Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Haren Myneni | 2202 | 99.28% | 15 | 62.50% |
Suren Baghdasaryan | 4 | 0.18% | 1 | 4.17% |
Sukadev Bhattiprolu | 4 | 0.18% | 1 | 4.17% |
Gustavo A. R. Silva | 2 | 0.09% | 1 | 4.17% |
Julia Lawall | 1 | 0.05% | 1 | 4.17% |
Mike Kravetz | 1 | 0.05% | 1 | 4.17% |
Thomas Gleixner | 1 | 0.05% | 1 | 4.17% |
Greg Kroah-Hartman | 1 | 0.05% | 1 | 4.17% |
Christoph Hellwig | 1 | 0.05% | 1 | 4.17% |
Jilin Yuan | 1 | 0.05% | 1 | 4.17% |
Total | 2218 | 24 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * VAS user space API for its accelerators (Only NX-GZIP is supported now) * Copyright (C) 2019 Haren Myneni, IBM Corp */ #define pr_fmt(fmt) "vas-api: " fmt #include <linux/kernel.h> #include <linux/device.h> #include <linux/cdev.h> #include <linux/fs.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/kthread.h> #include <linux/sched/signal.h> #include <linux/mmu_context.h> #include <linux/io.h> #include <asm/vas.h> #include <uapi/asm/vas-api.h> /* * The driver creates the device node that can be used as follows: * For NX-GZIP * * fd = open("/dev/crypto/nx-gzip", O_RDWR); * rc = ioctl(fd, VAS_TX_WIN_OPEN, &attr); * paste_addr = mmap(NULL, PAGE_SIZE, prot, MAP_SHARED, fd, 0ULL). * vas_copy(&crb, 0, 1); * vas_paste(paste_addr, 0, 1); * close(fd) or exit process to close window. * * where "vas_copy" and "vas_paste" are defined in copy-paste.h. * copy/paste returns to the user space directly. So refer NX hardware * documentation for exact copy/paste usage and completion / error * conditions. */ /* * Wrapper object for the nx-gzip device - there is just one instance of * this node for the whole system. */ static struct coproc_dev { struct cdev cdev; struct device *device; char *name; dev_t devt; struct class *class; enum vas_cop_type cop_type; const struct vas_user_win_ops *vops; } coproc_device; struct coproc_instance { struct coproc_dev *coproc; struct vas_window *txwin; }; static char *coproc_devnode(const struct device *dev, umode_t *mode) { return kasprintf(GFP_KERNEL, "crypto/%s", dev_name(dev)); } /* * Take reference to pid and mm */ int get_vas_user_win_ref(struct vas_user_win_ref *task_ref) { /* * Window opened by a child thread may not be closed when * it exits. So take reference to its pid and release it * when the window is free by parent thread. * Acquire a reference to the task's pid to make sure * pid will not be re-used - needed only for multithread * applications. */ task_ref->pid = get_task_pid(current, PIDTYPE_PID); /* * Acquire a reference to the task's mm. */ task_ref->mm = get_task_mm(current); if (!task_ref->mm) { put_pid(task_ref->pid); pr_err("pid(%d): mm_struct is not found\n", current->pid); return -EPERM; } mmgrab(task_ref->mm); mmput(task_ref->mm); /* * Process closes window during exit. In the case of * multithread application, the child thread can open * window and can exit without closing it. So takes tgid * reference until window closed to make sure tgid is not * reused. */ task_ref->tgid = find_get_pid(task_tgid_vnr(current)); return 0; } /* * Successful return must release the task reference with * put_task_struct */ static bool ref_get_pid_and_task(struct vas_user_win_ref *task_ref, struct task_struct **tskp, struct pid **pidp) { struct task_struct *tsk; struct pid *pid; pid = task_ref->pid; tsk = get_pid_task(pid, PIDTYPE_PID); if (!tsk) { pid = task_ref->tgid; tsk = get_pid_task(pid, PIDTYPE_PID); /* * Parent thread (tgid) will be closing window when it * exits. So should not get here. */ if (WARN_ON_ONCE(!tsk)) return false; } /* Return if the task is exiting. */ if (tsk->flags & PF_EXITING) { put_task_struct(tsk); return false; } *tskp = tsk; *pidp = pid; return true; } /* * Update the CSB to indicate a translation error. * * User space will be polling on CSB after the request is issued. * If NX can handle the request without any issues, it updates CSB. * Whereas if NX encounters page fault, the kernel will handle the * fault and update CSB with translation error. * * If we are unable to update the CSB means copy_to_user failed due to * invalid csb_addr, send a signal to the process. */ void vas_update_csb(struct coprocessor_request_block *crb, struct vas_user_win_ref *task_ref) { struct coprocessor_status_block csb; struct kernel_siginfo info; struct task_struct *tsk; void __user *csb_addr; struct pid *pid; int rc; /* * NX user space windows can not be opened for task->mm=NULL * and faults will not be generated for kernel requests. */ if (WARN_ON_ONCE(!task_ref->mm)) return; csb_addr = (void __user *)be64_to_cpu(crb->csb_addr); memset(&csb, 0, sizeof(csb)); csb.cc = CSB_CC_FAULT_ADDRESS; csb.ce = CSB_CE_TERMINATION; csb.cs = 0; csb.count = 0; /* * NX operates and returns in BE format as defined CRB struct. * So saves fault_storage_addr in BE as NX pastes in FIFO and * expects user space to convert to CPU format. */ csb.address = crb->stamp.nx.fault_storage_addr; csb.flags = 0; /* * Process closes send window after all pending NX requests are * completed. In multi-thread applications, a child thread can * open a window and can exit without closing it. May be some * requests are pending or this window can be used by other * threads later. We should handle faults if NX encounters * pages faults on these requests. Update CSB with translation * error and fault address. If csb_addr passed by user space is * invalid, send SEGV signal to pid saved in window. If the * child thread is not running, send the signal to tgid. * Parent thread (tgid) will close this window upon its exit. * * pid and mm references are taken when window is opened by * process (pid). So tgid is used only when child thread opens * a window and exits without closing it. */ if (!ref_get_pid_and_task(task_ref, &tsk, &pid)) return; kthread_use_mm(task_ref->mm); rc = copy_to_user(csb_addr, &csb, sizeof(csb)); /* * User space polls on csb.flags (first byte). So add barrier * then copy first byte with csb flags update. */ if (!rc) { csb.flags = CSB_V; /* Make sure update to csb.flags is visible now */ smp_mb(); rc = copy_to_user(csb_addr, &csb, sizeof(u8)); } kthread_unuse_mm(task_ref->mm); put_task_struct(tsk); /* Success */ if (!rc) return; pr_debug("Invalid CSB address 0x%p signalling pid(%d)\n", csb_addr, pid_vnr(pid)); clear_siginfo(&info); info.si_signo = SIGSEGV; info.si_errno = EFAULT; info.si_code = SEGV_MAPERR; info.si_addr = csb_addr; /* * process will be polling on csb.flags after request is sent to * NX. So generally CSB update should not fail except when an * application passes invalid csb_addr. So an error message will * be displayed and leave it to user space whether to ignore or * handle this signal. */ rcu_read_lock(); rc = kill_pid_info(SIGSEGV, &info, pid); rcu_read_unlock(); pr_devel("pid %d kill_proc_info() rc %d\n", pid_vnr(pid), rc); } void vas_dump_crb(struct coprocessor_request_block *crb) { struct data_descriptor_entry *dde; struct nx_fault_stamp *nx; dde = &crb->source; pr_devel("SrcDDE: addr 0x%llx, len %d, count %d, idx %d, flags %d\n", be64_to_cpu(dde->address), be32_to_cpu(dde->length), dde->count, dde->index, dde->flags); dde = &crb->target; pr_devel("TgtDDE: addr 0x%llx, len %d, count %d, idx %d, flags %d\n", be64_to_cpu(dde->address), be32_to_cpu(dde->length), dde->count, dde->index, dde->flags); nx = &crb->stamp.nx; pr_devel("NX Stamp: PSWID 0x%x, FSA 0x%llx, flags 0x%x, FS 0x%x\n", be32_to_cpu(nx->pswid), be64_to_cpu(crb->stamp.nx.fault_storage_addr), nx->flags, nx->fault_status); } static int coproc_open(struct inode *inode, struct file *fp) { struct coproc_instance *cp_inst; cp_inst = kzalloc(sizeof(*cp_inst), GFP_KERNEL); if (!cp_inst) return -ENOMEM; cp_inst->coproc = container_of(inode->i_cdev, struct coproc_dev, cdev); fp->private_data = cp_inst; return 0; } static int coproc_ioc_tx_win_open(struct file *fp, unsigned long arg) { void __user *uptr = (void __user *)arg; struct vas_tx_win_open_attr uattr; struct coproc_instance *cp_inst; struct vas_window *txwin; int rc; cp_inst = fp->private_data; /* * One window for file descriptor */ if (cp_inst->txwin) return -EEXIST; rc = copy_from_user(&uattr, uptr, sizeof(uattr)); if (rc) { pr_err("copy_from_user() returns %d\n", rc); return -EFAULT; } if (uattr.version != 1) { pr_err("Invalid window open API version\n"); return -EINVAL; } if (!cp_inst->coproc->vops || !cp_inst->coproc->vops->open_win) { pr_err("VAS API is not registered\n"); return -EACCES; } txwin = cp_inst->coproc->vops->open_win(uattr.vas_id, uattr.flags, cp_inst->coproc->cop_type); if (IS_ERR(txwin)) { pr_err_ratelimited("VAS window open failed rc=%ld\n", PTR_ERR(txwin)); return PTR_ERR(txwin); } mutex_init(&txwin->task_ref.mmap_mutex); cp_inst->txwin = txwin; return 0; } static int coproc_release(struct inode *inode, struct file *fp) { struct coproc_instance *cp_inst = fp->private_data; int rc; if (cp_inst->txwin) { if (cp_inst->coproc->vops && cp_inst->coproc->vops->close_win) { rc = cp_inst->coproc->vops->close_win(cp_inst->txwin); if (rc) return rc; } cp_inst->txwin = NULL; } kfree(cp_inst); fp->private_data = NULL; /* * We don't know here if user has other receive windows * open, so we can't really call clear_thread_tidr(). * So, once the process calls set_thread_tidr(), the * TIDR value sticks around until process exits, resulting * in an extra copy in restore_sprs(). */ return 0; } /* * If the executed instruction that caused the fault was a paste, then * clear regs CR0[EQ], advance NIP, and return 0. Else return error code. */ static int do_fail_paste(void) { struct pt_regs *regs = current->thread.regs; u32 instword; if (WARN_ON_ONCE(!regs)) return -EINVAL; if (WARN_ON_ONCE(!user_mode(regs))) return -EINVAL; /* * If we couldn't translate the instruction, the driver should * return success without handling the fault, it will be retried * or the instruction fetch will fault. */ if (get_user(instword, (u32 __user *)(regs->nip))) return -EAGAIN; /* * Not a paste instruction, driver may fail the fault. */ if ((instword & PPC_INST_PASTE_MASK) != PPC_INST_PASTE) return -ENOENT; regs->ccr &= ~0xe0000000; /* Clear CR0[0-2] to fail paste */ regs_add_return_ip(regs, 4); /* Emulate the paste */ return 0; } /* * This fault handler is invoked when the core generates page fault on * the paste address. Happens if the kernel closes window in hypervisor * (on pseries) due to lost credit or the paste address is not mapped. */ static vm_fault_t vas_mmap_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct file *fp = vma->vm_file; struct coproc_instance *cp_inst = fp->private_data; struct vas_window *txwin; vm_fault_t fault; u64 paste_addr; int ret; /* * window is not opened. Shouldn't expect this error. */ if (!cp_inst || !cp_inst->txwin) { pr_err("Unexpected fault on paste address with TX window closed\n"); return VM_FAULT_SIGBUS; } txwin = cp_inst->txwin; /* * When the LPAR lost credits due to core removal or during * migration, invalidate the existing mapping for the current * paste addresses and set windows in-active (zap_vma_pages in * reconfig_close_windows()). * New mapping will be done later after migration or new credits * available. So continue to receive faults if the user space * issue NX request. */ if (txwin->task_ref.vma != vmf->vma) { pr_err("No previous mapping with paste address\n"); return VM_FAULT_SIGBUS; } mutex_lock(&txwin->task_ref.mmap_mutex); /* * The window may be inactive due to lost credit (Ex: core * removal with DLPAR). If the window is active again when * the credit is available, map the new paste address at the * window virtual address. */ if (txwin->status == VAS_WIN_ACTIVE) { paste_addr = cp_inst->coproc->vops->paste_addr(txwin); if (paste_addr) { fault = vmf_insert_pfn(vma, vma->vm_start, (paste_addr >> PAGE_SHIFT)); mutex_unlock(&txwin->task_ref.mmap_mutex); return fault; } } mutex_unlock(&txwin->task_ref.mmap_mutex); /* * Received this fault due to closing the actual window. * It can happen during migration or lost credits. * Since no mapping, return the paste instruction failure * to the user space. */ ret = do_fail_paste(); /* * The user space can retry several times until success (needed * for migration) or should fallback to SW compression or * manage with the existing open windows if available. * Looking at sysfs interface, it can determine whether these * failures are coming during migration or core removal: * nr_used_credits > nr_total_credits when lost credits */ if (!ret || (ret == -EAGAIN)) return VM_FAULT_NOPAGE; return VM_FAULT_SIGBUS; } static const struct vm_operations_struct vas_vm_ops = { .fault = vas_mmap_fault, }; static int coproc_mmap(struct file *fp, struct vm_area_struct *vma) { struct coproc_instance *cp_inst = fp->private_data; struct vas_window *txwin; unsigned long pfn; u64 paste_addr; pgprot_t prot; int rc; txwin = cp_inst->txwin; if ((vma->vm_end - vma->vm_start) > PAGE_SIZE) { pr_debug("size 0x%zx, PAGE_SIZE 0x%zx\n", (vma->vm_end - vma->vm_start), PAGE_SIZE); return -EINVAL; } /* Ensure instance has an open send window */ if (!txwin) { pr_err("No send window open?\n"); return -EINVAL; } if (!cp_inst->coproc->vops || !cp_inst->coproc->vops->paste_addr) { pr_err("VAS API is not registered\n"); return -EACCES; } /* * The initial mmap is done after the window is opened * with ioctl. But before mmap(), this window can be closed in * the hypervisor due to lost credit (core removal on pseries). * So if the window is not active, return mmap() failure with * -EACCES and expects the user space reissue mmap() when it * is active again or open new window when the credit is available. * mmap_mutex protects the paste address mmap() with DLPAR * close/open event and allows mmap() only when the window is * active. */ mutex_lock(&txwin->task_ref.mmap_mutex); if (txwin->status != VAS_WIN_ACTIVE) { pr_err("Window is not active\n"); rc = -EACCES; goto out; } paste_addr = cp_inst->coproc->vops->paste_addr(txwin); if (!paste_addr) { pr_err("Window paste address failed\n"); rc = -EINVAL; goto out; } pfn = paste_addr >> PAGE_SHIFT; /* flags, page_prot from cxl_mmap(), except we want cachable */ vm_flags_set(vma, VM_IO | VM_PFNMAP); vma->vm_page_prot = pgprot_cached(vma->vm_page_prot); prot = __pgprot(pgprot_val(vma->vm_page_prot) | _PAGE_DIRTY); rc = remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff, vma->vm_end - vma->vm_start, prot); pr_devel("paste addr %llx at %lx, rc %d\n", paste_addr, vma->vm_start, rc); txwin->task_ref.vma = vma; vma->vm_ops = &vas_vm_ops; out: mutex_unlock(&txwin->task_ref.mmap_mutex); return rc; } static long coproc_ioctl(struct file *fp, unsigned int cmd, unsigned long arg) { switch (cmd) { case VAS_TX_WIN_OPEN: return coproc_ioc_tx_win_open(fp, arg); default: return -EINVAL; } } static struct file_operations coproc_fops = { .open = coproc_open, .release = coproc_release, .mmap = coproc_mmap, .unlocked_ioctl = coproc_ioctl, }; /* * Supporting only nx-gzip coprocessor type now, but this API code * extended to other coprocessor types later. */ int vas_register_coproc_api(struct module *mod, enum vas_cop_type cop_type, const char *name, const struct vas_user_win_ops *vops) { int rc = -EINVAL; dev_t devno; rc = alloc_chrdev_region(&coproc_device.devt, 1, 1, name); if (rc) { pr_err("Unable to allocate coproc major number: %i\n", rc); return rc; } pr_devel("%s device allocated, dev [%i,%i]\n", name, MAJOR(coproc_device.devt), MINOR(coproc_device.devt)); coproc_device.class = class_create(name); if (IS_ERR(coproc_device.class)) { rc = PTR_ERR(coproc_device.class); pr_err("Unable to create %s class %d\n", name, rc); goto err_class; } coproc_device.class->devnode = coproc_devnode; coproc_device.cop_type = cop_type; coproc_device.vops = vops; coproc_fops.owner = mod; cdev_init(&coproc_device.cdev, &coproc_fops); devno = MKDEV(MAJOR(coproc_device.devt), 0); rc = cdev_add(&coproc_device.cdev, devno, 1); if (rc) { pr_err("cdev_add() failed %d\n", rc); goto err_cdev; } coproc_device.device = device_create(coproc_device.class, NULL, devno, NULL, name, MINOR(devno)); if (IS_ERR(coproc_device.device)) { rc = PTR_ERR(coproc_device.device); pr_err("Unable to create coproc-%d %d\n", MINOR(devno), rc); goto err; } pr_devel("Added dev [%d,%d]\n", MAJOR(devno), MINOR(devno)); return 0; err: cdev_del(&coproc_device.cdev); err_cdev: class_destroy(coproc_device.class); err_class: unregister_chrdev_region(coproc_device.devt, 1); return rc; } void vas_unregister_coproc_api(void) { dev_t devno; cdev_del(&coproc_device.cdev); devno = MKDEV(MAJOR(coproc_device.devt), 0); device_destroy(coproc_device.class, devno); class_destroy(coproc_device.class); unregister_chrdev_region(coproc_device.devt, 1); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1