Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Scott Wood | 2239 | 81.98% | 2 | 7.41% |
Peter Zijlstra | 290 | 10.62% | 8 | 29.63% |
Lijun Pan | 70 | 2.56% | 1 | 3.70% |
Catalin Udma | 29 | 1.06% | 1 | 3.70% |
Anton Blanchard | 20 | 0.73% | 2 | 7.41% |
Alexandru-Cezar Sardan | 19 | 0.70% | 1 | 3.70% |
Christophe Leroy | 18 | 0.66% | 1 | 3.70% |
Paul Mackerras | 14 | 0.51% | 3 | 11.11% |
Tom Huynh | 11 | 0.40% | 1 | 3.70% |
David S. Miller | 6 | 0.22% | 1 | 3.70% |
Christoph Lameter | 6 | 0.22% | 1 | 3.70% |
Linus Torvalds (pre-git) | 5 | 0.18% | 3 | 11.11% |
Thomas Gleixner | 2 | 0.07% | 1 | 3.70% |
Robert Richter | 2 | 0.07% | 1 | 3.70% |
Total | 2731 | 27 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Performance event support - Freescale Embedded Performance Monitor * * Copyright 2008-2009 Paul Mackerras, IBM Corporation. * Copyright 2010 Freescale Semiconductor, Inc. */ #include <linux/kernel.h> #include <linux/sched.h> #include <linux/perf_event.h> #include <linux/percpu.h> #include <linux/hardirq.h> #include <asm/reg_fsl_emb.h> #include <asm/pmc.h> #include <asm/machdep.h> #include <asm/firmware.h> #include <asm/ptrace.h> struct cpu_hw_events { int n_events; int disabled; u8 pmcs_enabled; struct perf_event *event[MAX_HWEVENTS]; }; static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); static struct fsl_emb_pmu *ppmu; /* Number of perf_events counting hardware events */ static atomic_t num_events; /* Used to avoid races in calling reserve/release_pmc_hardware */ static DEFINE_MUTEX(pmc_reserve_mutex); static void perf_event_interrupt(struct pt_regs *regs); /* * Read one performance monitor counter (PMC). */ static unsigned long read_pmc(int idx) { unsigned long val; switch (idx) { case 0: val = mfpmr(PMRN_PMC0); break; case 1: val = mfpmr(PMRN_PMC1); break; case 2: val = mfpmr(PMRN_PMC2); break; case 3: val = mfpmr(PMRN_PMC3); break; case 4: val = mfpmr(PMRN_PMC4); break; case 5: val = mfpmr(PMRN_PMC5); break; default: printk(KERN_ERR "oops trying to read PMC%d\n", idx); val = 0; } return val; } /* * Write one PMC. */ static void write_pmc(int idx, unsigned long val) { switch (idx) { case 0: mtpmr(PMRN_PMC0, val); break; case 1: mtpmr(PMRN_PMC1, val); break; case 2: mtpmr(PMRN_PMC2, val); break; case 3: mtpmr(PMRN_PMC3, val); break; case 4: mtpmr(PMRN_PMC4, val); break; case 5: mtpmr(PMRN_PMC5, val); break; default: printk(KERN_ERR "oops trying to write PMC%d\n", idx); } isync(); } /* * Write one local control A register */ static void write_pmlca(int idx, unsigned long val) { switch (idx) { case 0: mtpmr(PMRN_PMLCA0, val); break; case 1: mtpmr(PMRN_PMLCA1, val); break; case 2: mtpmr(PMRN_PMLCA2, val); break; case 3: mtpmr(PMRN_PMLCA3, val); break; case 4: mtpmr(PMRN_PMLCA4, val); break; case 5: mtpmr(PMRN_PMLCA5, val); break; default: printk(KERN_ERR "oops trying to write PMLCA%d\n", idx); } isync(); } /* * Write one local control B register */ static void write_pmlcb(int idx, unsigned long val) { switch (idx) { case 0: mtpmr(PMRN_PMLCB0, val); break; case 1: mtpmr(PMRN_PMLCB1, val); break; case 2: mtpmr(PMRN_PMLCB2, val); break; case 3: mtpmr(PMRN_PMLCB3, val); break; case 4: mtpmr(PMRN_PMLCB4, val); break; case 5: mtpmr(PMRN_PMLCB5, val); break; default: printk(KERN_ERR "oops trying to write PMLCB%d\n", idx); } isync(); } static void fsl_emb_pmu_read(struct perf_event *event) { s64 val, delta, prev; if (event->hw.state & PERF_HES_STOPPED) return; /* * Performance monitor interrupts come even when interrupts * are soft-disabled, as long as interrupts are hard-enabled. * Therefore we treat them like NMIs. */ do { prev = local64_read(&event->hw.prev_count); barrier(); val = read_pmc(event->hw.idx); } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev); /* The counters are only 32 bits wide */ delta = (val - prev) & 0xfffffffful; local64_add(delta, &event->count); local64_sub(delta, &event->hw.period_left); } /* * Disable all events to prevent PMU interrupts and to allow * events to be added or removed. */ static void fsl_emb_pmu_disable(struct pmu *pmu) { struct cpu_hw_events *cpuhw; unsigned long flags; local_irq_save(flags); cpuhw = this_cpu_ptr(&cpu_hw_events); if (!cpuhw->disabled) { cpuhw->disabled = 1; /* * Check if we ever enabled the PMU on this cpu. */ if (!cpuhw->pmcs_enabled) { ppc_enable_pmcs(); cpuhw->pmcs_enabled = 1; } if (atomic_read(&num_events)) { /* * Set the 'freeze all counters' bit, and disable * interrupts. The barrier is to make sure the * mtpmr has been executed and the PMU has frozen * the events before we return. */ mtpmr(PMRN_PMGC0, PMGC0_FAC); isync(); } } local_irq_restore(flags); } /* * Re-enable all events if disable == 0. * If we were previously disabled and events were added, then * put the new config on the PMU. */ static void fsl_emb_pmu_enable(struct pmu *pmu) { struct cpu_hw_events *cpuhw; unsigned long flags; local_irq_save(flags); cpuhw = this_cpu_ptr(&cpu_hw_events); if (!cpuhw->disabled) goto out; cpuhw->disabled = 0; ppc_set_pmu_inuse(cpuhw->n_events != 0); if (cpuhw->n_events > 0) { mtpmr(PMRN_PMGC0, PMGC0_PMIE | PMGC0_FCECE); isync(); } out: local_irq_restore(flags); } static int collect_events(struct perf_event *group, int max_count, struct perf_event *ctrs[]) { int n = 0; struct perf_event *event; if (!is_software_event(group)) { if (n >= max_count) return -1; ctrs[n] = group; n++; } for_each_sibling_event(event, group) { if (!is_software_event(event) && event->state != PERF_EVENT_STATE_OFF) { if (n >= max_count) return -1; ctrs[n] = event; n++; } } return n; } /* context locked on entry */ static int fsl_emb_pmu_add(struct perf_event *event, int flags) { struct cpu_hw_events *cpuhw; int ret = -EAGAIN; int num_counters = ppmu->n_counter; u64 val; int i; perf_pmu_disable(event->pmu); cpuhw = &get_cpu_var(cpu_hw_events); if (event->hw.config & FSL_EMB_EVENT_RESTRICTED) num_counters = ppmu->n_restricted; /* * Allocate counters from top-down, so that restricted-capable * counters are kept free as long as possible. */ for (i = num_counters - 1; i >= 0; i--) { if (cpuhw->event[i]) continue; break; } if (i < 0) goto out; event->hw.idx = i; cpuhw->event[i] = event; ++cpuhw->n_events; val = 0; if (event->hw.sample_period) { s64 left = local64_read(&event->hw.period_left); if (left < 0x80000000L) val = 0x80000000L - left; } local64_set(&event->hw.prev_count, val); if (unlikely(!(flags & PERF_EF_START))) { event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE; val = 0; } else { event->hw.state &= ~(PERF_HES_STOPPED | PERF_HES_UPTODATE); } write_pmc(i, val); perf_event_update_userpage(event); write_pmlcb(i, event->hw.config >> 32); write_pmlca(i, event->hw.config_base); ret = 0; out: put_cpu_var(cpu_hw_events); perf_pmu_enable(event->pmu); return ret; } /* context locked on entry */ static void fsl_emb_pmu_del(struct perf_event *event, int flags) { struct cpu_hw_events *cpuhw; int i = event->hw.idx; perf_pmu_disable(event->pmu); if (i < 0) goto out; fsl_emb_pmu_read(event); cpuhw = &get_cpu_var(cpu_hw_events); WARN_ON(event != cpuhw->event[event->hw.idx]); write_pmlca(i, 0); write_pmlcb(i, 0); write_pmc(i, 0); cpuhw->event[i] = NULL; event->hw.idx = -1; /* * TODO: if at least one restricted event exists, and we * just freed up a non-restricted-capable counter, and * there is a restricted-capable counter occupied by * a non-restricted event, migrate that event to the * vacated counter. */ cpuhw->n_events--; out: perf_pmu_enable(event->pmu); put_cpu_var(cpu_hw_events); } static void fsl_emb_pmu_start(struct perf_event *event, int ef_flags) { unsigned long flags; unsigned long val; s64 left; if (event->hw.idx < 0 || !event->hw.sample_period) return; if (!(event->hw.state & PERF_HES_STOPPED)) return; if (ef_flags & PERF_EF_RELOAD) WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); local_irq_save(flags); perf_pmu_disable(event->pmu); event->hw.state = 0; left = local64_read(&event->hw.period_left); val = 0; if (left < 0x80000000L) val = 0x80000000L - left; write_pmc(event->hw.idx, val); perf_event_update_userpage(event); perf_pmu_enable(event->pmu); local_irq_restore(flags); } static void fsl_emb_pmu_stop(struct perf_event *event, int ef_flags) { unsigned long flags; if (event->hw.idx < 0 || !event->hw.sample_period) return; if (event->hw.state & PERF_HES_STOPPED) return; local_irq_save(flags); perf_pmu_disable(event->pmu); fsl_emb_pmu_read(event); event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; write_pmc(event->hw.idx, 0); perf_event_update_userpage(event); perf_pmu_enable(event->pmu); local_irq_restore(flags); } /* * Release the PMU if this is the last perf_event. */ static void hw_perf_event_destroy(struct perf_event *event) { if (!atomic_add_unless(&num_events, -1, 1)) { mutex_lock(&pmc_reserve_mutex); if (atomic_dec_return(&num_events) == 0) release_pmc_hardware(); mutex_unlock(&pmc_reserve_mutex); } } /* * Translate a generic cache event_id config to a raw event_id code. */ static int hw_perf_cache_event(u64 config, u64 *eventp) { unsigned long type, op, result; int ev; if (!ppmu->cache_events) return -EINVAL; /* unpack config */ type = config & 0xff; op = (config >> 8) & 0xff; result = (config >> 16) & 0xff; if (type >= PERF_COUNT_HW_CACHE_MAX || op >= PERF_COUNT_HW_CACHE_OP_MAX || result >= PERF_COUNT_HW_CACHE_RESULT_MAX) return -EINVAL; ev = (*ppmu->cache_events)[type][op][result]; if (ev == 0) return -EOPNOTSUPP; if (ev == -1) return -EINVAL; *eventp = ev; return 0; } static int fsl_emb_pmu_event_init(struct perf_event *event) { u64 ev; struct perf_event *events[MAX_HWEVENTS]; int n; int err; int num_restricted; int i; if (ppmu->n_counter > MAX_HWEVENTS) { WARN(1, "No. of perf counters (%d) is higher than max array size(%d)\n", ppmu->n_counter, MAX_HWEVENTS); ppmu->n_counter = MAX_HWEVENTS; } switch (event->attr.type) { case PERF_TYPE_HARDWARE: ev = event->attr.config; if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0) return -EOPNOTSUPP; ev = ppmu->generic_events[ev]; break; case PERF_TYPE_HW_CACHE: err = hw_perf_cache_event(event->attr.config, &ev); if (err) return err; break; case PERF_TYPE_RAW: ev = event->attr.config; break; default: return -ENOENT; } event->hw.config = ppmu->xlate_event(ev); if (!(event->hw.config & FSL_EMB_EVENT_VALID)) return -EINVAL; /* * If this is in a group, check if it can go on with all the * other hardware events in the group. We assume the event * hasn't been linked into its leader's sibling list at this point. */ n = 0; if (event->group_leader != event) { n = collect_events(event->group_leader, ppmu->n_counter - 1, events); if (n < 0) return -EINVAL; } if (event->hw.config & FSL_EMB_EVENT_RESTRICTED) { num_restricted = 0; for (i = 0; i < n; i++) { if (events[i]->hw.config & FSL_EMB_EVENT_RESTRICTED) num_restricted++; } if (num_restricted >= ppmu->n_restricted) return -EINVAL; } event->hw.idx = -1; event->hw.config_base = PMLCA_CE | PMLCA_FCM1 | (u32)((ev << 16) & PMLCA_EVENT_MASK); if (event->attr.exclude_user) event->hw.config_base |= PMLCA_FCU; if (event->attr.exclude_kernel) event->hw.config_base |= PMLCA_FCS; if (event->attr.exclude_idle) return -ENOTSUPP; event->hw.last_period = event->hw.sample_period; local64_set(&event->hw.period_left, event->hw.last_period); /* * See if we need to reserve the PMU. * If no events are currently in use, then we have to take a * mutex to ensure that we don't race with another task doing * reserve_pmc_hardware or release_pmc_hardware. */ err = 0; if (!atomic_inc_not_zero(&num_events)) { mutex_lock(&pmc_reserve_mutex); if (atomic_read(&num_events) == 0 && reserve_pmc_hardware(perf_event_interrupt)) err = -EBUSY; else atomic_inc(&num_events); mutex_unlock(&pmc_reserve_mutex); mtpmr(PMRN_PMGC0, PMGC0_FAC); isync(); } event->destroy = hw_perf_event_destroy; return err; } static struct pmu fsl_emb_pmu = { .pmu_enable = fsl_emb_pmu_enable, .pmu_disable = fsl_emb_pmu_disable, .event_init = fsl_emb_pmu_event_init, .add = fsl_emb_pmu_add, .del = fsl_emb_pmu_del, .start = fsl_emb_pmu_start, .stop = fsl_emb_pmu_stop, .read = fsl_emb_pmu_read, }; /* * A counter has overflowed; update its count and record * things if requested. Note that interrupts are hard-disabled * here so there is no possibility of being interrupted. */ static void record_and_restart(struct perf_event *event, unsigned long val, struct pt_regs *regs) { u64 period = event->hw.sample_period; s64 prev, delta, left; int record = 0; if (event->hw.state & PERF_HES_STOPPED) { write_pmc(event->hw.idx, 0); return; } /* we don't have to worry about interrupts here */ prev = local64_read(&event->hw.prev_count); delta = (val - prev) & 0xfffffffful; local64_add(delta, &event->count); /* * See if the total period for this event has expired, * and update for the next period. */ val = 0; left = local64_read(&event->hw.period_left) - delta; if (period) { if (left <= 0) { left += period; if (left <= 0) left = period; record = 1; event->hw.last_period = event->hw.sample_period; } if (left < 0x80000000LL) val = 0x80000000LL - left; } write_pmc(event->hw.idx, val); local64_set(&event->hw.prev_count, val); local64_set(&event->hw.period_left, left); perf_event_update_userpage(event); /* * Finally record data if requested. */ if (record) { struct perf_sample_data data; perf_sample_data_init(&data, 0, event->hw.last_period); if (perf_event_overflow(event, &data, regs)) fsl_emb_pmu_stop(event, 0); } } static void perf_event_interrupt(struct pt_regs *regs) { int i; struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); struct perf_event *event; unsigned long val; for (i = 0; i < ppmu->n_counter; ++i) { event = cpuhw->event[i]; val = read_pmc(i); if ((int)val < 0) { if (event) { /* event has overflowed */ record_and_restart(event, val, regs); } else { /* * Disabled counter is negative, * reset it just in case. */ write_pmc(i, 0); } } } /* PMM will keep counters frozen until we return from the interrupt. */ mtmsr(mfmsr() | MSR_PMM); mtpmr(PMRN_PMGC0, PMGC0_PMIE | PMGC0_FCECE); isync(); } static int fsl_emb_pmu_prepare_cpu(unsigned int cpu) { struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); memset(cpuhw, 0, sizeof(*cpuhw)); return 0; } int register_fsl_emb_pmu(struct fsl_emb_pmu *pmu) { if (ppmu) return -EBUSY; /* something's already registered */ ppmu = pmu; pr_info("%s performance monitor hardware support registered\n", pmu->name); perf_pmu_register(&fsl_emb_pmu, "cpu", PERF_TYPE_RAW); cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare", fsl_emb_pmu_prepare_cpu, NULL); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1