Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Benjamin Herrenschmidt | 2113 | 24.47% | 32 | 8.89% |
Aneesh Kumar K.V | 1488 | 17.23% | 80 | 22.22% |
Paul Mackerras | 1016 | 11.77% | 21 | 5.83% |
Nicholas Piggin | 986 | 11.42% | 30 | 8.33% |
Anton Blanchard | 900 | 10.42% | 23 | 6.39% |
Michael Ellerman | 385 | 4.46% | 23 | 6.39% |
David Gibson | 373 | 4.32% | 18 | 5.00% |
Christophe Leroy | 158 | 1.83% | 15 | 4.17% |
Jon Tollefson | 143 | 1.66% | 2 | 0.56% |
Li Zhong | 107 | 1.24% | 4 | 1.11% |
Ian Munsie | 85 | 0.98% | 4 | 1.11% |
Mahesh Salgaonkar | 84 | 0.97% | 6 | 1.67% |
Andrew Morton | 67 | 0.78% | 7 | 1.94% |
Ram Pai | 65 | 0.75% | 6 | 1.67% |
Mike Rapoport | 59 | 0.68% | 5 | 1.39% |
Michael Neuling | 46 | 0.53% | 9 | 2.50% |
Oliver O'Halloran | 41 | 0.47% | 1 | 0.28% |
Russell Currey | 40 | 0.46% | 1 | 0.28% |
Alexander Graf | 39 | 0.45% | 2 | 0.56% |
Mike Kravetz | 39 | 0.45% | 1 | 0.28% |
Vaibhav Jain | 29 | 0.34% | 1 | 0.28% |
Rui Teng | 28 | 0.32% | 2 | 0.56% |
Badari Pulavarty | 27 | 0.31% | 2 | 0.56% |
Aneesh Kumar K.V (IBM) | 25 | 0.29% | 1 | 0.28% |
Gavin Shan | 20 | 0.23% | 1 | 0.28% |
Laurent Vivier | 19 | 0.22% | 1 | 0.28% |
Gautham R. Shenoy | 17 | 0.20% | 1 | 0.28% |
Linus Torvalds (pre-git) | 17 | 0.20% | 6 | 1.67% |
JoonSoo Kim | 16 | 0.19% | 1 | 0.28% |
Nicholas Miehlbradt | 14 | 0.16% | 1 | 0.28% |
Matt Evans | 13 | 0.15% | 1 | 0.28% |
Stephen Rothwell | 12 | 0.14% | 4 | 1.11% |
Shawn Anastasio | 12 | 0.14% | 1 | 0.28% |
Matthew Wilcox | 12 | 0.14% | 1 | 0.28% |
Rob Herring | 11 | 0.13% | 1 | 0.28% |
Arnd Bergmann | 10 | 0.12% | 1 | 0.28% |
Darren Stevens | 9 | 0.10% | 1 | 0.28% |
Scott Wood | 8 | 0.09% | 2 | 0.56% |
Olof Johansson | 7 | 0.08% | 3 | 0.83% |
Hari Bathini | 7 | 0.08% | 1 | 0.28% |
Suraj Jitindar Singh | 7 | 0.08% | 1 | 0.28% |
Yinghai Lu | 5 | 0.06% | 1 | 0.28% |
Ganesh Goudar | 5 | 0.06% | 1 | 0.28% |
Russell King | 4 | 0.05% | 1 | 0.28% |
Linus Torvalds | 4 | 0.05% | 2 | 0.56% |
Logan Gunthorpe | 4 | 0.05% | 1 | 0.28% |
Michael Anderson | 3 | 0.03% | 1 | 0.28% |
Will Schmidt | 3 | 0.03% | 1 | 0.28% |
Steven Rostedt | 3 | 0.03% | 1 | 0.28% |
Daniel Axtens | 3 | 0.03% | 1 | 0.28% |
Simon Guo | 3 | 0.03% | 1 | 0.28% |
Becky Bruce | 3 | 0.03% | 1 | 0.28% |
Nick Child | 3 | 0.03% | 1 | 0.28% |
Tony Breeds | 3 | 0.03% | 1 | 0.28% |
Paul Gortmaker | 3 | 0.03% | 1 | 0.28% |
Dave Hansen | 3 | 0.03% | 1 | 0.28% |
Rusty Russell | 2 | 0.02% | 1 | 0.28% |
Colin Ian King | 2 | 0.02% | 1 | 0.28% |
David S. Miller | 2 | 0.02% | 1 | 0.28% |
Reza Arbab | 2 | 0.02% | 1 | 0.28% |
Xiongwei Song | 2 | 0.02% | 1 | 0.28% |
Julia Lawall | 2 | 0.02% | 1 | 0.28% |
Joe Perches | 2 | 0.02% | 1 | 0.28% |
Christoph Lameter | 2 | 0.02% | 1 | 0.28% |
Bharata B Rao | 2 | 0.02% | 1 | 0.28% |
Yue haibing | 2 | 0.02% | 2 | 0.56% |
Joel Stanley | 1 | 0.01% | 1 | 0.28% |
Sachin P. Sant | 1 | 0.01% | 1 | 0.28% |
Ingo Molnar | 1 | 0.01% | 1 | 0.28% |
Greg Kroah-Hartman | 1 | 0.01% | 1 | 0.28% |
Thomas Gleixner | 1 | 0.01% | 1 | 0.28% |
Claudio Carvalho | 1 | 0.01% | 1 | 0.28% |
Yang Yingliang | 1 | 0.01% | 1 | 0.28% |
Kefeng Wang | 1 | 0.01% | 1 | 0.28% |
Masahiro Yamada | 1 | 0.01% | 1 | 0.28% |
Total | 8635 | 360 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * PowerPC64 port by Mike Corrigan and Dave Engebretsen * {mikejc|engebret}@us.ibm.com * * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com> * * SMP scalability work: * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM * * Module name: htab.c * * Description: * PowerPC Hashed Page Table functions */ #undef DEBUG #undef DEBUG_LOW #define pr_fmt(fmt) "hash-mmu: " fmt #include <linux/spinlock.h> #include <linux/errno.h> #include <linux/sched/mm.h> #include <linux/proc_fs.h> #include <linux/stat.h> #include <linux/sysctl.h> #include <linux/export.h> #include <linux/ctype.h> #include <linux/cache.h> #include <linux/init.h> #include <linux/signal.h> #include <linux/memblock.h> #include <linux/context_tracking.h> #include <linux/libfdt.h> #include <linux/pkeys.h> #include <linux/hugetlb.h> #include <linux/cpu.h> #include <linux/pgtable.h> #include <linux/debugfs.h> #include <linux/random.h> #include <linux/elf-randomize.h> #include <linux/of_fdt.h> #include <asm/interrupt.h> #include <asm/processor.h> #include <asm/mmu.h> #include <asm/mmu_context.h> #include <asm/page.h> #include <asm/types.h> #include <linux/uaccess.h> #include <asm/machdep.h> #include <asm/io.h> #include <asm/eeh.h> #include <asm/tlb.h> #include <asm/cacheflush.h> #include <asm/cputable.h> #include <asm/sections.h> #include <asm/copro.h> #include <asm/udbg.h> #include <asm/code-patching.h> #include <asm/fadump.h> #include <asm/firmware.h> #include <asm/tm.h> #include <asm/trace.h> #include <asm/ps3.h> #include <asm/pte-walk.h> #include <asm/asm-prototypes.h> #include <asm/ultravisor.h> #include <mm/mmu_decl.h> #include "internal.h" #ifdef DEBUG #define DBG(fmt...) udbg_printf(fmt) #else #define DBG(fmt...) #endif #ifdef DEBUG_LOW #define DBG_LOW(fmt...) udbg_printf(fmt) #else #define DBG_LOW(fmt...) #endif #define KB (1024) #define MB (1024*KB) #define GB (1024L*MB) /* * Note: pte --> Linux PTE * HPTE --> PowerPC Hashed Page Table Entry * * Execution context: * htab_initialize is called with the MMU off (of course), but * the kernel has been copied down to zero so it can directly * reference global data. At this point it is very difficult * to print debug info. * */ static unsigned long _SDR1; u8 hpte_page_sizes[1 << LP_BITS]; EXPORT_SYMBOL_GPL(hpte_page_sizes); struct hash_pte *htab_address; unsigned long htab_size_bytes; unsigned long htab_hash_mask; EXPORT_SYMBOL_GPL(htab_hash_mask); int mmu_linear_psize = MMU_PAGE_4K; EXPORT_SYMBOL_GPL(mmu_linear_psize); int mmu_virtual_psize = MMU_PAGE_4K; int mmu_vmalloc_psize = MMU_PAGE_4K; EXPORT_SYMBOL_GPL(mmu_vmalloc_psize); int mmu_io_psize = MMU_PAGE_4K; int mmu_kernel_ssize = MMU_SEGSIZE_256M; EXPORT_SYMBOL_GPL(mmu_kernel_ssize); int mmu_highuser_ssize = MMU_SEGSIZE_256M; u16 mmu_slb_size = 64; EXPORT_SYMBOL_GPL(mmu_slb_size); #ifdef CONFIG_PPC_64K_PAGES int mmu_ci_restrictions; #endif static u8 *linear_map_hash_slots; static unsigned long linear_map_hash_count; struct mmu_hash_ops mmu_hash_ops; EXPORT_SYMBOL(mmu_hash_ops); /* * These are definitions of page sizes arrays to be used when none * is provided by the firmware. */ /* * Fallback (4k pages only) */ static struct mmu_psize_def mmu_psize_defaults[] = { [MMU_PAGE_4K] = { .shift = 12, .sllp = 0, .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1}, .avpnm = 0, .tlbiel = 0, }, }; /* * POWER4, GPUL, POWER5 * * Support for 16Mb large pages */ static struct mmu_psize_def mmu_psize_defaults_gp[] = { [MMU_PAGE_4K] = { .shift = 12, .sllp = 0, .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1}, .avpnm = 0, .tlbiel = 1, }, [MMU_PAGE_16M] = { .shift = 24, .sllp = SLB_VSID_L, .penc = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0, [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 }, .avpnm = 0x1UL, .tlbiel = 0, }, }; static inline void tlbiel_hash_set_isa206(unsigned int set, unsigned int is) { unsigned long rb; rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53)); asm volatile("tlbiel %0" : : "r" (rb)); } /* * tlbiel instruction for hash, set invalidation * i.e., r=1 and is=01 or is=10 or is=11 */ static __always_inline void tlbiel_hash_set_isa300(unsigned int set, unsigned int is, unsigned int pid, unsigned int ric, unsigned int prs) { unsigned long rb; unsigned long rs; unsigned int r = 0; /* hash format */ rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53)); rs = ((unsigned long)pid << PPC_BITLSHIFT(31)); asm volatile(PPC_TLBIEL(%0, %1, %2, %3, %4) : : "r"(rb), "r"(rs), "i"(ric), "i"(prs), "i"(r) : "memory"); } static void tlbiel_all_isa206(unsigned int num_sets, unsigned int is) { unsigned int set; asm volatile("ptesync": : :"memory"); for (set = 0; set < num_sets; set++) tlbiel_hash_set_isa206(set, is); ppc_after_tlbiel_barrier(); } static void tlbiel_all_isa300(unsigned int num_sets, unsigned int is) { unsigned int set; asm volatile("ptesync": : :"memory"); /* * Flush the partition table cache if this is HV mode. */ if (early_cpu_has_feature(CPU_FTR_HVMODE)) tlbiel_hash_set_isa300(0, is, 0, 2, 0); /* * Now invalidate the process table cache. UPRT=0 HPT modes (what * current hardware implements) do not use the process table, but * add the flushes anyway. * * From ISA v3.0B p. 1078: * The following forms are invalid. * * PRS=1, R=0, and RIC!=2 (The only process-scoped * HPT caching is of the Process Table.) */ tlbiel_hash_set_isa300(0, is, 0, 2, 1); /* * Then flush the sets of the TLB proper. Hash mode uses * partition scoped TLB translations, which may be flushed * in !HV mode. */ for (set = 0; set < num_sets; set++) tlbiel_hash_set_isa300(set, is, 0, 0, 0); ppc_after_tlbiel_barrier(); asm volatile(PPC_ISA_3_0_INVALIDATE_ERAT "; isync" : : :"memory"); } void hash__tlbiel_all(unsigned int action) { unsigned int is; switch (action) { case TLB_INVAL_SCOPE_GLOBAL: is = 3; break; case TLB_INVAL_SCOPE_LPID: is = 2; break; default: BUG(); } if (early_cpu_has_feature(CPU_FTR_ARCH_300)) tlbiel_all_isa300(POWER9_TLB_SETS_HASH, is); else if (early_cpu_has_feature(CPU_FTR_ARCH_207S)) tlbiel_all_isa206(POWER8_TLB_SETS, is); else if (early_cpu_has_feature(CPU_FTR_ARCH_206)) tlbiel_all_isa206(POWER7_TLB_SETS, is); else WARN(1, "%s called on pre-POWER7 CPU\n", __func__); } /* * 'R' and 'C' update notes: * - Under pHyp or KVM, the updatepp path will not set C, thus it *will* * create writeable HPTEs without C set, because the hcall H_PROTECT * that we use in that case will not update C * - The above is however not a problem, because we also don't do that * fancy "no flush" variant of eviction and we use H_REMOVE which will * do the right thing and thus we don't have the race I described earlier * * - Under bare metal, we do have the race, so we need R and C set * - We make sure R is always set and never lost * - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping */ unsigned long htab_convert_pte_flags(unsigned long pteflags, unsigned long flags) { unsigned long rflags = 0; /* _PAGE_EXEC -> NOEXEC */ if ((pteflags & _PAGE_EXEC) == 0) rflags |= HPTE_R_N; /* * PPP bits: * Linux uses slb key 0 for kernel and 1 for user. * kernel RW areas are mapped with PPP=0b000 * User area is mapped with PPP=0b010 for read/write * or PPP=0b011 for read-only (including writeable but clean pages). */ if (pteflags & _PAGE_PRIVILEGED) { /* * Kernel read only mapped with ppp bits 0b110 */ if (!(pteflags & _PAGE_WRITE)) { if (mmu_has_feature(MMU_FTR_KERNEL_RO)) rflags |= (HPTE_R_PP0 | 0x2); else rflags |= 0x3; } VM_WARN_ONCE(!(pteflags & _PAGE_RWX), "no-access mapping request"); } else { if (pteflags & _PAGE_RWX) rflags |= 0x2; /* * We should never hit this in normal fault handling because * a permission check (check_pte_access()) will bubble this * to higher level linux handler even for PAGE_NONE. */ VM_WARN_ONCE(!(pteflags & _PAGE_RWX), "no-access mapping request"); if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY))) rflags |= 0x1; } /* * We can't allow hardware to update hpte bits. Hence always * set 'R' bit and set 'C' if it is a write fault */ rflags |= HPTE_R_R; if (pteflags & _PAGE_DIRTY) rflags |= HPTE_R_C; /* * Add in WIG bits */ if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT) rflags |= HPTE_R_I; else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT) rflags |= (HPTE_R_I | HPTE_R_G); else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO) rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M); else /* * Add memory coherence if cache inhibited is not set */ rflags |= HPTE_R_M; rflags |= pte_to_hpte_pkey_bits(pteflags, flags); return rflags; } int htab_bolt_mapping(unsigned long vstart, unsigned long vend, unsigned long pstart, unsigned long prot, int psize, int ssize) { unsigned long vaddr, paddr; unsigned int step, shift; int ret = 0; shift = mmu_psize_defs[psize].shift; step = 1 << shift; prot = htab_convert_pte_flags(prot, HPTE_USE_KERNEL_KEY); DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n", vstart, vend, pstart, prot, psize, ssize); /* Carefully map only the possible range */ vaddr = ALIGN(vstart, step); paddr = ALIGN(pstart, step); vend = ALIGN_DOWN(vend, step); for (; vaddr < vend; vaddr += step, paddr += step) { unsigned long hash, hpteg; unsigned long vsid = get_kernel_vsid(vaddr, ssize); unsigned long vpn = hpt_vpn(vaddr, vsid, ssize); unsigned long tprot = prot; bool secondary_hash = false; /* * If we hit a bad address return error. */ if (!vsid) return -1; /* Make kernel text executable */ if (overlaps_kernel_text(vaddr, vaddr + step)) tprot &= ~HPTE_R_N; /* * If relocatable, check if it overlaps interrupt vectors that * are copied down to real 0. For relocatable kernel * (e.g. kdump case) we copy interrupt vectors down to real * address 0. Mark that region as executable. This is * because on p8 system with relocation on exception feature * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence * in order to execute the interrupt handlers in virtual * mode the vector region need to be marked as executable. */ if ((PHYSICAL_START > MEMORY_START) && overlaps_interrupt_vector_text(vaddr, vaddr + step)) tprot &= ~HPTE_R_N; hash = hpt_hash(vpn, shift, ssize); hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP); BUG_ON(!mmu_hash_ops.hpte_insert); repeat: ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot, HPTE_V_BOLTED, psize, psize, ssize); if (ret == -1) { /* * Try to keep bolted entries in primary. * Remove non bolted entries and try insert again */ ret = mmu_hash_ops.hpte_remove(hpteg); if (ret != -1) ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot, HPTE_V_BOLTED, psize, psize, ssize); if (ret == -1 && !secondary_hash) { secondary_hash = true; hpteg = ((~hash & htab_hash_mask) * HPTES_PER_GROUP); goto repeat; } } if (ret < 0) break; cond_resched(); if (debug_pagealloc_enabled_or_kfence() && (paddr >> PAGE_SHIFT) < linear_map_hash_count) linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80; } return ret < 0 ? ret : 0; } int htab_remove_mapping(unsigned long vstart, unsigned long vend, int psize, int ssize) { unsigned long vaddr, time_limit; unsigned int step, shift; int rc; int ret = 0; shift = mmu_psize_defs[psize].shift; step = 1 << shift; if (!mmu_hash_ops.hpte_removebolted) return -ENODEV; /* Unmap the full range specificied */ vaddr = ALIGN_DOWN(vstart, step); time_limit = jiffies + HZ; for (;vaddr < vend; vaddr += step) { rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize); /* * For large number of mappings introduce a cond_resched() * to prevent softlockup warnings. */ if (time_after(jiffies, time_limit)) { cond_resched(); time_limit = jiffies + HZ; } if (rc == -ENOENT) { ret = -ENOENT; continue; } if (rc < 0) return rc; } return ret; } static bool disable_1tb_segments __ro_after_init; static int __init parse_disable_1tb_segments(char *p) { disable_1tb_segments = true; return 0; } early_param("disable_1tb_segments", parse_disable_1tb_segments); bool stress_hpt_enabled __initdata; static int __init parse_stress_hpt(char *p) { stress_hpt_enabled = true; return 0; } early_param("stress_hpt", parse_stress_hpt); __ro_after_init DEFINE_STATIC_KEY_FALSE(stress_hpt_key); /* * per-CPU array allocated if we enable stress_hpt. */ #define STRESS_MAX_GROUPS 16 struct stress_hpt_struct { unsigned long last_group[STRESS_MAX_GROUPS]; }; static inline int stress_nr_groups(void) { /* * LPAR H_REMOVE flushes TLB, so need some number > 1 of entries * to allow practical forward progress. Bare metal returns 1, which * seems to help uncover more bugs. */ if (firmware_has_feature(FW_FEATURE_LPAR)) return STRESS_MAX_GROUPS; else return 1; } static struct stress_hpt_struct *stress_hpt_struct; static int __init htab_dt_scan_seg_sizes(unsigned long node, const char *uname, int depth, void *data) { const char *type = of_get_flat_dt_prop(node, "device_type", NULL); const __be32 *prop; int size = 0; /* We are scanning "cpu" nodes only */ if (type == NULL || strcmp(type, "cpu") != 0) return 0; prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size); if (prop == NULL) return 0; for (; size >= 4; size -= 4, ++prop) { if (be32_to_cpu(prop[0]) == 40) { DBG("1T segment support detected\n"); if (disable_1tb_segments) { DBG("1T segments disabled by command line\n"); break; } cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT; return 1; } } cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B; return 0; } static int __init get_idx_from_shift(unsigned int shift) { int idx = -1; switch (shift) { case 0xc: idx = MMU_PAGE_4K; break; case 0x10: idx = MMU_PAGE_64K; break; case 0x14: idx = MMU_PAGE_1M; break; case 0x18: idx = MMU_PAGE_16M; break; case 0x22: idx = MMU_PAGE_16G; break; } return idx; } static int __init htab_dt_scan_page_sizes(unsigned long node, const char *uname, int depth, void *data) { const char *type = of_get_flat_dt_prop(node, "device_type", NULL); const __be32 *prop; int size = 0; /* We are scanning "cpu" nodes only */ if (type == NULL || strcmp(type, "cpu") != 0) return 0; prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size); if (!prop) return 0; pr_info("Page sizes from device-tree:\n"); size /= 4; cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE); while(size > 0) { unsigned int base_shift = be32_to_cpu(prop[0]); unsigned int slbenc = be32_to_cpu(prop[1]); unsigned int lpnum = be32_to_cpu(prop[2]); struct mmu_psize_def *def; int idx, base_idx; size -= 3; prop += 3; base_idx = get_idx_from_shift(base_shift); if (base_idx < 0) { /* skip the pte encoding also */ prop += lpnum * 2; size -= lpnum * 2; continue; } def = &mmu_psize_defs[base_idx]; if (base_idx == MMU_PAGE_16M) cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE; def->shift = base_shift; if (base_shift <= 23) def->avpnm = 0; else def->avpnm = (1 << (base_shift - 23)) - 1; def->sllp = slbenc; /* * We don't know for sure what's up with tlbiel, so * for now we only set it for 4K and 64K pages */ if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K) def->tlbiel = 1; else def->tlbiel = 0; while (size > 0 && lpnum) { unsigned int shift = be32_to_cpu(prop[0]); int penc = be32_to_cpu(prop[1]); prop += 2; size -= 2; lpnum--; idx = get_idx_from_shift(shift); if (idx < 0) continue; if (penc == -1) pr_err("Invalid penc for base_shift=%d " "shift=%d\n", base_shift, shift); def->penc[idx] = penc; pr_info("base_shift=%d: shift=%d, sllp=0x%04lx," " avpnm=0x%08lx, tlbiel=%d, penc=%d\n", base_shift, shift, def->sllp, def->avpnm, def->tlbiel, def->penc[idx]); } } return 1; } #ifdef CONFIG_HUGETLB_PAGE /* * Scan for 16G memory blocks that have been set aside for huge pages * and reserve those blocks for 16G huge pages. */ static int __init htab_dt_scan_hugepage_blocks(unsigned long node, const char *uname, int depth, void *data) { const char *type = of_get_flat_dt_prop(node, "device_type", NULL); const __be64 *addr_prop; const __be32 *page_count_prop; unsigned int expected_pages; long unsigned int phys_addr; long unsigned int block_size; /* We are scanning "memory" nodes only */ if (type == NULL || strcmp(type, "memory") != 0) return 0; /* * This property is the log base 2 of the number of virtual pages that * will represent this memory block. */ page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL); if (page_count_prop == NULL) return 0; expected_pages = (1 << be32_to_cpu(page_count_prop[0])); addr_prop = of_get_flat_dt_prop(node, "reg", NULL); if (addr_prop == NULL) return 0; phys_addr = be64_to_cpu(addr_prop[0]); block_size = be64_to_cpu(addr_prop[1]); if (block_size != (16 * GB)) return 0; printk(KERN_INFO "Huge page(16GB) memory: " "addr = 0x%lX size = 0x%lX pages = %d\n", phys_addr, block_size, expected_pages); if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) { memblock_reserve(phys_addr, block_size * expected_pages); pseries_add_gpage(phys_addr, block_size, expected_pages); } return 0; } #endif /* CONFIG_HUGETLB_PAGE */ static void __init mmu_psize_set_default_penc(void) { int bpsize, apsize; for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++) mmu_psize_defs[bpsize].penc[apsize] = -1; } #ifdef CONFIG_PPC_64K_PAGES static bool __init might_have_hea(void) { /* * The HEA ethernet adapter requires awareness of the * GX bus. Without that awareness we can easily assume * we will never see an HEA ethernet device. */ #ifdef CONFIG_IBMEBUS return !cpu_has_feature(CPU_FTR_ARCH_207S) && firmware_has_feature(FW_FEATURE_SPLPAR); #else return false; #endif } #endif /* #ifdef CONFIG_PPC_64K_PAGES */ static void __init htab_scan_page_sizes(void) { int rc; /* se the invalid penc to -1 */ mmu_psize_set_default_penc(); /* Default to 4K pages only */ memcpy(mmu_psize_defs, mmu_psize_defaults, sizeof(mmu_psize_defaults)); /* * Try to find the available page sizes in the device-tree */ rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL); if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) { /* * Nothing in the device-tree, but the CPU supports 16M pages, * so let's fallback on a known size list for 16M capable CPUs. */ memcpy(mmu_psize_defs, mmu_psize_defaults_gp, sizeof(mmu_psize_defaults_gp)); } #ifdef CONFIG_HUGETLB_PAGE if (!hugetlb_disabled && !early_radix_enabled() ) { /* Reserve 16G huge page memory sections for huge pages */ of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL); } #endif /* CONFIG_HUGETLB_PAGE */ } /* * Fill in the hpte_page_sizes[] array. * We go through the mmu_psize_defs[] array looking for all the * supported base/actual page size combinations. Each combination * has a unique pagesize encoding (penc) value in the low bits of * the LP field of the HPTE. For actual page sizes less than 1MB, * some of the upper LP bits are used for RPN bits, meaning that * we need to fill in several entries in hpte_page_sizes[]. * * In diagrammatic form, with r = RPN bits and z = page size bits: * PTE LP actual page size * rrrr rrrz >=8KB * rrrr rrzz >=16KB * rrrr rzzz >=32KB * rrrr zzzz >=64KB * ... * * The zzzz bits are implementation-specific but are chosen so that * no encoding for a larger page size uses the same value in its * low-order N bits as the encoding for the 2^(12+N) byte page size * (if it exists). */ static void __init init_hpte_page_sizes(void) { long int ap, bp; long int shift, penc; for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) { if (!mmu_psize_defs[bp].shift) continue; /* not a supported page size */ for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) { penc = mmu_psize_defs[bp].penc[ap]; if (penc == -1 || !mmu_psize_defs[ap].shift) continue; shift = mmu_psize_defs[ap].shift - LP_SHIFT; if (shift <= 0) continue; /* should never happen */ /* * For page sizes less than 1MB, this loop * replicates the entry for all possible values * of the rrrr bits. */ while (penc < (1 << LP_BITS)) { hpte_page_sizes[penc] = (ap << 4) | bp; penc += 1 << shift; } } } } static void __init htab_init_page_sizes(void) { bool aligned = true; init_hpte_page_sizes(); if (!debug_pagealloc_enabled_or_kfence()) { /* * Pick a size for the linear mapping. Currently, we only * support 16M, 1M and 4K which is the default */ if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX) && (unsigned long)_stext % 0x1000000) { if (mmu_psize_defs[MMU_PAGE_16M].shift) pr_warn("Kernel not 16M aligned, disabling 16M linear map alignment\n"); aligned = false; } if (mmu_psize_defs[MMU_PAGE_16M].shift && aligned) mmu_linear_psize = MMU_PAGE_16M; else if (mmu_psize_defs[MMU_PAGE_1M].shift) mmu_linear_psize = MMU_PAGE_1M; } #ifdef CONFIG_PPC_64K_PAGES /* * Pick a size for the ordinary pages. Default is 4K, we support * 64K for user mappings and vmalloc if supported by the processor. * We only use 64k for ioremap if the processor * (and firmware) support cache-inhibited large pages. * If not, we use 4k and set mmu_ci_restrictions so that * hash_page knows to switch processes that use cache-inhibited * mappings to 4k pages. */ if (mmu_psize_defs[MMU_PAGE_64K].shift) { mmu_virtual_psize = MMU_PAGE_64K; mmu_vmalloc_psize = MMU_PAGE_64K; if (mmu_linear_psize == MMU_PAGE_4K) mmu_linear_psize = MMU_PAGE_64K; if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) { /* * When running on pSeries using 64k pages for ioremap * would stop us accessing the HEA ethernet. So if we * have the chance of ever seeing one, stay at 4k. */ if (!might_have_hea()) mmu_io_psize = MMU_PAGE_64K; } else mmu_ci_restrictions = 1; } #endif /* CONFIG_PPC_64K_PAGES */ #ifdef CONFIG_SPARSEMEM_VMEMMAP /* * We try to use 16M pages for vmemmap if that is supported * and we have at least 1G of RAM at boot */ if (mmu_psize_defs[MMU_PAGE_16M].shift && memblock_phys_mem_size() >= 0x40000000) mmu_vmemmap_psize = MMU_PAGE_16M; else mmu_vmemmap_psize = mmu_virtual_psize; #endif /* CONFIG_SPARSEMEM_VMEMMAP */ printk(KERN_DEBUG "Page orders: linear mapping = %d, " "virtual = %d, io = %d" #ifdef CONFIG_SPARSEMEM_VMEMMAP ", vmemmap = %d" #endif "\n", mmu_psize_defs[mmu_linear_psize].shift, mmu_psize_defs[mmu_virtual_psize].shift, mmu_psize_defs[mmu_io_psize].shift #ifdef CONFIG_SPARSEMEM_VMEMMAP ,mmu_psize_defs[mmu_vmemmap_psize].shift #endif ); } static int __init htab_dt_scan_pftsize(unsigned long node, const char *uname, int depth, void *data) { const char *type = of_get_flat_dt_prop(node, "device_type", NULL); const __be32 *prop; /* We are scanning "cpu" nodes only */ if (type == NULL || strcmp(type, "cpu") != 0) return 0; prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL); if (prop != NULL) { /* pft_size[0] is the NUMA CEC cookie */ ppc64_pft_size = be32_to_cpu(prop[1]); return 1; } return 0; } unsigned htab_shift_for_mem_size(unsigned long mem_size) { unsigned memshift = __ilog2(mem_size); unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift; unsigned pteg_shift; /* round mem_size up to next power of 2 */ if ((1UL << memshift) < mem_size) memshift += 1; /* aim for 2 pages / pteg */ pteg_shift = memshift - (pshift + 1); /* * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab * size permitted by the architecture. */ return max(pteg_shift + 7, 18U); } static unsigned long __init htab_get_table_size(void) { /* * If hash size isn't already provided by the platform, we try to * retrieve it from the device-tree. If it's not there neither, we * calculate it now based on the total RAM size */ if (ppc64_pft_size == 0) of_scan_flat_dt(htab_dt_scan_pftsize, NULL); if (ppc64_pft_size) return 1UL << ppc64_pft_size; return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size()); } #ifdef CONFIG_MEMORY_HOTPLUG static int resize_hpt_for_hotplug(unsigned long new_mem_size) { unsigned target_hpt_shift; if (!mmu_hash_ops.resize_hpt) return 0; target_hpt_shift = htab_shift_for_mem_size(new_mem_size); /* * To avoid lots of HPT resizes if memory size is fluctuating * across a boundary, we deliberately have some hysterisis * here: we immediately increase the HPT size if the target * shift exceeds the current shift, but we won't attempt to * reduce unless the target shift is at least 2 below the * current shift */ if (target_hpt_shift > ppc64_pft_size || target_hpt_shift < ppc64_pft_size - 1) return mmu_hash_ops.resize_hpt(target_hpt_shift); return 0; } int hash__create_section_mapping(unsigned long start, unsigned long end, int nid, pgprot_t prot) { int rc; if (end >= H_VMALLOC_START) { pr_warn("Outside the supported range\n"); return -1; } resize_hpt_for_hotplug(memblock_phys_mem_size()); rc = htab_bolt_mapping(start, end, __pa(start), pgprot_val(prot), mmu_linear_psize, mmu_kernel_ssize); if (rc < 0) { int rc2 = htab_remove_mapping(start, end, mmu_linear_psize, mmu_kernel_ssize); BUG_ON(rc2 && (rc2 != -ENOENT)); } return rc; } int hash__remove_section_mapping(unsigned long start, unsigned long end) { int rc = htab_remove_mapping(start, end, mmu_linear_psize, mmu_kernel_ssize); if (resize_hpt_for_hotplug(memblock_phys_mem_size()) == -ENOSPC) pr_warn("Hash collision while resizing HPT\n"); return rc; } #endif /* CONFIG_MEMORY_HOTPLUG */ static void __init hash_init_partition_table(phys_addr_t hash_table, unsigned long htab_size) { mmu_partition_table_init(); /* * PS field (VRMA page size) is not used for LPID 0, hence set to 0. * For now, UPRT is 0 and we have no segment table. */ htab_size = __ilog2(htab_size) - 18; mmu_partition_table_set_entry(0, hash_table | htab_size, 0, false); pr_info("Partition table %p\n", partition_tb); } void hpt_clear_stress(void); static struct timer_list stress_hpt_timer; static void stress_hpt_timer_fn(struct timer_list *timer) { int next_cpu; hpt_clear_stress(); if (!firmware_has_feature(FW_FEATURE_LPAR)) tlbiel_all(); next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask); if (next_cpu >= nr_cpu_ids) next_cpu = cpumask_first(cpu_online_mask); stress_hpt_timer.expires = jiffies + msecs_to_jiffies(10); add_timer_on(&stress_hpt_timer, next_cpu); } static void __init htab_initialize(void) { unsigned long table; unsigned long pteg_count; unsigned long prot; phys_addr_t base = 0, size = 0, end; u64 i; DBG(" -> htab_initialize()\n"); if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) { mmu_kernel_ssize = MMU_SEGSIZE_1T; mmu_highuser_ssize = MMU_SEGSIZE_1T; printk(KERN_INFO "Using 1TB segments\n"); } if (stress_slb_enabled) static_branch_enable(&stress_slb_key); if (stress_hpt_enabled) { unsigned long tmp; static_branch_enable(&stress_hpt_key); // Too early to use nr_cpu_ids, so use NR_CPUS tmp = memblock_phys_alloc_range(sizeof(struct stress_hpt_struct) * NR_CPUS, __alignof__(struct stress_hpt_struct), 0, MEMBLOCK_ALLOC_ANYWHERE); memset((void *)tmp, 0xff, sizeof(struct stress_hpt_struct) * NR_CPUS); stress_hpt_struct = __va(tmp); timer_setup(&stress_hpt_timer, stress_hpt_timer_fn, 0); stress_hpt_timer.expires = jiffies + msecs_to_jiffies(10); add_timer(&stress_hpt_timer); } /* * Calculate the required size of the htab. We want the number of * PTEGs to equal one half the number of real pages. */ htab_size_bytes = htab_get_table_size(); pteg_count = htab_size_bytes >> 7; htab_hash_mask = pteg_count - 1; if (firmware_has_feature(FW_FEATURE_LPAR) || firmware_has_feature(FW_FEATURE_PS3_LV1)) { /* Using a hypervisor which owns the htab */ htab_address = NULL; _SDR1 = 0; #ifdef CONFIG_FA_DUMP /* * If firmware assisted dump is active firmware preserves * the contents of htab along with entire partition memory. * Clear the htab if firmware assisted dump is active so * that we dont end up using old mappings. */ if (is_fadump_active() && mmu_hash_ops.hpte_clear_all) mmu_hash_ops.hpte_clear_all(); #endif } else { unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE; #ifdef CONFIG_PPC_CELL /* * Cell may require the hash table down low when using the * Axon IOMMU in order to fit the dynamic region over it, see * comments in cell/iommu.c */ if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) { limit = 0x80000000; pr_info("Hash table forced below 2G for Axon IOMMU\n"); } #endif /* CONFIG_PPC_CELL */ table = memblock_phys_alloc_range(htab_size_bytes, htab_size_bytes, 0, limit); if (!table) panic("ERROR: Failed to allocate %pa bytes below %pa\n", &htab_size_bytes, &limit); DBG("Hash table allocated at %lx, size: %lx\n", table, htab_size_bytes); htab_address = __va(table); /* htab absolute addr + encoded htabsize */ _SDR1 = table + __ilog2(htab_size_bytes) - 18; /* Initialize the HPT with no entries */ memset((void *)table, 0, htab_size_bytes); if (!cpu_has_feature(CPU_FTR_ARCH_300)) /* Set SDR1 */ mtspr(SPRN_SDR1, _SDR1); else hash_init_partition_table(table, htab_size_bytes); } prot = pgprot_val(PAGE_KERNEL); if (debug_pagealloc_enabled_or_kfence()) { linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT; linear_map_hash_slots = memblock_alloc_try_nid( linear_map_hash_count, 1, MEMBLOCK_LOW_LIMIT, ppc64_rma_size, NUMA_NO_NODE); if (!linear_map_hash_slots) panic("%s: Failed to allocate %lu bytes max_addr=%pa\n", __func__, linear_map_hash_count, &ppc64_rma_size); } /* create bolted the linear mapping in the hash table */ for_each_mem_range(i, &base, &end) { size = end - base; base = (unsigned long)__va(base); DBG("creating mapping for region: %lx..%lx (prot: %lx)\n", base, size, prot); if ((base + size) >= H_VMALLOC_START) { pr_warn("Outside the supported range\n"); continue; } BUG_ON(htab_bolt_mapping(base, base + size, __pa(base), prot, mmu_linear_psize, mmu_kernel_ssize)); } memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE); /* * If we have a memory_limit and we've allocated TCEs then we need to * explicitly map the TCE area at the top of RAM. We also cope with the * case that the TCEs start below memory_limit. * tce_alloc_start/end are 16MB aligned so the mapping should work * for either 4K or 16MB pages. */ if (tce_alloc_start) { tce_alloc_start = (unsigned long)__va(tce_alloc_start); tce_alloc_end = (unsigned long)__va(tce_alloc_end); if (base + size >= tce_alloc_start) tce_alloc_start = base + size + 1; BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end, __pa(tce_alloc_start), prot, mmu_linear_psize, mmu_kernel_ssize)); } DBG(" <- htab_initialize()\n"); } #undef KB #undef MB void __init hash__early_init_devtree(void) { /* Initialize segment sizes */ of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL); /* Initialize page sizes */ htab_scan_page_sizes(); } static struct hash_mm_context init_hash_mm_context; void __init hash__early_init_mmu(void) { #ifndef CONFIG_PPC_64K_PAGES /* * We have code in __hash_page_4K() and elsewhere, which assumes it can * do the following: * new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX); * * Where the slot number is between 0-15, and values of 8-15 indicate * the secondary bucket. For that code to work H_PAGE_F_SECOND and * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here * with a BUILD_BUG_ON(). */ BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul << (H_PAGE_F_GIX_SHIFT + 3))); #endif /* CONFIG_PPC_64K_PAGES */ htab_init_page_sizes(); /* * initialize page table size */ __pte_frag_nr = H_PTE_FRAG_NR; __pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT; __pmd_frag_nr = H_PMD_FRAG_NR; __pmd_frag_size_shift = H_PMD_FRAG_SIZE_SHIFT; __pte_index_size = H_PTE_INDEX_SIZE; __pmd_index_size = H_PMD_INDEX_SIZE; __pud_index_size = H_PUD_INDEX_SIZE; __pgd_index_size = H_PGD_INDEX_SIZE; __pud_cache_index = H_PUD_CACHE_INDEX; __pte_table_size = H_PTE_TABLE_SIZE; __pmd_table_size = H_PMD_TABLE_SIZE; __pud_table_size = H_PUD_TABLE_SIZE; __pgd_table_size = H_PGD_TABLE_SIZE; __pmd_val_bits = HASH_PMD_VAL_BITS; __pud_val_bits = HASH_PUD_VAL_BITS; __pgd_val_bits = HASH_PGD_VAL_BITS; __kernel_virt_start = H_KERN_VIRT_START; __vmalloc_start = H_VMALLOC_START; __vmalloc_end = H_VMALLOC_END; __kernel_io_start = H_KERN_IO_START; __kernel_io_end = H_KERN_IO_END; vmemmap = (struct page *)H_VMEMMAP_START; ioremap_bot = IOREMAP_BASE; #ifdef CONFIG_PCI pci_io_base = ISA_IO_BASE; #endif /* Select appropriate backend */ if (firmware_has_feature(FW_FEATURE_PS3_LV1)) ps3_early_mm_init(); else if (firmware_has_feature(FW_FEATURE_LPAR)) hpte_init_pseries(); else if (IS_ENABLED(CONFIG_PPC_HASH_MMU_NATIVE)) hpte_init_native(); if (!mmu_hash_ops.hpte_insert) panic("hash__early_init_mmu: No MMU hash ops defined!\n"); /* * Initialize the MMU Hash table and create the linear mapping * of memory. Has to be done before SLB initialization as this is * currently where the page size encoding is obtained. */ htab_initialize(); init_mm.context.hash_context = &init_hash_mm_context; mm_ctx_set_slb_addr_limit(&init_mm.context, SLB_ADDR_LIMIT_DEFAULT); pr_info("Initializing hash mmu with SLB\n"); /* Initialize SLB management */ slb_initialize(); if (cpu_has_feature(CPU_FTR_ARCH_206) && cpu_has_feature(CPU_FTR_HVMODE)) tlbiel_all(); } #ifdef CONFIG_SMP void hash__early_init_mmu_secondary(void) { /* Initialize hash table for that CPU */ if (!firmware_has_feature(FW_FEATURE_LPAR)) { if (!cpu_has_feature(CPU_FTR_ARCH_300)) mtspr(SPRN_SDR1, _SDR1); else set_ptcr_when_no_uv(__pa(partition_tb) | (PATB_SIZE_SHIFT - 12)); } /* Initialize SLB */ slb_initialize(); if (cpu_has_feature(CPU_FTR_ARCH_206) && cpu_has_feature(CPU_FTR_HVMODE)) tlbiel_all(); #ifdef CONFIG_PPC_MEM_KEYS if (mmu_has_feature(MMU_FTR_PKEY)) mtspr(SPRN_UAMOR, default_uamor); #endif } #endif /* CONFIG_SMP */ /* * Called by asm hashtable.S for doing lazy icache flush */ unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap) { struct folio *folio; if (!pfn_valid(pte_pfn(pte))) return pp; folio = page_folio(pte_page(pte)); /* page is dirty */ if (!test_bit(PG_dcache_clean, &folio->flags) && !folio_test_reserved(folio)) { if (trap == INTERRUPT_INST_STORAGE) { flush_dcache_icache_folio(folio); set_bit(PG_dcache_clean, &folio->flags); } else pp |= HPTE_R_N; } return pp; } static unsigned int get_paca_psize(unsigned long addr) { unsigned char *psizes; unsigned long index, mask_index; if (addr < SLICE_LOW_TOP) { psizes = get_paca()->mm_ctx_low_slices_psize; index = GET_LOW_SLICE_INDEX(addr); } else { psizes = get_paca()->mm_ctx_high_slices_psize; index = GET_HIGH_SLICE_INDEX(addr); } mask_index = index & 0x1; return (psizes[index >> 1] >> (mask_index * 4)) & 0xF; } /* * Demote a segment to using 4k pages. * For now this makes the whole process use 4k pages. */ #ifdef CONFIG_PPC_64K_PAGES void demote_segment_4k(struct mm_struct *mm, unsigned long addr) { if (get_slice_psize(mm, addr) == MMU_PAGE_4K) return; slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K); copro_flush_all_slbs(mm); if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) { copy_mm_to_paca(mm); slb_flush_and_restore_bolted(); } } #endif /* CONFIG_PPC_64K_PAGES */ #ifdef CONFIG_PPC_SUBPAGE_PROT /* * This looks up a 2-bit protection code for a 4k subpage of a 64k page. * Userspace sets the subpage permissions using the subpage_prot system call. * * Result is 0: full permissions, _PAGE_RW: read-only, * _PAGE_RWX: no access. */ static int subpage_protection(struct mm_struct *mm, unsigned long ea) { struct subpage_prot_table *spt = mm_ctx_subpage_prot(&mm->context); u32 spp = 0; u32 **sbpm, *sbpp; if (!spt) return 0; if (ea >= spt->maxaddr) return 0; if (ea < 0x100000000UL) { /* addresses below 4GB use spt->low_prot */ sbpm = spt->low_prot; } else { sbpm = spt->protptrs[ea >> SBP_L3_SHIFT]; if (!sbpm) return 0; } sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)]; if (!sbpp) return 0; spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)]; /* extract 2-bit bitfield for this 4k subpage */ spp >>= 30 - 2 * ((ea >> 12) & 0xf); /* * 0 -> full permission * 1 -> Read only * 2 -> no access. * We return the flag that need to be cleared. */ spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0); return spp; } #else /* CONFIG_PPC_SUBPAGE_PROT */ static inline int subpage_protection(struct mm_struct *mm, unsigned long ea) { return 0; } #endif void hash_failure_debug(unsigned long ea, unsigned long access, unsigned long vsid, unsigned long trap, int ssize, int psize, int lpsize, unsigned long pte) { if (!printk_ratelimit()) return; pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n", ea, access, current->comm); pr_info(" trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n", trap, vsid, ssize, psize, lpsize, pte); } static void check_paca_psize(unsigned long ea, struct mm_struct *mm, int psize, bool user_region) { if (user_region) { if (psize != get_paca_psize(ea)) { copy_mm_to_paca(mm); slb_flush_and_restore_bolted(); } } else if (get_paca()->vmalloc_sllp != mmu_psize_defs[mmu_vmalloc_psize].sllp) { get_paca()->vmalloc_sllp = mmu_psize_defs[mmu_vmalloc_psize].sllp; slb_vmalloc_update(); } } /* * Result code is: * 0 - handled * 1 - normal page fault * -1 - critical hash insertion error * -2 - access not permitted by subpage protection mechanism */ int hash_page_mm(struct mm_struct *mm, unsigned long ea, unsigned long access, unsigned long trap, unsigned long flags) { bool is_thp; pgd_t *pgdir; unsigned long vsid; pte_t *ptep; unsigned hugeshift; int rc, user_region = 0; int psize, ssize; DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n", ea, access, trap); trace_hash_fault(ea, access, trap); /* Get region & vsid */ switch (get_region_id(ea)) { case USER_REGION_ID: user_region = 1; if (! mm) { DBG_LOW(" user region with no mm !\n"); rc = 1; goto bail; } psize = get_slice_psize(mm, ea); ssize = user_segment_size(ea); vsid = get_user_vsid(&mm->context, ea, ssize); break; case VMALLOC_REGION_ID: vsid = get_kernel_vsid(ea, mmu_kernel_ssize); psize = mmu_vmalloc_psize; ssize = mmu_kernel_ssize; flags |= HPTE_USE_KERNEL_KEY; break; case IO_REGION_ID: vsid = get_kernel_vsid(ea, mmu_kernel_ssize); psize = mmu_io_psize; ssize = mmu_kernel_ssize; flags |= HPTE_USE_KERNEL_KEY; break; default: /* * Not a valid range * Send the problem up to do_page_fault() */ rc = 1; goto bail; } DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid); /* Bad address. */ if (!vsid) { DBG_LOW("Bad address!\n"); rc = 1; goto bail; } /* Get pgdir */ pgdir = mm->pgd; if (pgdir == NULL) { rc = 1; goto bail; } /* Check CPU locality */ if (user_region && mm_is_thread_local(mm)) flags |= HPTE_LOCAL_UPDATE; #ifndef CONFIG_PPC_64K_PAGES /* * If we use 4K pages and our psize is not 4K, then we might * be hitting a special driver mapping, and need to align the * address before we fetch the PTE. * * It could also be a hugepage mapping, in which case this is * not necessary, but it's not harmful, either. */ if (psize != MMU_PAGE_4K) ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1); #endif /* CONFIG_PPC_64K_PAGES */ /* Get PTE and page size from page tables */ ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift); if (ptep == NULL || !pte_present(*ptep)) { DBG_LOW(" no PTE !\n"); rc = 1; goto bail; } if (IS_ENABLED(CONFIG_PPC_4K_PAGES) && !radix_enabled()) { if (hugeshift == PMD_SHIFT && psize == MMU_PAGE_16M) hugeshift = mmu_psize_defs[MMU_PAGE_16M].shift; if (hugeshift == PUD_SHIFT && psize == MMU_PAGE_16G) hugeshift = mmu_psize_defs[MMU_PAGE_16G].shift; } /* * Add _PAGE_PRESENT to the required access perm. If there are parallel * updates to the pte that can possibly clear _PAGE_PTE, catch that too. * * We can safely use the return pte address in rest of the function * because we do set H_PAGE_BUSY which prevents further updates to pte * from generic code. */ access |= _PAGE_PRESENT | _PAGE_PTE; /* * Pre-check access permissions (will be re-checked atomically * in __hash_page_XX but this pre-check is a fast path */ if (!check_pte_access(access, pte_val(*ptep))) { DBG_LOW(" no access !\n"); rc = 1; goto bail; } if (hugeshift) { if (is_thp) rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep, trap, flags, ssize, psize); #ifdef CONFIG_HUGETLB_PAGE else rc = __hash_page_huge(ea, access, vsid, ptep, trap, flags, ssize, hugeshift, psize); #else else { /* * if we have hugeshift, and is not transhuge with * hugetlb disabled, something is really wrong. */ rc = 1; WARN_ON(1); } #endif if (current->mm == mm) check_paca_psize(ea, mm, psize, user_region); goto bail; } #ifndef CONFIG_PPC_64K_PAGES DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep)); #else DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep), pte_val(*(ptep + PTRS_PER_PTE))); #endif /* Do actual hashing */ #ifdef CONFIG_PPC_64K_PAGES /* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */ if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) { demote_segment_4k(mm, ea); psize = MMU_PAGE_4K; } /* * If this PTE is non-cacheable and we have restrictions on * using non cacheable large pages, then we switch to 4k */ if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) { if (user_region) { demote_segment_4k(mm, ea); psize = MMU_PAGE_4K; } else if (ea < VMALLOC_END) { /* * some driver did a non-cacheable mapping * in vmalloc space, so switch vmalloc * to 4k pages */ printk(KERN_ALERT "Reducing vmalloc segment " "to 4kB pages because of " "non-cacheable mapping\n"); psize = mmu_vmalloc_psize = MMU_PAGE_4K; copro_flush_all_slbs(mm); } } #endif /* CONFIG_PPC_64K_PAGES */ if (current->mm == mm) check_paca_psize(ea, mm, psize, user_region); #ifdef CONFIG_PPC_64K_PAGES if (psize == MMU_PAGE_64K) rc = __hash_page_64K(ea, access, vsid, ptep, trap, flags, ssize); else #endif /* CONFIG_PPC_64K_PAGES */ { int spp = subpage_protection(mm, ea); if (access & spp) rc = -2; else rc = __hash_page_4K(ea, access, vsid, ptep, trap, flags, ssize, spp); } /* * Dump some info in case of hash insertion failure, they should * never happen so it is really useful to know if/when they do */ if (rc == -1) hash_failure_debug(ea, access, vsid, trap, ssize, psize, psize, pte_val(*ptep)); #ifndef CONFIG_PPC_64K_PAGES DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep)); #else DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep), pte_val(*(ptep + PTRS_PER_PTE))); #endif DBG_LOW(" -> rc=%d\n", rc); bail: return rc; } EXPORT_SYMBOL_GPL(hash_page_mm); int hash_page(unsigned long ea, unsigned long access, unsigned long trap, unsigned long dsisr) { unsigned long flags = 0; struct mm_struct *mm = current->mm; if ((get_region_id(ea) == VMALLOC_REGION_ID) || (get_region_id(ea) == IO_REGION_ID)) mm = &init_mm; if (dsisr & DSISR_NOHPTE) flags |= HPTE_NOHPTE_UPDATE; return hash_page_mm(mm, ea, access, trap, flags); } EXPORT_SYMBOL_GPL(hash_page); DEFINE_INTERRUPT_HANDLER(do_hash_fault) { unsigned long ea = regs->dar; unsigned long dsisr = regs->dsisr; unsigned long access = _PAGE_PRESENT | _PAGE_READ; unsigned long flags = 0; struct mm_struct *mm; unsigned int region_id; long err; if (unlikely(dsisr & (DSISR_BAD_FAULT_64S | DSISR_KEYFAULT))) { hash__do_page_fault(regs); return; } region_id = get_region_id(ea); if ((region_id == VMALLOC_REGION_ID) || (region_id == IO_REGION_ID)) mm = &init_mm; else mm = current->mm; if (dsisr & DSISR_NOHPTE) flags |= HPTE_NOHPTE_UPDATE; if (dsisr & DSISR_ISSTORE) access |= _PAGE_WRITE; /* * We set _PAGE_PRIVILEGED only when * kernel mode access kernel space. * * _PAGE_PRIVILEGED is NOT set * 1) when kernel mode access user space * 2) user space access kernel space. */ access |= _PAGE_PRIVILEGED; if (user_mode(regs) || (region_id == USER_REGION_ID)) access &= ~_PAGE_PRIVILEGED; if (TRAP(regs) == INTERRUPT_INST_STORAGE) access |= _PAGE_EXEC; err = hash_page_mm(mm, ea, access, TRAP(regs), flags); if (unlikely(err < 0)) { // failed to insert a hash PTE due to an hypervisor error if (user_mode(regs)) { if (IS_ENABLED(CONFIG_PPC_SUBPAGE_PROT) && err == -2) _exception(SIGSEGV, regs, SEGV_ACCERR, ea); else _exception(SIGBUS, regs, BUS_ADRERR, ea); } else { bad_page_fault(regs, SIGBUS); } err = 0; } else if (err) { hash__do_page_fault(regs); } } static bool should_hash_preload(struct mm_struct *mm, unsigned long ea) { int psize = get_slice_psize(mm, ea); /* We only prefault standard pages for now */ if (unlikely(psize != mm_ctx_user_psize(&mm->context))) return false; /* * Don't prefault if subpage protection is enabled for the EA. */ if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea))) return false; return true; } static void hash_preload(struct mm_struct *mm, pte_t *ptep, unsigned long ea, bool is_exec, unsigned long trap) { unsigned long vsid; pgd_t *pgdir; int rc, ssize, update_flags = 0; unsigned long access = _PAGE_PRESENT | _PAGE_READ | (is_exec ? _PAGE_EXEC : 0); unsigned long flags; BUG_ON(get_region_id(ea) != USER_REGION_ID); if (!should_hash_preload(mm, ea)) return; DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx," " trap=%lx\n", mm, mm->pgd, ea, access, trap); /* Get Linux PTE if available */ pgdir = mm->pgd; if (pgdir == NULL) return; /* Get VSID */ ssize = user_segment_size(ea); vsid = get_user_vsid(&mm->context, ea, ssize); if (!vsid) return; #ifdef CONFIG_PPC_64K_PAGES /* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on * a 64K kernel), then we don't preload, hash_page() will take * care of it once we actually try to access the page. * That way we don't have to duplicate all of the logic for segment * page size demotion here * Called with PTL held, hence can be sure the value won't change in * between. */ if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep)) return; #endif /* CONFIG_PPC_64K_PAGES */ /* * __hash_page_* must run with interrupts off, including PMI interrupts * off, as it sets the H_PAGE_BUSY bit. * * It's otherwise possible for perf interrupts to hit at any time and * may take a hash fault reading the user stack, which could take a * hash miss and deadlock on the same H_PAGE_BUSY bit. * * Interrupts must also be off for the duration of the * mm_is_thread_local test and update, to prevent preempt running the * mm on another CPU (XXX: this may be racy vs kthread_use_mm). */ powerpc_local_irq_pmu_save(flags); /* Is that local to this CPU ? */ if (mm_is_thread_local(mm)) update_flags |= HPTE_LOCAL_UPDATE; /* Hash it in */ #ifdef CONFIG_PPC_64K_PAGES if (mm_ctx_user_psize(&mm->context) == MMU_PAGE_64K) rc = __hash_page_64K(ea, access, vsid, ptep, trap, update_flags, ssize); else #endif /* CONFIG_PPC_64K_PAGES */ rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags, ssize, subpage_protection(mm, ea)); /* Dump some info in case of hash insertion failure, they should * never happen so it is really useful to know if/when they do */ if (rc == -1) hash_failure_debug(ea, access, vsid, trap, ssize, mm_ctx_user_psize(&mm->context), mm_ctx_user_psize(&mm->context), pte_val(*ptep)); powerpc_local_irq_pmu_restore(flags); } /* * This is called at the end of handling a user page fault, when the * fault has been handled by updating a PTE in the linux page tables. * We use it to preload an HPTE into the hash table corresponding to * the updated linux PTE. * * This must always be called with the pte lock held. */ void __update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { /* * We don't need to worry about _PAGE_PRESENT here because we are * called with either mm->page_table_lock held or ptl lock held */ unsigned long trap; bool is_exec; /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */ if (!pte_young(*ptep) || address >= TASK_SIZE) return; /* * We try to figure out if we are coming from an instruction * access fault and pass that down to __hash_page so we avoid * double-faulting on execution of fresh text. We have to test * for regs NULL since init will get here first thing at boot. * * We also avoid filling the hash if not coming from a fault. */ trap = current->thread.regs ? TRAP(current->thread.regs) : 0UL; switch (trap) { case 0x300: is_exec = false; break; case 0x400: is_exec = true; break; default: return; } hash_preload(vma->vm_mm, ptep, address, is_exec, trap); } #ifdef CONFIG_PPC_TRANSACTIONAL_MEM static inline void tm_flush_hash_page(int local) { /* * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a * page back to a block device w/PIO could pick up transactional data * (bad!) so we force an abort here. Before the sync the page will be * made read-only, which will flush_hash_page. BIG ISSUE here: if the * kernel uses a page from userspace without unmapping it first, it may * see the speculated version. */ if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs && MSR_TM_ACTIVE(current->thread.regs->msr)) { tm_enable(); tm_abort(TM_CAUSE_TLBI); } } #else static inline void tm_flush_hash_page(int local) { } #endif /* * Return the global hash slot, corresponding to the given PTE, which contains * the HPTE. */ unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift, int ssize, real_pte_t rpte, unsigned int subpg_index) { unsigned long hash, gslot, hidx; hash = hpt_hash(vpn, shift, ssize); hidx = __rpte_to_hidx(rpte, subpg_index); if (hidx & _PTEIDX_SECONDARY) hash = ~hash; gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP; gslot += hidx & _PTEIDX_GROUP_IX; return gslot; } void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize, unsigned long flags) { unsigned long index, shift, gslot; int local = flags & HPTE_LOCAL_UPDATE; DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn); pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index); DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot); /* * We use same base page size and actual psize, because we don't * use these functions for hugepage */ mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize, ssize, local); } pte_iterate_hashed_end(); tm_flush_hash_page(local); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE void flush_hash_hugepage(unsigned long vsid, unsigned long addr, pmd_t *pmdp, unsigned int psize, int ssize, unsigned long flags) { int i, max_hpte_count, valid; unsigned long s_addr; unsigned char *hpte_slot_array; unsigned long hidx, shift, vpn, hash, slot; int local = flags & HPTE_LOCAL_UPDATE; s_addr = addr & HPAGE_PMD_MASK; hpte_slot_array = get_hpte_slot_array(pmdp); /* * IF we try to do a HUGE PTE update after a withdraw is done. * we will find the below NULL. This happens when we do * split_huge_pmd */ if (!hpte_slot_array) return; if (mmu_hash_ops.hugepage_invalidate) { mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array, psize, ssize, local); goto tm_abort; } /* * No bluk hpte removal support, invalidate each entry */ shift = mmu_psize_defs[psize].shift; max_hpte_count = HPAGE_PMD_SIZE >> shift; for (i = 0; i < max_hpte_count; i++) { /* * 8 bits per each hpte entries * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit] */ valid = hpte_valid(hpte_slot_array, i); if (!valid) continue; hidx = hpte_hash_index(hpte_slot_array, i); /* get the vpn */ addr = s_addr + (i * (1ul << shift)); vpn = hpt_vpn(addr, vsid, ssize); hash = hpt_hash(vpn, shift, ssize); if (hidx & _PTEIDX_SECONDARY) hash = ~hash; slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; slot += hidx & _PTEIDX_GROUP_IX; mmu_hash_ops.hpte_invalidate(slot, vpn, psize, MMU_PAGE_16M, ssize, local); } tm_abort: tm_flush_hash_page(local); } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ void flush_hash_range(unsigned long number, int local) { if (mmu_hash_ops.flush_hash_range) mmu_hash_ops.flush_hash_range(number, local); else { int i; struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch); for (i = 0; i < number; i++) flush_hash_page(batch->vpn[i], batch->pte[i], batch->psize, batch->ssize, local); } } long hpte_insert_repeating(unsigned long hash, unsigned long vpn, unsigned long pa, unsigned long rflags, unsigned long vflags, int psize, int ssize) { unsigned long hpte_group; long slot; repeat: hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP; /* Insert into the hash table, primary slot */ slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags, psize, psize, ssize); /* Primary is full, try the secondary */ if (unlikely(slot == -1)) { hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP; slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags | HPTE_V_SECONDARY, psize, psize, ssize); if (slot == -1) { if (mftb() & 0x1) hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP; mmu_hash_ops.hpte_remove(hpte_group); goto repeat; } } return slot; } void hpt_clear_stress(void) { int cpu = raw_smp_processor_id(); int g; for (g = 0; g < stress_nr_groups(); g++) { unsigned long last_group; last_group = stress_hpt_struct[cpu].last_group[g]; if (last_group != -1UL) { int i; for (i = 0; i < HPTES_PER_GROUP; i++) { if (mmu_hash_ops.hpte_remove(last_group) == -1) break; } stress_hpt_struct[cpu].last_group[g] = -1; } } } void hpt_do_stress(unsigned long ea, unsigned long hpte_group) { unsigned long last_group; int cpu = raw_smp_processor_id(); last_group = stress_hpt_struct[cpu].last_group[stress_nr_groups() - 1]; if (hpte_group == last_group) return; if (last_group != -1UL) { int i; /* * Concurrent CPUs might be inserting into this group, so * give up after a number of iterations, to prevent a live * lock. */ for (i = 0; i < HPTES_PER_GROUP; i++) { if (mmu_hash_ops.hpte_remove(last_group) == -1) break; } stress_hpt_struct[cpu].last_group[stress_nr_groups() - 1] = -1; } if (ea >= PAGE_OFFSET) { /* * We would really like to prefetch to get the TLB loaded, then * remove the PTE before returning from fault interrupt, to * increase the hash fault rate. * * Unfortunately QEMU TCG does not model the TLB in a way that * makes this possible, and systemsim (mambo) emulator does not * bring in TLBs with prefetches (although loads/stores do * work for non-CI PTEs). * * So remember this PTE and clear it on the next hash fault. */ memmove(&stress_hpt_struct[cpu].last_group[1], &stress_hpt_struct[cpu].last_group[0], (stress_nr_groups() - 1) * sizeof(unsigned long)); stress_hpt_struct[cpu].last_group[0] = hpte_group; } } #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KFENCE) static DEFINE_RAW_SPINLOCK(linear_map_hash_lock); static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi) { unsigned long hash; unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize); unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize); unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL), HPTE_USE_KERNEL_KEY); long ret; hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize); /* Don't create HPTE entries for bad address */ if (!vsid) return; if (linear_map_hash_slots[lmi] & 0x80) return; ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode, HPTE_V_BOLTED, mmu_linear_psize, mmu_kernel_ssize); BUG_ON (ret < 0); raw_spin_lock(&linear_map_hash_lock); BUG_ON(linear_map_hash_slots[lmi] & 0x80); linear_map_hash_slots[lmi] = ret | 0x80; raw_spin_unlock(&linear_map_hash_lock); } static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi) { unsigned long hash, hidx, slot; unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize); unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize); hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize); raw_spin_lock(&linear_map_hash_lock); if (!(linear_map_hash_slots[lmi] & 0x80)) { raw_spin_unlock(&linear_map_hash_lock); return; } hidx = linear_map_hash_slots[lmi] & 0x7f; linear_map_hash_slots[lmi] = 0; raw_spin_unlock(&linear_map_hash_lock); if (hidx & _PTEIDX_SECONDARY) hash = ~hash; slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; slot += hidx & _PTEIDX_GROUP_IX; mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize, mmu_linear_psize, mmu_kernel_ssize, 0); } int hash__kernel_map_pages(struct page *page, int numpages, int enable) { unsigned long flags, vaddr, lmi; int i; local_irq_save(flags); for (i = 0; i < numpages; i++, page++) { vaddr = (unsigned long)page_address(page); lmi = __pa(vaddr) >> PAGE_SHIFT; if (lmi >= linear_map_hash_count) continue; if (enable) kernel_map_linear_page(vaddr, lmi); else kernel_unmap_linear_page(vaddr, lmi); } local_irq_restore(flags); return 0; } #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_KFENCE */ void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base, phys_addr_t first_memblock_size) { /* * We don't currently support the first MEMBLOCK not mapping 0 * physical on those processors */ BUG_ON(first_memblock_base != 0); /* * On virtualized systems the first entry is our RMA region aka VRMA, * non-virtualized 64-bit hash MMU systems don't have a limitation * on real mode access. * * For guests on platforms before POWER9, we clamp the it limit to 1G * to avoid some funky things such as RTAS bugs etc... * * On POWER9 we limit to 1TB in case the host erroneously told us that * the RMA was >1TB. Effective address bits 0:23 are treated as zero * (meaning the access is aliased to zero i.e. addr = addr % 1TB) * for virtual real mode addressing and so it doesn't make sense to * have an area larger than 1TB as it can't be addressed. */ if (!early_cpu_has_feature(CPU_FTR_HVMODE)) { ppc64_rma_size = first_memblock_size; if (!early_cpu_has_feature(CPU_FTR_ARCH_300)) ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000); else ppc64_rma_size = min_t(u64, ppc64_rma_size, 1UL << SID_SHIFT_1T); /* Finally limit subsequent allocations */ memblock_set_current_limit(ppc64_rma_size); } else { ppc64_rma_size = ULONG_MAX; } } #ifdef CONFIG_DEBUG_FS static int hpt_order_get(void *data, u64 *val) { *val = ppc64_pft_size; return 0; } static int hpt_order_set(void *data, u64 val) { int ret; if (!mmu_hash_ops.resize_hpt) return -ENODEV; cpus_read_lock(); ret = mmu_hash_ops.resize_hpt(val); cpus_read_unlock(); return ret; } DEFINE_DEBUGFS_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n"); static int __init hash64_debugfs(void) { debugfs_create_file("hpt_order", 0600, arch_debugfs_dir, NULL, &fops_hpt_order); return 0; } machine_device_initcall(pseries, hash64_debugfs); #endif /* CONFIG_DEBUG_FS */ void __init print_system_hash_info(void) { pr_info("ppc64_pft_size = 0x%llx\n", ppc64_pft_size); if (htab_hash_mask) pr_info("htab_hash_mask = 0x%lx\n", htab_hash_mask); } unsigned long arch_randomize_brk(struct mm_struct *mm) { /* * If we are using 1TB segments and we are allowed to randomise * the heap, we can put it above 1TB so it is backed by a 1TB * segment. Otherwise the heap will be in the bottom 1TB * which always uses 256MB segments and this may result in a * performance penalty. */ if (is_32bit_task()) return randomize_page(mm->brk, SZ_32M); else if (!radix_enabled() && mmu_highuser_ssize == MMU_SEGSIZE_1T) return randomize_page(max_t(unsigned long, mm->brk, SZ_1T), SZ_1G); else return randomize_page(mm->brk, SZ_1G); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1