST_NV; break; case EMULATE_EXIT_USER: r = RESUME_HOST_NV; break; default: BUG(); } return r; } int kvmppc_handle_exit_pr(struct kvm_vcpu *vcpu, unsigned int exit_nr) { struct kvm_run *run = vcpu->run; int r = RESUME_HOST; int s; vcpu->stat.sum_exits++; run->exit_reason = KVM_EXIT_UNKNOWN; run->ready_for_interrupt_injection = 1; /* We get here with MSR.EE=1 */ trace_kvm_exit(exit_nr, vcpu); guest_exit(); switch (exit_nr) { case BOOK3S_INTERRUPT_INST_STORAGE: { ulong shadow_srr1 = vcpu->arch.shadow_srr1; vcpu->stat.pf_instruc++; if (kvmppc_is_split_real(vcpu)) kvmppc_fixup_split_real(vcpu); #ifdef CONFIG_PPC_BOOK3S_32 /* We set segments as unused segments when invalidating them. So * treat the respective fault as segment fault. */ { struct kvmppc_book3s_shadow_vcpu *svcpu; u32 sr; svcpu = svcpu_get(vcpu); sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT]; svcpu_put(svcpu); if (sr == SR_INVALID) { kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)); r = RESUME_GUEST; break; } } #endif /* only care about PTEG not found errors, but leave NX alone */ if (shadow_srr1 & 0x40000000) { int idx = srcu_read_lock(&vcpu->kvm->srcu); r = kvmppc_handle_pagefault(vcpu, kvmppc_get_pc(vcpu), exit_nr); srcu_read_unlock(&vcpu->kvm->srcu, idx); vcpu->stat.sp_instruc++; } else if (vcpu->arch.mmu.is_dcbz32(vcpu) && (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) { /* * XXX If we do the dcbz hack we use the NX bit to flush&patch the page, * so we can't use the NX bit inside the guest. Let's cross our fingers, * that no guest that needs the dcbz hack does NX. */ kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL); r = RESUME_GUEST; } else { kvmppc_core_queue_inst_storage(vcpu, shadow_srr1 & 0x58000000); r = RESUME_GUEST; } break; } case BOOK3S_INTERRUPT_DATA_STORAGE: { ulong dar = kvmppc_get_fault_dar(vcpu); u32 fault_dsisr = vcpu->arch.fault_dsisr; vcpu->stat.pf_storage++; #ifdef CONFIG_PPC_BOOK3S_32 /* We set segments as unused segments when invalidating them. So * treat the respective fault as segment fault. */ { struct kvmppc_book3s_shadow_vcpu *svcpu; u32 sr; svcpu = svcpu_get(vcpu); sr = svcpu->sr[dar >> SID_SHIFT]; svcpu_put(svcpu); if (sr == SR_INVALID) { kvmppc_mmu_map_segment(vcpu, dar); r = RESUME_GUEST; break; } } #endif /* * We need to handle missing shadow PTEs, and * protection faults due to us mapping a page read-only * when the guest thinks it is writable. */ if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) { int idx = srcu_read_lock(&vcpu->kvm->srcu); r = kvmppc_handle_pagefault(vcpu, dar, exit_nr); srcu_read_unlock(&vcpu->kvm->srcu, idx); } else { kvmppc_core_queue_data_storage(vcpu, 0, dar, fault_dsisr); r = RESUME_GUEST; } break; } case BOOK3S_INTERRUPT_DATA_SEGMENT: if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) { kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu)); kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_DATA_SEGMENT); } r = RESUME_GUEST; break; case BOOK3S_INTERRUPT_INST_SEGMENT: if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) { kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_INST_SEGMENT); } r = RESUME_GUEST; break; /* We're good on these - the host merely wanted to get our attention */ case BOOK3S_INTERRUPT_DECREMENTER: case BOOK3S_INTERRUPT_HV_DECREMENTER: case BOOK3S_INTERRUPT_DOORBELL: case BOOK3S_INTERRUPT_H_DOORBELL: vcpu->stat.dec_exits++; r = RESUME_GUEST; break; case BOOK3S_INTERRUPT_EXTERNAL: case BOOK3S_INTERRUPT_EXTERNAL_HV: case BOOK3S_INTERRUPT_H_VIRT: vcpu->stat.ext_intr_exits++; r = RESUME_GUEST; break; case BOOK3S_INTERRUPT_HMI: case BOOK3S_INTERRUPT_PERFMON: case BOOK3S_INTERRUPT_SYSTEM_RESET: r = RESUME_GUEST; break; case BOOK3S_INTERRUPT_PROGRAM: case BOOK3S_INTERRUPT_H_EMUL_ASSIST: r = kvmppc_exit_pr_progint(vcpu, exit_nr); break; case BOOK3S_INTERRUPT_SYSCALL: { ppc_inst_t last_sc; int emul; /* Get last sc for papr */ if (vcpu->arch.papr_enabled) { /* The sc instruction points SRR0 to the next inst */ emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc); if (emul != EMULATE_DONE) { kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4); r = RESUME_GUEST; break; } } if (vcpu->arch.papr_enabled && (ppc_inst_val(last_sc) == 0x44000022) && !(kvmppc_get_msr(vcpu) & MSR_PR)) { /* SC 1 papr hypercalls */ ulong cmd = kvmppc_get_gpr(vcpu, 3); int i; #ifdef CONFIG_PPC_BOOK3S_64 if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) { r = RESUME_GUEST; break; } #endif run->papr_hcall.nr = cmd; for (i = 0; i < 9; ++i) { ulong gpr = kvmppc_get_gpr(vcpu, 4 + i); run->papr_hcall.args[i] = gpr; } run->exit_reason = KVM_EXIT_PAPR_HCALL; vcpu->arch.hcall_needed = 1; r = RESUME_HOST; } else if (vcpu->arch.osi_enabled && (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) && (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) { /* MOL hypercalls */ u64 *gprs = run->osi.gprs; int i; run->exit_reason = KVM_EXIT_OSI; for (i = 0; i < 32; i++) gprs[i] = kvmppc_get_gpr(vcpu, i); vcpu->arch.osi_needed = 1; r = RESUME_HOST_NV; } else if (!(kvmppc_get_msr(vcpu) & MSR_PR) && (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) { /* KVM PV hypercalls */ kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu)); r = RESUME_GUEST; } else { /* Guest syscalls */ vcpu->stat.syscall_exits++; kvmppc_book3s_queue_irqprio(vcpu, exit_nr); r = RESUME_GUEST; } break; } case BOOK3S_INTERRUPT_FP_UNAVAIL: case BOOK3S_INTERRUPT_ALTIVEC: case BOOK3S_INTERRUPT_VSX: { int ext_msr = 0; int emul; ppc_inst_t last_inst; if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) { /* Do paired single instruction emulation */ emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); if (emul == EMULATE_DONE) r = kvmppc_exit_pr_progint(vcpu, exit_nr); else r = RESUME_GUEST; break; } /* Enable external provider */ switch (exit_nr) { case BOOK3S_INTERRUPT_FP_UNAVAIL: ext_msr = MSR_FP; break; case BOOK3S_INTERRUPT_ALTIVEC: ext_msr = MSR_VEC; break; case BOOK3S_INTERRUPT_VSX: ext_msr = MSR_VSX; break; } r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr); break; } case BOOK3S_INTERRUPT_ALIGNMENT: { ppc_inst_t last_inst; int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); if (emul == EMULATE_DONE) { u32 dsisr; u64 dar; dsisr = kvmppc_alignment_dsisr(vcpu, ppc_inst_val(last_inst)); dar = kvmppc_alignment_dar(vcpu, ppc_inst_val(last_inst)); kvmppc_set_dsisr(vcpu, dsisr); kvmppc_set_dar(vcpu, dar); kvmppc_book3s_queue_irqprio(vcpu, exit_nr); } r = RESUME_GUEST; break; } #ifdef CONFIG_PPC_BOOK3S_64 case BOOK3S_INTERRUPT_FAC_UNAVAIL: r = kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56); break; #endif case BOOK3S_INTERRUPT_MACHINE_CHECK: kvmppc_book3s_queue_irqprio(vcpu, exit_nr); r = RESUME_GUEST; break; case BOOK3S_INTERRUPT_TRACE: if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { run->exit_reason = KVM_EXIT_DEBUG; r = RESUME_HOST; } else { kvmppc_book3s_queue_irqprio(vcpu, exit_nr); r = RESUME_GUEST; } break; default: { ulong shadow_srr1 = vcpu->arch.shadow_srr1; /* Ugh - bork here! What did we get? */ printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n", exit_nr, kvmppc_get_pc(vcpu), shadow_srr1); r = RESUME_HOST; BUG(); break; } } if (!(r & RESUME_HOST)) { /* To avoid clobbering exit_reason, only check for signals if * we aren't already exiting to userspace for some other * reason. */ /* * Interrupts could be timers for the guest which we have to * inject again, so let's postpone them until we're in the guest * and if we really did time things so badly, then we just exit * again due to a host external interrupt. */ s = kvmppc_prepare_to_enter(vcpu); if (s <= 0) r = s; else { /* interrupts now hard-disabled */ kvmppc_fix_ee_before_entry(); } kvmppc_handle_lost_ext(vcpu); } trace_kvm_book3s_reenter(r, vcpu); return r; } static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); int i; sregs->pvr = vcpu->arch.pvr; sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1; if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) { for (i = 0; i < 64; i++) { sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i; sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; } } else { for (i = 0; i < 16; i++) sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i); for (i = 0; i < 8; i++) { sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw; sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw; } } return 0; } static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); int i; kvmppc_set_pvr_pr(vcpu, sregs->pvr); vcpu3s->sdr1 = sregs->u.s.sdr1; #ifdef CONFIG_PPC_BOOK3S_64 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) { /* Flush all SLB entries */ vcpu->arch.mmu.slbmte(vcpu, 0, 0); vcpu->arch.mmu.slbia(vcpu); for (i = 0; i < 64; i++) { u64 rb = sregs->u.s.ppc64.slb[i].slbe; u64 rs = sregs->u.s.ppc64.slb[i].slbv; if (rb & SLB_ESID_V) vcpu->arch.mmu.slbmte(vcpu, rs, rb); } } else #endif { for (i = 0; i < 16; i++) { vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]); } for (i = 0; i < 8; i++) { kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false, (u32)sregs->u.s.ppc32.ibat[i]); kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true, (u32)(sregs->u.s.ppc32.ibat[i] >> 32)); kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false, (u32)sregs->u.s.ppc32.dbat[i]); kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true, (u32)(sregs->u.s.ppc32.dbat[i] >> 32)); } } /* Flush the MMU after messing with the segments */ kvmppc_mmu_pte_flush(vcpu, 0, 0); return 0; } static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val) { int r = 0; switch (id) { case KVM_REG_PPC_DEBUG_INST: *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); break; case KVM_REG_PPC_HIOR: *val = get_reg_val(id, to_book3s(vcpu)->hior); break; case KVM_REG_PPC_VTB: *val = get_reg_val(id, to_book3s(vcpu)->vtb); break; case KVM_REG_PPC_LPCR: case KVM_REG_PPC_LPCR_64: /* * We are only interested in the LPCR_ILE bit */ if (vcpu->arch.intr_msr & MSR_LE) *val = get_reg_val(id, LPCR_ILE); else *val = get_reg_val(id, 0); break; #ifdef CONFIG_PPC_TRANSACTIONAL_MEM case KVM_REG_PPC_TFHAR: *val = get_reg_val(id, vcpu->arch.tfhar); break; case KVM_REG_PPC_TFIAR: *val = get_reg_val(id, vcpu->arch.tfiar); break; case KVM_REG_PPC_TEXASR: *val = get_reg_val(id, vcpu->arch.texasr); break; case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: *val = get_reg_val(id, vcpu->arch.gpr_tm[id-KVM_REG_PPC_TM_GPR0]); break; case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: { int i, j; i = id - KVM_REG_PPC_TM_VSR0; if (i < 32) for (j = 0; j < TS_FPRWIDTH; j++) val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; else { if (cpu_has_feature(CPU_FTR_ALTIVEC)) val->vval = vcpu->arch.vr_tm.vr[i-32]; else r = -ENXIO; } break; } case KVM_REG_PPC_TM_CR: *val = get_reg_val(id, vcpu->arch.cr_tm); break; case KVM_REG_PPC_TM_XER: *val = get_reg_val(id, vcpu->arch.xer_tm); break; case KVM_REG_PPC_TM_LR: *val = get_reg_val(id, vcpu->arch.lr_tm); break; case KVM_REG_PPC_TM_CTR: *val = get_reg_val(id, vcpu->arch.ctr_tm); break; case KVM_REG_PPC_TM_FPSCR: *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); break; case KVM_REG_PPC_TM_AMR: *val = get_reg_val(id, vcpu->arch.amr_tm); break; case KVM_REG_PPC_TM_PPR: *val = get_reg_val(id, vcpu->arch.ppr_tm); break; case KVM_REG_PPC_TM_VRSAVE: *val = get_reg_val(id, vcpu->arch.vrsave_tm); break; case KVM_REG_PPC_TM_VSCR: if (cpu_has_feature(CPU_FTR_ALTIVEC)) *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); else r = -ENXIO; break; case KVM_REG_PPC_TM_DSCR: *val = get_reg_val(id, vcpu->arch.dscr_tm); break; case KVM_REG_PPC_TM_TAR: *val = get_reg_val(id, vcpu->arch.tar_tm); break; #endif default: r = -EINVAL; break; } return r; } static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr) { if (new_lpcr & LPCR_ILE) vcpu->arch.intr_msr |= MSR_LE; else vcpu->arch.intr_msr &= ~MSR_LE; } static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val) { int r = 0; switch (id) { case KVM_REG_PPC_HIOR: to_book3s(vcpu)->hior = set_reg_val(id, *val); to_book3s(vcpu)->hior_explicit = true; break; case KVM_REG_PPC_VTB: to_book3s(vcpu)->vtb = set_reg_val(id, *val); break; case KVM_REG_PPC_LPCR: case KVM_REG_PPC_LPCR_64: kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val)); break; #ifdef CONFIG_PPC_TRANSACTIONAL_MEM case KVM_REG_PPC_TFHAR: vcpu->arch.tfhar = set_reg_val(id, *val); break; case KVM_REG_PPC_TFIAR: vcpu->arch.tfiar = set_reg_val(id, *val); break; case KVM_REG_PPC_TEXASR: vcpu->arch.texasr = set_reg_val(id, *val); break; case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: vcpu->arch.gpr_tm[id - KVM_REG_PPC_TM_GPR0] = set_reg_val(id, *val); break; case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: { int i, j; i = id - KVM_REG_PPC_TM_VSR0; if (i < 32) for (j = 0; j < TS_FPRWIDTH; j++) vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; else if (cpu_has_feature(CPU_FTR_ALTIVEC)) vcpu->arch.vr_tm.vr[i-32] = val->vval; else r = -ENXIO; break; } case KVM_REG_PPC_TM_CR: vcpu->arch.cr_tm = set_reg_val(id, *val); break; case KVM_REG_PPC_TM_XER: vcpu->arch.xer_tm = set_reg_val(id, *val); break; case KVM_REG_PPC_TM_LR: vcpu->arch.lr_tm = set_reg_val(id, *val); break; case KVM_REG_PPC_TM_CTR: vcpu->arch.ctr_tm = set_reg_val(id, *val); break; case KVM_REG_PPC_TM_FPSCR: vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); break; case KVM_REG_PPC_TM_AMR: vcpu->arch.amr_tm = set_reg_val(id, *val); break; case KVM_REG_PPC_TM_PPR: vcpu->arch.ppr_tm = set_reg_val(id, *val); break; case KVM_REG_PPC_TM_VRSAVE: vcpu->arch.vrsave_tm = set_reg_val(id, *val); break; case KVM_REG_PPC_TM_VSCR: if (cpu_has_feature(CPU_FTR_ALTIVEC)) vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); else r = -ENXIO; break; case KVM_REG_PPC_TM_DSCR: vcpu->arch.dscr_tm = set_reg_val(id, *val); break; case KVM_REG_PPC_TM_TAR: vcpu->arch.tar_tm = set_reg_val(id, *val); break; #endif default: r = -EINVAL; break; } return r; } static int kvmppc_core_vcpu_create_pr(struct kvm_vcpu *vcpu) { struct kvmppc_vcpu_book3s *vcpu_book3s; unsigned long p; int err; err = -ENOMEM; vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s)); if (!vcpu_book3s) goto out; vcpu->arch.book3s = vcpu_book3s; #ifdef CONFIG_KVM_BOOK3S_32_HANDLER vcpu->arch.shadow_vcpu = kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL); if (!vcpu->arch.shadow_vcpu) goto free_vcpu3s; #endif p = __get_free_page(GFP_KERNEL|__GFP_ZERO); if (!p) goto free_shadow_vcpu; vcpu->arch.shared = (void *)p; #ifdef CONFIG_PPC_BOOK3S_64 /* Always start the shared struct in native endian mode */ #ifdef __BIG_ENDIAN__ vcpu->arch.shared_big_endian = true; #else vcpu->arch.shared_big_endian = false; #endif /* * Default to the same as the host if we're on sufficiently * recent machine that we have 1TB segments; * otherwise default to PPC970FX. */ vcpu->arch.pvr = 0x3C0301; if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) vcpu->arch.pvr = mfspr(SPRN_PVR); vcpu->arch.intr_msr = MSR_SF; #else /* default to book3s_32 (750) */ vcpu->arch.pvr = 0x84202; vcpu->arch.intr_msr = 0; #endif kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr); vcpu->arch.slb_nr = 64; vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE; err = kvmppc_mmu_init_pr(vcpu); if (err < 0) goto free_shared_page; return 0; free_shared_page: free_page((unsigned long)vcpu->arch.shared); free_shadow_vcpu: #ifdef CONFIG_KVM_BOOK3S_32_HANDLER kfree(vcpu->arch.shadow_vcpu); free_vcpu3s: #endif vfree(vcpu_book3s); out: return err; } static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu) { struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); kvmppc_mmu_destroy_pr(vcpu); free_page((unsigned long)vcpu->arch.shared & PAGE_MASK); #ifdef CONFIG_KVM_BOOK3S_32_HANDLER kfree(vcpu->arch.shadow_vcpu); #endif vfree(vcpu_book3s); } static int kvmppc_vcpu_run_pr(struct kvm_vcpu *vcpu) { int ret; /* Check if we can run the vcpu at all */ if (!vcpu->arch.sane) { vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = -EINVAL; goto out; } kvmppc_setup_debug(vcpu); /* * Interrupts could be timers for the guest which we have to inject * again, so let's postpone them until we're in the guest and if we * really did time things so badly, then we just exit again due to * a host external interrupt. */ ret = kvmppc_prepare_to_enter(vcpu); if (ret <= 0) goto out; /* interrupts now hard-disabled */ /* Save FPU, Altivec and VSX state */ giveup_all(current); /* Preload FPU if it's enabled */ if (kvmppc_get_msr(vcpu) & MSR_FP) kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP); kvmppc_fix_ee_before_entry(); ret = __kvmppc_vcpu_run(vcpu); kvmppc_clear_debug(vcpu); /* No need for guest_exit. It's done in handle_exit. We also get here with interrupts enabled. */ /* Make sure we save the guest FPU/Altivec/VSX state */ kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX); /* Make sure we save the guest TAR/EBB/DSCR state */ kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); srr_regs_clobbered(); out: vcpu->mode = OUTSIDE_GUEST_MODE; return ret; } /* * Get (and clear) the dirty memory log for a memory slot. */ static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm, struct kvm_dirty_log *log) { struct kvm_memory_slot *memslot; struct kvm_vcpu *vcpu; ulong ga, ga_end; int is_dirty = 0; int r; unsigned long n; mutex_lock(&kvm->slots_lock); r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot); if (r) goto out; /* If nothing is dirty, don't bother messing with page tables. */ if (is_dirty) { ga = memslot->base_gfn << PAGE_SHIFT; ga_end = ga + (memslot->npages << PAGE_SHIFT); kvm_for_each_vcpu(n, vcpu, kvm) kvmppc_mmu_pte_pflush(vcpu, ga, ga_end); n = kvm_dirty_bitmap_bytes(memslot); memset(memslot->dirty_bitmap, 0, n); } r = 0; out: mutex_unlock(&kvm->slots_lock); return r; } static void kvmppc_core_flush_memslot_pr(struct kvm *kvm, struct kvm_memory_slot *memslot) { return; } static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm, const struct kvm_memory_slot *old, struct kvm_memory_slot *new, enum kvm_mr_change change) { return 0; } static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm, struct kvm_memory_slot *old, const struct kvm_memory_slot *new, enum kvm_mr_change change) { return; } static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *slot) { return; } #ifdef CONFIG_PPC64 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm, struct kvm_ppc_smmu_info *info) { long int i; struct kvm_vcpu *vcpu; info->flags = 0; /* SLB is always 64 entries */ info->slb_size = 64; /* Standard 4k base page size segment */ info->sps[0].page_shift = 12; info->sps[0].slb_enc = 0; info->sps[0].enc[0].page_shift = 12; info->sps[0].enc[0].pte_enc = 0; /* * 64k large page size. * We only want to put this in if the CPUs we're emulating * support it, but unfortunately we don't have a vcpu easily * to hand here to test. Just pick the first vcpu, and if * that doesn't exist yet, report the minimum capability, * i.e., no 64k pages. * 1T segment support goes along with 64k pages. */ i = 1; vcpu = kvm_get_vcpu(kvm, 0); if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) { info->flags = KVM_PPC_1T_SEGMENTS; info->sps[i].page_shift = 16; info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01; info->sps[i].enc[0].page_shift = 16; info->sps[i].enc[0].pte_enc = 1; ++i; } /* Standard 16M large page size segment */ info->sps[i].page_shift = 24; info->sps[i].slb_enc = SLB_VSID_L; info->sps[i].enc[0].page_shift = 24; info->sps[i].enc[0].pte_enc = 0; return 0; } static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) { if (!cpu_has_feature(CPU_FTR_ARCH_300)) return -ENODEV; /* Require flags and process table base and size to all be zero. */ if (cfg->flags || cfg->process_table) return -EINVAL; return 0; } #else static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm, struct kvm_ppc_smmu_info *info) { /* We should not get called */ BUG(); return 0; } #endif /* CONFIG_PPC64 */ static unsigned int kvm_global_user_count = 0; static DEFINE_SPINLOCK(kvm_global_user_count_lock); static int kvmppc_core_init_vm_pr(struct kvm *kvm) { mutex_init(&kvm->arch.hpt_mutex); #ifdef CONFIG_PPC_BOOK3S_64 /* Start out with the default set of hcalls enabled */ kvmppc_pr_init_default_hcalls(kvm); #endif if (firmware_has_feature(FW_FEATURE_SET_MODE)) { spin_lock(&kvm_global_user_count_lock); if (++kvm_global_user_count == 1) pseries_disable_reloc_on_exc(); spin_unlock(&kvm_global_user_count_lock); } return 0; } static void kvmppc_core_destroy_vm_pr(struct kvm *kvm) { #ifdef CONFIG_PPC64 WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables)); #endif if (firmware_has_feature(FW_FEATURE_SET_MODE)) { spin_lock(&kvm_global_user_count_lock); BUG_ON(kvm_global_user_count == 0); if (--kvm_global_user_count == 0) pseries_enable_reloc_on_exc(); spin_unlock(&kvm_global_user_count_lock); } } static int kvmppc_core_check_processor_compat_pr(void) { /* * PR KVM can work on POWER9 inside a guest partition * running in HPT mode. It can't work if we are using * radix translation (because radix provides no way for * a process to have unique translations in quadrant 3). */ if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled()) return -EIO; return 0; } static int kvm_arch_vm_ioctl_pr(struct file *filp, unsigned int ioctl, unsigned long arg) { return -ENOTTY; } static struct kvmppc_ops kvm_ops_pr = { .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr, .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr, .get_one_reg = kvmppc_get_one_reg_pr, .set_one_reg = kvmppc_set_one_reg_pr, .vcpu_load = kvmppc_core_vcpu_load_pr, .vcpu_put = kvmppc_core_vcpu_put_pr, .inject_interrupt = kvmppc_inject_interrupt_pr, .set_msr = kvmppc_set_msr_pr, .vcpu_run = kvmppc_vcpu_run_pr, .vcpu_create = kvmppc_core_vcpu_create_pr, .vcpu_free = kvmppc_core_vcpu_free_pr, .check_requests = kvmppc_core_check_requests_pr, .get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr, .flush_memslot = kvmppc_core_flush_memslot_pr, .prepare_memory_region = kvmppc_core_prepare_memory_region_pr, .commit_memory_region = kvmppc_core_commit_memory_region_pr, .unmap_gfn_range = kvm_unmap_gfn_range_pr, .age_gfn = kvm_age_gfn_pr, .test_age_gfn = kvm_test_age_gfn_pr, .free_memslot = kvmppc_core_free_memslot_pr, .init_vm = kvmppc_core_init_vm_pr, .destroy_vm = kvmppc_core_destroy_vm_pr, .get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr, .emulate_op = kvmppc_core_emulate_op_pr, .emulate_mtspr = kvmppc_core_emulate_mtspr_pr, .emulate_mfspr = kvmppc_core_emulate_mfspr_pr, .fast_vcpu_kick = kvm_vcpu_kick, .arch_vm_ioctl = kvm_arch_vm_ioctl_pr, #ifdef CONFIG_PPC_BOOK3S_64 .hcall_implemented = kvmppc_hcall_impl_pr, .configure_mmu = kvm_configure_mmu_pr, #endif .giveup_ext = kvmppc_giveup_ext, }; int kvmppc_book3s_init_pr(void) { int r; r = kvmppc_core_check_processor_compat_pr(); if (r < 0) return r; kvm_ops_pr.owner = THIS_MODULE; kvmppc_pr_ops = &kvm_ops_pr; r = kvmppc_mmu_hpte_sysinit(); return r; } void kvmppc_book3s_exit_pr(void) { kvmppc_pr_ops = NULL; kvmppc_mmu_hpte_sysexit(); } /* * We only support separate modules for book3s 64 */ #ifdef CONFIG_PPC_BOOK3S_64 module_init(kvmppc_book3s_init_pr); module_exit(kvmppc_book3s_exit_pr); MODULE_DESCRIPTION("KVM on Book3S without using hypervisor mode"); MODULE_LICENSE("GPL"); MODULE_ALIAS_MISCDEV(KVM_MINOR); MODULE_ALIAS("devname:kvm"); #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1