Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Madhavan Srinivasan | 1875 | 48.63% | 20 | 37.04% |
Michael Ellerman | 816 | 21.16% | 9 | 16.67% |
Kajol Jain | 611 | 15.85% | 6 | 11.11% |
Athira Rajeev | 535 | 13.87% | 11 | 20.37% |
Paul Mackerras | 10 | 0.26% | 2 | 3.70% |
Anton Blanchard | 3 | 0.08% | 1 | 1.85% |
Thomas Gleixner | 2 | 0.05% | 1 | 1.85% |
Bixuan Cui | 1 | 0.03% | 1 | 1.85% |
Julia Lawall | 1 | 0.03% | 1 | 1.85% |
Rohan McLure | 1 | 0.03% | 1 | 1.85% |
Adam Buchbinder | 1 | 0.03% | 1 | 1.85% |
Total | 3856 | 54 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Common Performance counter support functions for PowerISA v2.07 processors. * * Copyright 2009 Paul Mackerras, IBM Corporation. * Copyright 2013 Michael Ellerman, IBM Corporation. * Copyright 2016 Madhavan Srinivasan, IBM Corporation. */ #include "isa207-common.h" PMU_FORMAT_ATTR(event, "config:0-49"); PMU_FORMAT_ATTR(pmcxsel, "config:0-7"); PMU_FORMAT_ATTR(mark, "config:8"); PMU_FORMAT_ATTR(combine, "config:11"); PMU_FORMAT_ATTR(unit, "config:12-15"); PMU_FORMAT_ATTR(pmc, "config:16-19"); PMU_FORMAT_ATTR(cache_sel, "config:20-23"); PMU_FORMAT_ATTR(sample_mode, "config:24-28"); PMU_FORMAT_ATTR(thresh_sel, "config:29-31"); PMU_FORMAT_ATTR(thresh_stop, "config:32-35"); PMU_FORMAT_ATTR(thresh_start, "config:36-39"); PMU_FORMAT_ATTR(thresh_cmp, "config:40-49"); static struct attribute *isa207_pmu_format_attr[] = { &format_attr_event.attr, &format_attr_pmcxsel.attr, &format_attr_mark.attr, &format_attr_combine.attr, &format_attr_unit.attr, &format_attr_pmc.attr, &format_attr_cache_sel.attr, &format_attr_sample_mode.attr, &format_attr_thresh_sel.attr, &format_attr_thresh_stop.attr, &format_attr_thresh_start.attr, &format_attr_thresh_cmp.attr, NULL, }; const struct attribute_group isa207_pmu_format_group = { .name = "format", .attrs = isa207_pmu_format_attr, }; static inline bool event_is_fab_match(u64 event) { /* Only check pmc, unit and pmcxsel, ignore the edge bit (0) */ event &= 0xff0fe; /* PM_MRK_FAB_RSP_MATCH & PM_MRK_FAB_RSP_MATCH_CYC */ return (event == 0x30056 || event == 0x4f052); } static bool is_event_valid(u64 event) { u64 valid_mask = EVENT_VALID_MASK; if (cpu_has_feature(CPU_FTR_ARCH_31)) valid_mask = p10_EVENT_VALID_MASK; else if (cpu_has_feature(CPU_FTR_ARCH_300)) valid_mask = p9_EVENT_VALID_MASK; return !(event & ~valid_mask); } static inline bool is_event_marked(u64 event) { if (event & EVENT_IS_MARKED) return true; return false; } static unsigned long sdar_mod_val(u64 event) { if (cpu_has_feature(CPU_FTR_ARCH_31)) return p10_SDAR_MODE(event); return p9_SDAR_MODE(event); } static void mmcra_sdar_mode(u64 event, unsigned long *mmcra) { /* * MMCRA[SDAR_MODE] specifies how the SDAR should be updated in * continuous sampling mode. * * Incase of Power8: * MMCRA[SDAR_MODE] will be programmed as "0b01" for continuous sampling * mode and will be un-changed when setting MMCRA[63] (Marked events). * * Incase of Power9/power10: * Marked event: MMCRA[SDAR_MODE] will be set to 0b00 ('No Updates'), * or if group already have any marked events. * For rest * MMCRA[SDAR_MODE] will be set from event code. * If sdar_mode from event is zero, default to 0b01. Hardware * requires that we set a non-zero value. */ if (cpu_has_feature(CPU_FTR_ARCH_300)) { if (is_event_marked(event) || (*mmcra & MMCRA_SAMPLE_ENABLE)) *mmcra &= MMCRA_SDAR_MODE_NO_UPDATES; else if (sdar_mod_val(event)) *mmcra |= sdar_mod_val(event) << MMCRA_SDAR_MODE_SHIFT; else *mmcra |= MMCRA_SDAR_MODE_DCACHE; } else *mmcra |= MMCRA_SDAR_MODE_TLB; } static int p10_thresh_cmp_val(u64 value) { int exp = 0; u64 result = value; if (!value) return value; /* * Incase of P10, thresh_cmp value is not part of raw event code * and provided via attr.config1 parameter. To program threshold in MMCRA, * take a 18 bit number N and shift right 2 places and increment * the exponent E by 1 until the upper 10 bits of N are zero. * Write E to the threshold exponent and write the lower 8 bits of N * to the threshold mantissa. * The max threshold that can be written is 261120. */ if (cpu_has_feature(CPU_FTR_ARCH_31)) { if (value > 261120) value = 261120; while ((64 - __builtin_clzl(value)) > 8) { exp++; value >>= 2; } /* * Note that it is invalid to write a mantissa with the * upper 2 bits of mantissa being zero, unless the * exponent is also zero. */ if (!(value & 0xC0) && exp) result = -1; else result = (exp << 8) | value; } return result; } static u64 thresh_cmp_val(u64 value) { if (cpu_has_feature(CPU_FTR_ARCH_31)) value = p10_thresh_cmp_val(value); /* * Since location of threshold compare bits in MMCRA * is different for p8, using different shift value. */ if (cpu_has_feature(CPU_FTR_ARCH_300)) return value << p9_MMCRA_THR_CMP_SHIFT; else return value << MMCRA_THR_CMP_SHIFT; } static unsigned long combine_from_event(u64 event) { if (cpu_has_feature(CPU_FTR_ARCH_300)) return p9_EVENT_COMBINE(event); return EVENT_COMBINE(event); } static unsigned long combine_shift(unsigned long pmc) { if (cpu_has_feature(CPU_FTR_ARCH_300)) return p9_MMCR1_COMBINE_SHIFT(pmc); return MMCR1_COMBINE_SHIFT(pmc); } static inline bool event_is_threshold(u64 event) { return (event >> EVENT_THR_SEL_SHIFT) & EVENT_THR_SEL_MASK; } static bool is_thresh_cmp_valid(u64 event) { unsigned int cmp, exp; if (cpu_has_feature(CPU_FTR_ARCH_31)) return p10_thresh_cmp_val(event) >= 0; /* * Check the mantissa upper two bits are not zero, unless the * exponent is also zero. See the THRESH_CMP_MANTISSA doc. */ cmp = (event >> EVENT_THR_CMP_SHIFT) & EVENT_THR_CMP_MASK; exp = cmp >> 7; if (exp && (cmp & 0x60) == 0) return false; return true; } static unsigned int dc_ic_rld_quad_l1_sel(u64 event) { unsigned int cache; cache = (event >> EVENT_CACHE_SEL_SHIFT) & MMCR1_DC_IC_QUAL_MASK; return cache; } static inline u64 isa207_find_source(u64 idx, u32 sub_idx) { u64 ret = PERF_MEM_NA; switch(idx) { case 0: /* Nothing to do */ break; case 1: ret = PH(LVL, L1) | LEVEL(L1) | P(SNOOP, HIT); break; case 2: ret = PH(LVL, L2) | LEVEL(L2) | P(SNOOP, HIT); break; case 3: ret = PH(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT); break; case 4: if (cpu_has_feature(CPU_FTR_ARCH_31)) { ret = P(SNOOP, HIT); if (sub_idx == 1) ret |= PH(LVL, LOC_RAM) | LEVEL(RAM); else if (sub_idx == 2 || sub_idx == 3) ret |= P(LVL, HIT) | LEVEL(PMEM); else if (sub_idx == 4) ret |= PH(LVL, REM_RAM1) | REM | LEVEL(RAM) | P(HOPS, 2); else if (sub_idx == 5 || sub_idx == 7) ret |= P(LVL, HIT) | LEVEL(PMEM) | REM; else if (sub_idx == 6) ret |= PH(LVL, REM_RAM2) | REM | LEVEL(RAM) | P(HOPS, 3); } else { if (sub_idx <= 1) ret = PH(LVL, LOC_RAM); else if (sub_idx > 1 && sub_idx <= 2) ret = PH(LVL, REM_RAM1); else ret = PH(LVL, REM_RAM2); ret |= P(SNOOP, HIT); } break; case 5: if (cpu_has_feature(CPU_FTR_ARCH_31)) { ret = REM | P(HOPS, 0); if (sub_idx == 0 || sub_idx == 4) ret |= PH(LVL, L2) | LEVEL(L2) | P(SNOOP, HIT); else if (sub_idx == 1 || sub_idx == 5) ret |= PH(LVL, L2) | LEVEL(L2) | P(SNOOP, HITM); else if (sub_idx == 2 || sub_idx == 6) ret |= PH(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT); else if (sub_idx == 3 || sub_idx == 7) ret |= PH(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); } else { if (sub_idx == 0) ret = PH(LVL, L2) | LEVEL(L2) | REM | P(SNOOP, HIT) | P(HOPS, 0); else if (sub_idx == 1) ret = PH(LVL, L2) | LEVEL(L2) | REM | P(SNOOP, HITM) | P(HOPS, 0); else if (sub_idx == 2 || sub_idx == 4) ret = PH(LVL, L3) | LEVEL(L3) | REM | P(SNOOP, HIT) | P(HOPS, 0); else if (sub_idx == 3 || sub_idx == 5) ret = PH(LVL, L3) | LEVEL(L3) | REM | P(SNOOP, HITM) | P(HOPS, 0); } break; case 6: if (cpu_has_feature(CPU_FTR_ARCH_31)) { if (sub_idx == 0) ret = PH(LVL, REM_CCE1) | LEVEL(ANY_CACHE) | REM | P(SNOOP, HIT) | P(HOPS, 2); else if (sub_idx == 1) ret = PH(LVL, REM_CCE1) | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM) | P(HOPS, 2); else if (sub_idx == 2) ret = PH(LVL, REM_CCE2) | LEVEL(ANY_CACHE) | REM | P(SNOOP, HIT) | P(HOPS, 3); else if (sub_idx == 3) ret = PH(LVL, REM_CCE2) | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM) | P(HOPS, 3); } else { ret = PH(LVL, REM_CCE2); if (sub_idx == 0 || sub_idx == 2) ret |= P(SNOOP, HIT); else if (sub_idx == 1 || sub_idx == 3) ret |= P(SNOOP, HITM); } break; case 7: ret = PM(LVL, L1); break; } return ret; } void isa207_get_mem_data_src(union perf_mem_data_src *dsrc, u32 flags, struct pt_regs *regs) { u64 idx; u32 sub_idx; u64 sier; u64 val; /* Skip if no SIER support */ if (!(flags & PPMU_HAS_SIER)) { dsrc->val = 0; return; } sier = mfspr(SPRN_SIER); val = (sier & ISA207_SIER_TYPE_MASK) >> ISA207_SIER_TYPE_SHIFT; if (val != 1 && val != 2 && !(val == 7 && cpu_has_feature(CPU_FTR_ARCH_31))) return; idx = (sier & ISA207_SIER_LDST_MASK) >> ISA207_SIER_LDST_SHIFT; sub_idx = (sier & ISA207_SIER_DATA_SRC_MASK) >> ISA207_SIER_DATA_SRC_SHIFT; dsrc->val = isa207_find_source(idx, sub_idx); if (val == 7) { u64 mmcra; u32 op_type; /* * Type 0b111 denotes either larx or stcx instruction. Use the * MMCRA sampling bits [57:59] along with the type value * to determine the exact instruction type. If the sampling * criteria is neither load or store, set the type as default * to NA. */ mmcra = mfspr(SPRN_MMCRA); op_type = (mmcra >> MMCRA_SAMP_ELIG_SHIFT) & MMCRA_SAMP_ELIG_MASK; switch (op_type) { case 5: dsrc->val |= P(OP, LOAD); break; case 7: dsrc->val |= P(OP, STORE); break; default: dsrc->val |= P(OP, NA); break; } } else { dsrc->val |= (val == 1) ? P(OP, LOAD) : P(OP, STORE); } } void isa207_get_mem_weight(u64 *weight, u64 type) { union perf_sample_weight *weight_fields; u64 weight_lat; u64 mmcra = mfspr(SPRN_MMCRA); u64 exp = MMCRA_THR_CTR_EXP(mmcra); u64 mantissa = MMCRA_THR_CTR_MANT(mmcra); u64 sier = mfspr(SPRN_SIER); u64 val = (sier & ISA207_SIER_TYPE_MASK) >> ISA207_SIER_TYPE_SHIFT; if (cpu_has_feature(CPU_FTR_ARCH_31)) mantissa = P10_MMCRA_THR_CTR_MANT(mmcra); if (val == 0 || (val == 7 && !cpu_has_feature(CPU_FTR_ARCH_31))) weight_lat = 0; else weight_lat = mantissa << (2 * exp); /* * Use 64 bit weight field (full) if sample type is * WEIGHT. * * if sample type is WEIGHT_STRUCT: * - store memory latency in the lower 32 bits. * - For ISA v3.1, use remaining two 16 bit fields of * perf_sample_weight to store cycle counter values * from sier2. */ weight_fields = (union perf_sample_weight *)weight; if (type & PERF_SAMPLE_WEIGHT) weight_fields->full = weight_lat; else { weight_fields->var1_dw = (u32)weight_lat; if (cpu_has_feature(CPU_FTR_ARCH_31)) { weight_fields->var2_w = P10_SIER2_FINISH_CYC(mfspr(SPRN_SIER2)); weight_fields->var3_w = P10_SIER2_DISPATCH_CYC(mfspr(SPRN_SIER2)); } } } int isa207_get_constraint(u64 event, unsigned long *maskp, unsigned long *valp, u64 event_config1) { unsigned int unit, pmc, cache, ebb; unsigned long mask, value; mask = value = 0; if (!is_event_valid(event)) return -1; pmc = (event >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK; unit = (event >> EVENT_UNIT_SHIFT) & EVENT_UNIT_MASK; if (cpu_has_feature(CPU_FTR_ARCH_31)) cache = (event >> EVENT_CACHE_SEL_SHIFT) & p10_EVENT_CACHE_SEL_MASK; else cache = (event >> EVENT_CACHE_SEL_SHIFT) & EVENT_CACHE_SEL_MASK; ebb = (event >> EVENT_EBB_SHIFT) & EVENT_EBB_MASK; if (pmc) { u64 base_event; if (pmc > 6) return -1; /* Ignore Linux defined bits when checking event below */ base_event = event & ~EVENT_LINUX_MASK; if (pmc >= 5 && base_event != 0x500fa && base_event != 0x600f4) return -1; mask |= CNST_PMC_MASK(pmc); value |= CNST_PMC_VAL(pmc); /* * PMC5 and PMC6 are used to count cycles and instructions and * they do not support most of the constraint bits. Add a check * to exclude PMC5/6 from most of the constraints except for * EBB/BHRB. */ if (pmc >= 5) goto ebb_bhrb; } if (pmc <= 4) { /* * Add to number of counters in use. Note this includes events with * a PMC of 0 - they still need a PMC, it's just assigned later. * Don't count events on PMC 5 & 6, there is only one valid event * on each of those counters, and they are handled above. */ mask |= CNST_NC_MASK; value |= CNST_NC_VAL; } if (unit >= 6 && unit <= 9) { if (cpu_has_feature(CPU_FTR_ARCH_31)) { if (unit == 6) { mask |= CNST_L2L3_GROUP_MASK; value |= CNST_L2L3_GROUP_VAL(event >> p10_L2L3_EVENT_SHIFT); } } else if (cpu_has_feature(CPU_FTR_ARCH_300)) { mask |= CNST_CACHE_GROUP_MASK; value |= CNST_CACHE_GROUP_VAL(event & 0xff); mask |= CNST_CACHE_PMC4_MASK; if (pmc == 4) value |= CNST_CACHE_PMC4_VAL; } else if (cache & 0x7) { /* * L2/L3 events contain a cache selector field, which is * supposed to be programmed into MMCRC. However MMCRC is only * HV writable, and there is no API for guest kernels to modify * it. The solution is for the hypervisor to initialise the * field to zeroes, and for us to only ever allow events that * have a cache selector of zero. The bank selector (bit 3) is * irrelevant, as long as the rest of the value is 0. */ return -1; } } else if (cpu_has_feature(CPU_FTR_ARCH_300) || (event & EVENT_IS_L1)) { mask |= CNST_L1_QUAL_MASK; value |= CNST_L1_QUAL_VAL(cache); } if (cpu_has_feature(CPU_FTR_ARCH_31)) { mask |= CNST_RADIX_SCOPE_GROUP_MASK; value |= CNST_RADIX_SCOPE_GROUP_VAL(event >> p10_EVENT_RADIX_SCOPE_QUAL_SHIFT); } if (is_event_marked(event)) { mask |= CNST_SAMPLE_MASK; value |= CNST_SAMPLE_VAL(event >> EVENT_SAMPLE_SHIFT); } if (cpu_has_feature(CPU_FTR_ARCH_31)) { if (event_is_threshold(event) && is_thresh_cmp_valid(event_config1)) { mask |= CNST_THRESH_CTL_SEL_MASK; value |= CNST_THRESH_CTL_SEL_VAL(event >> EVENT_THRESH_SHIFT); mask |= p10_CNST_THRESH_CMP_MASK; value |= p10_CNST_THRESH_CMP_VAL(p10_thresh_cmp_val(event_config1)); } else if (event_is_threshold(event)) return -1; } else if (cpu_has_feature(CPU_FTR_ARCH_300)) { if (event_is_threshold(event) && is_thresh_cmp_valid(event)) { mask |= CNST_THRESH_MASK; value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT); } else if (event_is_threshold(event)) return -1; } else { /* * Special case for PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC, * the threshold control bits are used for the match value. */ if (event_is_fab_match(event)) { mask |= CNST_FAB_MATCH_MASK; value |= CNST_FAB_MATCH_VAL(event >> EVENT_THR_CTL_SHIFT); } else { if (!is_thresh_cmp_valid(event)) return -1; mask |= CNST_THRESH_MASK; value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT); } } ebb_bhrb: if (!pmc && ebb) /* EBB events must specify the PMC */ return -1; if (event & EVENT_WANTS_BHRB) { if (!ebb) /* Only EBB events can request BHRB */ return -1; mask |= CNST_IFM_MASK; value |= CNST_IFM_VAL(event >> EVENT_IFM_SHIFT); } /* * All events must agree on EBB, either all request it or none. * EBB events are pinned & exclusive, so this should never actually * hit, but we leave it as a fallback in case. */ mask |= CNST_EBB_MASK; value |= CNST_EBB_VAL(ebb); *maskp = mask; *valp = value; return 0; } int isa207_compute_mmcr(u64 event[], int n_ev, unsigned int hwc[], struct mmcr_regs *mmcr, struct perf_event *pevents[], u32 flags) { unsigned long mmcra, mmcr1, mmcr2, unit, combine, psel, cache, val; unsigned long mmcr3; unsigned int pmc, pmc_inuse; int i; pmc_inuse = 0; /* First pass to count resource use */ for (i = 0; i < n_ev; ++i) { pmc = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK; if (pmc) pmc_inuse |= 1 << pmc; } mmcra = mmcr1 = mmcr2 = mmcr3 = 0; /* * Disable bhrb unless explicitly requested * by setting MMCRA (BHRBRD) bit. */ if (cpu_has_feature(CPU_FTR_ARCH_31)) mmcra |= MMCRA_BHRB_DISABLE; /* Second pass: assign PMCs, set all MMCR1 fields */ for (i = 0; i < n_ev; ++i) { pmc = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK; unit = (event[i] >> EVENT_UNIT_SHIFT) & EVENT_UNIT_MASK; combine = combine_from_event(event[i]); psel = event[i] & EVENT_PSEL_MASK; if (!pmc) { for (pmc = 1; pmc <= 4; ++pmc) { if (!(pmc_inuse & (1 << pmc))) break; } pmc_inuse |= 1 << pmc; } if (pmc <= 4) { mmcr1 |= unit << MMCR1_UNIT_SHIFT(pmc); mmcr1 |= combine << combine_shift(pmc); mmcr1 |= psel << MMCR1_PMCSEL_SHIFT(pmc); } /* In continuous sampling mode, update SDAR on TLB miss */ mmcra_sdar_mode(event[i], &mmcra); if (cpu_has_feature(CPU_FTR_ARCH_300)) { cache = dc_ic_rld_quad_l1_sel(event[i]); mmcr1 |= (cache) << MMCR1_DC_IC_QUAL_SHIFT; } else { if (event[i] & EVENT_IS_L1) { cache = dc_ic_rld_quad_l1_sel(event[i]); mmcr1 |= (cache) << MMCR1_DC_IC_QUAL_SHIFT; } } /* Set RADIX_SCOPE_QUAL bit */ if (cpu_has_feature(CPU_FTR_ARCH_31)) { val = (event[i] >> p10_EVENT_RADIX_SCOPE_QUAL_SHIFT) & p10_EVENT_RADIX_SCOPE_QUAL_MASK; mmcr1 |= val << p10_MMCR1_RADIX_SCOPE_QUAL_SHIFT; } if (is_event_marked(event[i])) { mmcra |= MMCRA_SAMPLE_ENABLE; val = (event[i] >> EVENT_SAMPLE_SHIFT) & EVENT_SAMPLE_MASK; if (val) { mmcra |= (val & 3) << MMCRA_SAMP_MODE_SHIFT; mmcra |= (val >> 2) << MMCRA_SAMP_ELIG_SHIFT; } } /* * PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC, * the threshold bits are used for the match value. */ if (!cpu_has_feature(CPU_FTR_ARCH_300) && event_is_fab_match(event[i])) { mmcr1 |= ((event[i] >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK) << MMCR1_FAB_SHIFT; } else { val = (event[i] >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK; mmcra |= val << MMCRA_THR_CTL_SHIFT; val = (event[i] >> EVENT_THR_SEL_SHIFT) & EVENT_THR_SEL_MASK; mmcra |= val << MMCRA_THR_SEL_SHIFT; if (!cpu_has_feature(CPU_FTR_ARCH_31)) { val = (event[i] >> EVENT_THR_CMP_SHIFT) & EVENT_THR_CMP_MASK; mmcra |= thresh_cmp_val(val); } else if (flags & PPMU_HAS_ATTR_CONFIG1) { val = (pevents[i]->attr.config1 >> p10_EVENT_THR_CMP_SHIFT) & p10_EVENT_THR_CMP_MASK; mmcra |= thresh_cmp_val(val); } } if (cpu_has_feature(CPU_FTR_ARCH_31) && (unit == 6)) { val = (event[i] >> p10_L2L3_EVENT_SHIFT) & p10_EVENT_L2L3_SEL_MASK; mmcr2 |= val << p10_L2L3_SEL_SHIFT; } if (event[i] & EVENT_WANTS_BHRB) { val = (event[i] >> EVENT_IFM_SHIFT) & EVENT_IFM_MASK; mmcra |= val << MMCRA_IFM_SHIFT; } /* set MMCRA (BHRBRD) to 0 if there is user request for BHRB */ if (cpu_has_feature(CPU_FTR_ARCH_31) && (has_branch_stack(pevents[i]) || (event[i] & EVENT_WANTS_BHRB))) mmcra &= ~MMCRA_BHRB_DISABLE; if (pevents[i]->attr.exclude_user) mmcr2 |= MMCR2_FCP(pmc); if (pevents[i]->attr.exclude_hv) mmcr2 |= MMCR2_FCH(pmc); if (pevents[i]->attr.exclude_kernel) { if (cpu_has_feature(CPU_FTR_HVMODE)) mmcr2 |= MMCR2_FCH(pmc); else mmcr2 |= MMCR2_FCS(pmc); } if (pevents[i]->attr.exclude_idle) mmcr2 |= MMCR2_FCWAIT(pmc); if (cpu_has_feature(CPU_FTR_ARCH_31)) { if (pmc <= 4) { val = (event[i] >> p10_EVENT_MMCR3_SHIFT) & p10_EVENT_MMCR3_MASK; mmcr3 |= val << MMCR3_SHIFT(pmc); } } hwc[i] = pmc - 1; } /* Return MMCRx values */ mmcr->mmcr0 = 0; /* pmc_inuse is 1-based */ if (pmc_inuse & 2) mmcr->mmcr0 = MMCR0_PMC1CE; if (pmc_inuse & 0x7c) mmcr->mmcr0 |= MMCR0_PMCjCE; /* If we're not using PMC 5 or 6, freeze them */ if (!(pmc_inuse & 0x60)) mmcr->mmcr0 |= MMCR0_FC56; /* * Set mmcr0 (PMCCEXT) for p10 which * will restrict access to group B registers * when MMCR0 PMCC=0b00. */ if (cpu_has_feature(CPU_FTR_ARCH_31)) mmcr->mmcr0 |= MMCR0_PMCCEXT; mmcr->mmcr1 = mmcr1; mmcr->mmcra = mmcra; mmcr->mmcr2 = mmcr2; mmcr->mmcr3 = mmcr3; return 0; } void isa207_disable_pmc(unsigned int pmc, struct mmcr_regs *mmcr) { if (pmc <= 3) mmcr->mmcr1 &= ~(0xffUL << MMCR1_PMCSEL_SHIFT(pmc + 1)); } static int find_alternative(u64 event, const unsigned int ev_alt[][MAX_ALT], int size) { int i, j; for (i = 0; i < size; ++i) { if (event < ev_alt[i][0]) break; for (j = 0; j < MAX_ALT && ev_alt[i][j]; ++j) if (event == ev_alt[i][j]) return i; } return -1; } int isa207_get_alternatives(u64 event, u64 alt[], int size, unsigned int flags, const unsigned int ev_alt[][MAX_ALT]) { int i, j, num_alt = 0; u64 alt_event; alt[num_alt++] = event; i = find_alternative(event, ev_alt, size); if (i >= 0) { /* Filter out the original event, it's already in alt[0] */ for (j = 0; j < MAX_ALT; ++j) { alt_event = ev_alt[i][j]; if (alt_event && alt_event != event) alt[num_alt++] = alt_event; } } if (flags & PPMU_ONLY_COUNT_RUN) { /* * We're only counting in RUN state, so PM_CYC is equivalent to * PM_RUN_CYC and PM_INST_CMPL === PM_RUN_INST_CMPL. */ j = num_alt; for (i = 0; i < num_alt; ++i) { switch (alt[i]) { case 0x1e: /* PMC_CYC */ alt[j++] = 0x600f4; /* PM_RUN_CYC */ break; case 0x600f4: alt[j++] = 0x1e; break; case 0x2: /* PM_INST_CMPL */ alt[j++] = 0x500fa; /* PM_RUN_INST_CMPL */ break; case 0x500fa: alt[j++] = 0x2; break; } } num_alt = j; } return num_alt; } int isa3XX_check_attr_config(struct perf_event *ev) { u64 val, sample_mode; u64 event = ev->attr.config; val = (event >> EVENT_SAMPLE_SHIFT) & EVENT_SAMPLE_MASK; sample_mode = val & 0x3; /* * MMCRA[61:62] is Random Sampling Mode (SM). * value of 0b11 is reserved. */ if (sample_mode == 0x3) return -EINVAL; /* * Check for all reserved value * Source: Performance Monitoring Unit User Guide */ switch (val) { case 0x5: case 0x9: case 0xD: case 0x19: case 0x1D: case 0x1A: case 0x1E: return -EINVAL; } /* * MMCRA[48:51]/[52:55]) Threshold Start/Stop * Events Selection. * 0b11110000/0b00001111 is reserved. */ val = (event >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK; if (((val & 0xF0) == 0xF0) || ((val & 0xF) == 0xF)) return -EINVAL; return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1