Contributors: 17
Author Tokens Token Proportion Commits Commit Proportion
Hari Bathini 616 23.05% 1 1.79%
Christopher M. Riedl 449 16.80% 1 1.79%
Balbir Singh 431 16.13% 1 1.79%
Michael Ellerman 409 15.31% 8 14.29%
Christophe Leroy 341 12.76% 22 39.29%
Benjamin Gray 200 7.49% 3 5.36%
Jordan Niethe 105 3.93% 8 14.29%
Anju T 62 2.32% 1 1.79%
Josh Poimboeuf 19 0.71% 1 1.79%
Mike Rapoport 13 0.49% 2 3.57%
Naveen N. Rao 9 0.34% 2 3.57%
Steven Rostedt 8 0.30% 1 1.79%
Luis R. Rodriguez 3 0.11% 1 1.79%
Thomas Gleixner 2 0.07% 1 1.79%
Russell Currey 2 0.07% 1 1.79%
Benjamin Herrenschmidt 2 0.07% 1 1.79%
Linus Torvalds 1 0.04% 1 1.79%
Total 2672 56


// SPDX-License-Identifier: GPL-2.0-or-later
/*
 *  Copyright 2008 Michael Ellerman, IBM Corporation.
 */

#include <linux/kprobes.h>
#include <linux/mmu_context.h>
#include <linux/random.h>
#include <linux/vmalloc.h>
#include <linux/init.h>
#include <linux/cpuhotplug.h>
#include <linux/uaccess.h>
#include <linux/jump_label.h>

#include <asm/debug.h>
#include <asm/pgalloc.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
#include <asm/code-patching.h>
#include <asm/inst.h>

static int __patch_instruction(u32 *exec_addr, ppc_inst_t instr, u32 *patch_addr)
{
	if (!ppc_inst_prefixed(instr)) {
		u32 val = ppc_inst_val(instr);

		__put_kernel_nofault(patch_addr, &val, u32, failed);
	} else {
		u64 val = ppc_inst_as_ulong(instr);

		__put_kernel_nofault(patch_addr, &val, u64, failed);
	}

	asm ("dcbst 0, %0; sync; icbi 0,%1; sync; isync" :: "r" (patch_addr),
							    "r" (exec_addr));

	return 0;

failed:
	mb();  /* sync */
	return -EPERM;
}

int raw_patch_instruction(u32 *addr, ppc_inst_t instr)
{
	return __patch_instruction(addr, instr, addr);
}

struct patch_context {
	union {
		struct vm_struct *area;
		struct mm_struct *mm;
	};
	unsigned long addr;
	pte_t *pte;
};

static DEFINE_PER_CPU(struct patch_context, cpu_patching_context);

static int map_patch_area(void *addr, unsigned long text_poke_addr);
static void unmap_patch_area(unsigned long addr);

static bool mm_patch_enabled(void)
{
	return IS_ENABLED(CONFIG_SMP) && radix_enabled();
}

/*
 * The following applies for Radix MMU. Hash MMU has different requirements,
 * and so is not supported.
 *
 * Changing mm requires context synchronising instructions on both sides of
 * the context switch, as well as a hwsync between the last instruction for
 * which the address of an associated storage access was translated using
 * the current context.
 *
 * switch_mm_irqs_off() performs an isync after the context switch. It is
 * the responsibility of the caller to perform the CSI and hwsync before
 * starting/stopping the temp mm.
 */
static struct mm_struct *start_using_temp_mm(struct mm_struct *temp_mm)
{
	struct mm_struct *orig_mm = current->active_mm;

	lockdep_assert_irqs_disabled();
	switch_mm_irqs_off(orig_mm, temp_mm, current);

	WARN_ON(!mm_is_thread_local(temp_mm));

	suspend_breakpoints();
	return orig_mm;
}

static void stop_using_temp_mm(struct mm_struct *temp_mm,
			       struct mm_struct *orig_mm)
{
	lockdep_assert_irqs_disabled();
	switch_mm_irqs_off(temp_mm, orig_mm, current);
	restore_breakpoints();
}

static int text_area_cpu_up(unsigned int cpu)
{
	struct vm_struct *area;
	unsigned long addr;
	int err;

	area = get_vm_area(PAGE_SIZE, VM_ALLOC);
	if (!area) {
		WARN_ONCE(1, "Failed to create text area for cpu %d\n",
			cpu);
		return -1;
	}

	// Map/unmap the area to ensure all page tables are pre-allocated
	addr = (unsigned long)area->addr;
	err = map_patch_area(empty_zero_page, addr);
	if (err)
		return err;

	unmap_patch_area(addr);

	this_cpu_write(cpu_patching_context.area, area);
	this_cpu_write(cpu_patching_context.addr, addr);
	this_cpu_write(cpu_patching_context.pte, virt_to_kpte(addr));

	return 0;
}

static int text_area_cpu_down(unsigned int cpu)
{
	free_vm_area(this_cpu_read(cpu_patching_context.area));
	this_cpu_write(cpu_patching_context.area, NULL);
	this_cpu_write(cpu_patching_context.addr, 0);
	this_cpu_write(cpu_patching_context.pte, NULL);
	return 0;
}

static void put_patching_mm(struct mm_struct *mm, unsigned long patching_addr)
{
	struct mmu_gather tlb;

	tlb_gather_mmu(&tlb, mm);
	free_pgd_range(&tlb, patching_addr, patching_addr + PAGE_SIZE, 0, 0);
	mmput(mm);
}

static int text_area_cpu_up_mm(unsigned int cpu)
{
	struct mm_struct *mm;
	unsigned long addr;
	pte_t *pte;
	spinlock_t *ptl;

	mm = mm_alloc();
	if (WARN_ON(!mm))
		goto fail_no_mm;

	/*
	 * Choose a random page-aligned address from the interval
	 * [PAGE_SIZE .. DEFAULT_MAP_WINDOW - PAGE_SIZE].
	 * The lower address bound is PAGE_SIZE to avoid the zero-page.
	 */
	addr = (1 + (get_random_long() % (DEFAULT_MAP_WINDOW / PAGE_SIZE - 2))) << PAGE_SHIFT;

	/*
	 * PTE allocation uses GFP_KERNEL which means we need to
	 * pre-allocate the PTE here because we cannot do the
	 * allocation during patching when IRQs are disabled.
	 *
	 * Using get_locked_pte() to avoid open coding, the lock
	 * is unnecessary.
	 */
	pte = get_locked_pte(mm, addr, &ptl);
	if (!pte)
		goto fail_no_pte;
	pte_unmap_unlock(pte, ptl);

	this_cpu_write(cpu_patching_context.mm, mm);
	this_cpu_write(cpu_patching_context.addr, addr);

	return 0;

fail_no_pte:
	put_patching_mm(mm, addr);
fail_no_mm:
	return -ENOMEM;
}

static int text_area_cpu_down_mm(unsigned int cpu)
{
	put_patching_mm(this_cpu_read(cpu_patching_context.mm),
			this_cpu_read(cpu_patching_context.addr));

	this_cpu_write(cpu_patching_context.mm, NULL);
	this_cpu_write(cpu_patching_context.addr, 0);

	return 0;
}

static __ro_after_init DEFINE_STATIC_KEY_FALSE(poking_init_done);

void __init poking_init(void)
{
	int ret;

	if (mm_patch_enabled())
		ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
					"powerpc/text_poke_mm:online",
					text_area_cpu_up_mm,
					text_area_cpu_down_mm);
	else
		ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
					"powerpc/text_poke:online",
					text_area_cpu_up,
					text_area_cpu_down);

	/* cpuhp_setup_state returns >= 0 on success */
	if (WARN_ON(ret < 0))
		return;

	static_branch_enable(&poking_init_done);
}

static unsigned long get_patch_pfn(void *addr)
{
	if (IS_ENABLED(CONFIG_EXECMEM) && is_vmalloc_or_module_addr(addr))
		return vmalloc_to_pfn(addr);
	else
		return __pa_symbol(addr) >> PAGE_SHIFT;
}

/*
 * This can be called for kernel text or a module.
 */
static int map_patch_area(void *addr, unsigned long text_poke_addr)
{
	unsigned long pfn = get_patch_pfn(addr);

	return map_kernel_page(text_poke_addr, (pfn << PAGE_SHIFT), PAGE_KERNEL);
}

static void unmap_patch_area(unsigned long addr)
{
	pte_t *ptep;
	pmd_t *pmdp;
	pud_t *pudp;
	p4d_t *p4dp;
	pgd_t *pgdp;

	pgdp = pgd_offset_k(addr);
	if (WARN_ON(pgd_none(*pgdp)))
		return;

	p4dp = p4d_offset(pgdp, addr);
	if (WARN_ON(p4d_none(*p4dp)))
		return;

	pudp = pud_offset(p4dp, addr);
	if (WARN_ON(pud_none(*pudp)))
		return;

	pmdp = pmd_offset(pudp, addr);
	if (WARN_ON(pmd_none(*pmdp)))
		return;

	ptep = pte_offset_kernel(pmdp, addr);
	if (WARN_ON(pte_none(*ptep)))
		return;

	/*
	 * In hash, pte_clear flushes the tlb, in radix, we have to
	 */
	pte_clear(&init_mm, addr, ptep);
	flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
}

static int __do_patch_instruction_mm(u32 *addr, ppc_inst_t instr)
{
	int err;
	u32 *patch_addr;
	unsigned long text_poke_addr;
	pte_t *pte;
	unsigned long pfn = get_patch_pfn(addr);
	struct mm_struct *patching_mm;
	struct mm_struct *orig_mm;
	spinlock_t *ptl;

	patching_mm = __this_cpu_read(cpu_patching_context.mm);
	text_poke_addr = __this_cpu_read(cpu_patching_context.addr);
	patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr));

	pte = get_locked_pte(patching_mm, text_poke_addr, &ptl);
	if (!pte)
		return -ENOMEM;

	__set_pte_at(patching_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0);

	/* order PTE update before use, also serves as the hwsync */
	asm volatile("ptesync": : :"memory");

	/* order context switch after arbitrary prior code */
	isync();

	orig_mm = start_using_temp_mm(patching_mm);

	err = __patch_instruction(addr, instr, patch_addr);

	/* context synchronisation performed by __patch_instruction (isync or exception) */
	stop_using_temp_mm(patching_mm, orig_mm);

	pte_clear(patching_mm, text_poke_addr, pte);
	/*
	 * ptesync to order PTE update before TLB invalidation done
	 * by radix__local_flush_tlb_page_psize (in _tlbiel_va)
	 */
	local_flush_tlb_page_psize(patching_mm, text_poke_addr, mmu_virtual_psize);

	pte_unmap_unlock(pte, ptl);

	return err;
}

static int __do_patch_instruction(u32 *addr, ppc_inst_t instr)
{
	int err;
	u32 *patch_addr;
	unsigned long text_poke_addr;
	pte_t *pte;
	unsigned long pfn = get_patch_pfn(addr);

	text_poke_addr = (unsigned long)__this_cpu_read(cpu_patching_context.addr) & PAGE_MASK;
	patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr));

	pte = __this_cpu_read(cpu_patching_context.pte);
	__set_pte_at(&init_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0);
	/* See ptesync comment in radix__set_pte_at() */
	if (radix_enabled())
		asm volatile("ptesync": : :"memory");

	err = __patch_instruction(addr, instr, patch_addr);

	pte_clear(&init_mm, text_poke_addr, pte);
	flush_tlb_kernel_range(text_poke_addr, text_poke_addr + PAGE_SIZE);

	return err;
}

int patch_instruction(u32 *addr, ppc_inst_t instr)
{
	int err;
	unsigned long flags;

	/*
	 * During early early boot patch_instruction is called
	 * when text_poke_area is not ready, but we still need
	 * to allow patching. We just do the plain old patching
	 */
	if (!IS_ENABLED(CONFIG_STRICT_KERNEL_RWX) ||
	    !static_branch_likely(&poking_init_done))
		return raw_patch_instruction(addr, instr);

	local_irq_save(flags);
	if (mm_patch_enabled())
		err = __do_patch_instruction_mm(addr, instr);
	else
		err = __do_patch_instruction(addr, instr);
	local_irq_restore(flags);

	return err;
}
NOKPROBE_SYMBOL(patch_instruction);

static int patch_memset64(u64 *addr, u64 val, size_t count)
{
	for (u64 *end = addr + count; addr < end; addr++)
		__put_kernel_nofault(addr, &val, u64, failed);

	return 0;

failed:
	return -EPERM;
}

static int patch_memset32(u32 *addr, u32 val, size_t count)
{
	for (u32 *end = addr + count; addr < end; addr++)
		__put_kernel_nofault(addr, &val, u32, failed);

	return 0;

failed:
	return -EPERM;
}

static int __patch_instructions(u32 *patch_addr, u32 *code, size_t len, bool repeat_instr)
{
	unsigned long start = (unsigned long)patch_addr;
	int err;

	/* Repeat instruction */
	if (repeat_instr) {
		ppc_inst_t instr = ppc_inst_read(code);

		if (ppc_inst_prefixed(instr)) {
			u64 val = ppc_inst_as_ulong(instr);

			err = patch_memset64((u64 *)patch_addr, val, len / 8);
		} else {
			u32 val = ppc_inst_val(instr);

			err = patch_memset32(patch_addr, val, len / 4);
		}
	} else {
		err = copy_to_kernel_nofault(patch_addr, code, len);
	}

	smp_wmb();	/* smp write barrier */
	flush_icache_range(start, start + len);
	return err;
}

/*
 * A page is mapped and instructions that fit the page are patched.
 * Assumes 'len' to be (PAGE_SIZE - offset_in_page(addr)) or below.
 */
static int __do_patch_instructions_mm(u32 *addr, u32 *code, size_t len, bool repeat_instr)
{
	struct mm_struct *patching_mm, *orig_mm;
	unsigned long pfn = get_patch_pfn(addr);
	unsigned long text_poke_addr;
	spinlock_t *ptl;
	u32 *patch_addr;
	pte_t *pte;
	int err;

	patching_mm = __this_cpu_read(cpu_patching_context.mm);
	text_poke_addr = __this_cpu_read(cpu_patching_context.addr);
	patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr));

	pte = get_locked_pte(patching_mm, text_poke_addr, &ptl);
	if (!pte)
		return -ENOMEM;

	__set_pte_at(patching_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0);

	/* order PTE update before use, also serves as the hwsync */
	asm volatile("ptesync" ::: "memory");

	/* order context switch after arbitrary prior code */
	isync();

	orig_mm = start_using_temp_mm(patching_mm);

	err = __patch_instructions(patch_addr, code, len, repeat_instr);

	/* context synchronisation performed by __patch_instructions */
	stop_using_temp_mm(patching_mm, orig_mm);

	pte_clear(patching_mm, text_poke_addr, pte);
	/*
	 * ptesync to order PTE update before TLB invalidation done
	 * by radix__local_flush_tlb_page_psize (in _tlbiel_va)
	 */
	local_flush_tlb_page_psize(patching_mm, text_poke_addr, mmu_virtual_psize);

	pte_unmap_unlock(pte, ptl);

	return err;
}

/*
 * A page is mapped and instructions that fit the page are patched.
 * Assumes 'len' to be (PAGE_SIZE - offset_in_page(addr)) or below.
 */
static int __do_patch_instructions(u32 *addr, u32 *code, size_t len, bool repeat_instr)
{
	unsigned long pfn = get_patch_pfn(addr);
	unsigned long text_poke_addr;
	u32 *patch_addr;
	pte_t *pte;
	int err;

	text_poke_addr = (unsigned long)__this_cpu_read(cpu_patching_context.addr) & PAGE_MASK;
	patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr));

	pte = __this_cpu_read(cpu_patching_context.pte);
	__set_pte_at(&init_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0);
	/* See ptesync comment in radix__set_pte_at() */
	if (radix_enabled())
		asm volatile("ptesync" ::: "memory");

	err = __patch_instructions(patch_addr, code, len, repeat_instr);

	pte_clear(&init_mm, text_poke_addr, pte);
	flush_tlb_kernel_range(text_poke_addr, text_poke_addr + PAGE_SIZE);

	return err;
}

/*
 * Patch 'addr' with 'len' bytes of instructions from 'code'.
 *
 * If repeat_instr is true, the same instruction is filled for
 * 'len' bytes.
 */
int patch_instructions(u32 *addr, u32 *code, size_t len, bool repeat_instr)
{
	while (len > 0) {
		unsigned long flags;
		size_t plen;
		int err;

		plen = min_t(size_t, PAGE_SIZE - offset_in_page(addr), len);

		local_irq_save(flags);
		if (mm_patch_enabled())
			err = __do_patch_instructions_mm(addr, code, plen, repeat_instr);
		else
			err = __do_patch_instructions(addr, code, plen, repeat_instr);
		local_irq_restore(flags);
		if (err)
			return err;

		len -= plen;
		addr = (u32 *)((unsigned long)addr + plen);
		if (!repeat_instr)
			code = (u32 *)((unsigned long)code + plen);
	}

	return 0;
}
NOKPROBE_SYMBOL(patch_instructions);

int patch_branch(u32 *addr, unsigned long target, int flags)
{
	ppc_inst_t instr;

	if (create_branch(&instr, addr, target, flags))
		return -ERANGE;

	return patch_instruction(addr, instr);
}

/*
 * Helper to check if a given instruction is a conditional branch
 * Derived from the conditional checks in analyse_instr()
 */
bool is_conditional_branch(ppc_inst_t instr)
{
	unsigned int opcode = ppc_inst_primary_opcode(instr);

	if (opcode == 16)       /* bc, bca, bcl, bcla */
		return true;
	if (opcode == 19) {
		switch ((ppc_inst_val(instr) >> 1) & 0x3ff) {
		case 16:        /* bclr, bclrl */
		case 528:       /* bcctr, bcctrl */
		case 560:       /* bctar, bctarl */
			return true;
		}
	}
	return false;
}
NOKPROBE_SYMBOL(is_conditional_branch);

int create_cond_branch(ppc_inst_t *instr, const u32 *addr,
		       unsigned long target, int flags)
{
	long offset;

	offset = target;
	if (! (flags & BRANCH_ABSOLUTE))
		offset = offset - (unsigned long)addr;

	/* Check we can represent the target in the instruction format */
	if (!is_offset_in_cond_branch_range(offset))
		return 1;

	/* Mask out the flags and target, so they don't step on each other. */
	*instr = ppc_inst(0x40000000 | (flags & 0x3FF0003) | (offset & 0xFFFC));

	return 0;
}

int instr_is_relative_branch(ppc_inst_t instr)
{
	if (ppc_inst_val(instr) & BRANCH_ABSOLUTE)
		return 0;

	return instr_is_branch_iform(instr) || instr_is_branch_bform(instr);
}

int instr_is_relative_link_branch(ppc_inst_t instr)
{
	return instr_is_relative_branch(instr) && (ppc_inst_val(instr) & BRANCH_SET_LINK);
}

static unsigned long branch_iform_target(const u32 *instr)
{
	signed long imm;

	imm = ppc_inst_val(ppc_inst_read(instr)) & 0x3FFFFFC;

	/* If the top bit of the immediate value is set this is negative */
	if (imm & 0x2000000)
		imm -= 0x4000000;

	if ((ppc_inst_val(ppc_inst_read(instr)) & BRANCH_ABSOLUTE) == 0)
		imm += (unsigned long)instr;

	return (unsigned long)imm;
}

static unsigned long branch_bform_target(const u32 *instr)
{
	signed long imm;

	imm = ppc_inst_val(ppc_inst_read(instr)) & 0xFFFC;

	/* If the top bit of the immediate value is set this is negative */
	if (imm & 0x8000)
		imm -= 0x10000;

	if ((ppc_inst_val(ppc_inst_read(instr)) & BRANCH_ABSOLUTE) == 0)
		imm += (unsigned long)instr;

	return (unsigned long)imm;
}

unsigned long branch_target(const u32 *instr)
{
	if (instr_is_branch_iform(ppc_inst_read(instr)))
		return branch_iform_target(instr);
	else if (instr_is_branch_bform(ppc_inst_read(instr)))
		return branch_bform_target(instr);

	return 0;
}

int translate_branch(ppc_inst_t *instr, const u32 *dest, const u32 *src)
{
	unsigned long target;
	target = branch_target(src);

	if (instr_is_branch_iform(ppc_inst_read(src)))
		return create_branch(instr, dest, target,
				     ppc_inst_val(ppc_inst_read(src)));
	else if (instr_is_branch_bform(ppc_inst_read(src)))
		return create_cond_branch(instr, dest, target,
					  ppc_inst_val(ppc_inst_read(src)));

	return 1;
}