Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Geoff Levand | 2211 | 93.97% | 6 | 23.08% |
Masato Noguchi | 31 | 1.32% | 1 | 3.85% |
Takashi Yamamoto | 25 | 1.06% | 1 | 3.85% |
Stephen Rothwell | 20 | 0.85% | 1 | 3.85% |
Andre Detsch | 16 | 0.68% | 1 | 3.85% |
Arnd Bergmann | 12 | 0.51% | 2 | 7.69% |
Aneesh Kumar K.V | 7 | 0.30% | 1 | 3.85% |
Masakazu Mokuno | 6 | 0.25% | 1 | 3.85% |
Geert Uytterhoeven | 5 | 0.21% | 1 | 3.85% |
Paul Gortmaker | 3 | 0.13% | 1 | 3.85% |
Christophe Leroy | 3 | 0.13% | 2 | 7.69% |
Thomas Gleixner | 2 | 0.08% | 1 | 3.85% |
Jeremy Kerr | 2 | 0.08% | 1 | 3.85% |
Linus Torvalds (pre-git) | 2 | 0.08% | 1 | 3.85% |
Michael Ellerman | 2 | 0.08% | 1 | 3.85% |
Jason Yan | 2 | 0.08% | 1 | 3.85% |
Benjamin Herrenschmidt | 2 | 0.08% | 1 | 3.85% |
Nick Child | 1 | 0.04% | 1 | 3.85% |
Linus Torvalds | 1 | 0.04% | 1 | 3.85% |
Total | 2353 | 26 |
// SPDX-License-Identifier: GPL-2.0-only /* * PS3 Platform spu routines. * * Copyright (C) 2006 Sony Computer Entertainment Inc. * Copyright 2006 Sony Corp. */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/mmzone.h> #include <linux/export.h> #include <linux/io.h> #include <linux/mm.h> #include <asm/spu.h> #include <asm/spu_priv1.h> #include <asm/lv1call.h> #include <asm/ps3.h> #include "../cell/spufs/spufs.h" #include "platform.h" /* spu_management_ops */ /** * enum spe_type - Type of spe to create. * @spe_type_logical: Standard logical spe. * * For use with lv1_construct_logical_spe(). The current HV does not support * any types other than those listed. */ enum spe_type { SPE_TYPE_LOGICAL = 0, }; /** * struct spe_shadow - logical spe shadow register area. * * Read-only shadow of spe registers. */ struct spe_shadow { u8 padding_0140[0x0140]; u64 int_status_class0_RW; /* 0x0140 */ u64 int_status_class1_RW; /* 0x0148 */ u64 int_status_class2_RW; /* 0x0150 */ u8 padding_0158[0x0610-0x0158]; u64 mfc_dsisr_RW; /* 0x0610 */ u8 padding_0618[0x0620-0x0618]; u64 mfc_dar_RW; /* 0x0620 */ u8 padding_0628[0x0800-0x0628]; u64 mfc_dsipr_R; /* 0x0800 */ u8 padding_0808[0x0810-0x0808]; u64 mfc_lscrr_R; /* 0x0810 */ u8 padding_0818[0x0c00-0x0818]; u64 mfc_cer_R; /* 0x0c00 */ u8 padding_0c08[0x0f00-0x0c08]; u64 spe_execution_status; /* 0x0f00 */ u8 padding_0f08[0x1000-0x0f08]; }; /** * enum spe_ex_state - Logical spe execution state. * @spe_ex_state_unexecutable: Uninitialized. * @spe_ex_state_executable: Enabled, not ready. * @spe_ex_state_executed: Ready for use. * * The execution state (status) of the logical spe as reported in * struct spe_shadow:spe_execution_status. */ enum spe_ex_state { SPE_EX_STATE_UNEXECUTABLE = 0, SPE_EX_STATE_EXECUTABLE = 2, SPE_EX_STATE_EXECUTED = 3, }; /** * struct priv1_cache - Cached values of priv1 registers. * @masks[]: Array of cached spe interrupt masks, indexed by class. * @sr1: Cached mfc_sr1 register. * @tclass_id: Cached mfc_tclass_id register. */ struct priv1_cache { u64 masks[3]; u64 sr1; u64 tclass_id; }; /** * struct spu_pdata - Platform state variables. * @spe_id: HV spe id returned by lv1_construct_logical_spe(). * @resource_id: HV spe resource id returned by * ps3_repository_read_spe_resource_id(). * @priv2_addr: lpar address of spe priv2 area returned by * lv1_construct_logical_spe(). * @shadow_addr: lpar address of spe register shadow area returned by * lv1_construct_logical_spe(). * @shadow: Virtual (ioremap) address of spe register shadow area. * @cache: Cached values of priv1 registers. */ struct spu_pdata { u64 spe_id; u64 resource_id; u64 priv2_addr; u64 shadow_addr; struct spe_shadow __iomem *shadow; struct priv1_cache cache; }; static struct spu_pdata *spu_pdata(struct spu *spu) { return spu->pdata; } #define dump_areas(_a, _b, _c, _d, _e) \ _dump_areas(_a, _b, _c, _d, _e, __func__, __LINE__) static void _dump_areas(unsigned int spe_id, unsigned long priv2, unsigned long problem, unsigned long ls, unsigned long shadow, const char* func, int line) { pr_debug("%s:%d: spe_id: %xh (%u)\n", func, line, spe_id, spe_id); pr_debug("%s:%d: priv2: %lxh\n", func, line, priv2); pr_debug("%s:%d: problem: %lxh\n", func, line, problem); pr_debug("%s:%d: ls: %lxh\n", func, line, ls); pr_debug("%s:%d: shadow: %lxh\n", func, line, shadow); } u64 ps3_get_spe_id(void *arg) { return spu_pdata(arg)->spe_id; } EXPORT_SYMBOL_GPL(ps3_get_spe_id); static unsigned long __init get_vas_id(void) { u64 id; lv1_get_logical_ppe_id(&id); lv1_get_virtual_address_space_id_of_ppe(&id); return id; } static int __init construct_spu(struct spu *spu) { int result; u64 unused; u64 problem_phys; u64 local_store_phys; result = lv1_construct_logical_spe(PAGE_SHIFT, PAGE_SHIFT, PAGE_SHIFT, PAGE_SHIFT, PAGE_SHIFT, get_vas_id(), SPE_TYPE_LOGICAL, &spu_pdata(spu)->priv2_addr, &problem_phys, &local_store_phys, &unused, &spu_pdata(spu)->shadow_addr, &spu_pdata(spu)->spe_id); spu->problem_phys = problem_phys; spu->local_store_phys = local_store_phys; if (result) { pr_debug("%s:%d: lv1_construct_logical_spe failed: %s\n", __func__, __LINE__, ps3_result(result)); return result; } return result; } static void spu_unmap(struct spu *spu) { iounmap(spu->priv2); iounmap(spu->problem); iounmap((__force u8 __iomem *)spu->local_store); iounmap(spu_pdata(spu)->shadow); } /** * setup_areas - Map the spu regions into the address space. * * The current HV requires the spu shadow regs to be mapped with the * PTE page protection bits set as read-only. */ static int __init setup_areas(struct spu *spu) { struct table {char* name; unsigned long addr; unsigned long size;}; unsigned long shadow_flags = pgprot_val(pgprot_noncached_wc(PAGE_KERNEL_RO)); spu_pdata(spu)->shadow = ioremap_prot(spu_pdata(spu)->shadow_addr, sizeof(struct spe_shadow), shadow_flags); if (!spu_pdata(spu)->shadow) { pr_debug("%s:%d: ioremap shadow failed\n", __func__, __LINE__); goto fail_ioremap; } spu->local_store = (__force void *)ioremap_wc(spu->local_store_phys, LS_SIZE); if (!spu->local_store) { pr_debug("%s:%d: ioremap local_store failed\n", __func__, __LINE__); goto fail_ioremap; } spu->problem = ioremap(spu->problem_phys, sizeof(struct spu_problem)); if (!spu->problem) { pr_debug("%s:%d: ioremap problem failed\n", __func__, __LINE__); goto fail_ioremap; } spu->priv2 = ioremap(spu_pdata(spu)->priv2_addr, sizeof(struct spu_priv2)); if (!spu->priv2) { pr_debug("%s:%d: ioremap priv2 failed\n", __func__, __LINE__); goto fail_ioremap; } dump_areas(spu_pdata(spu)->spe_id, spu_pdata(spu)->priv2_addr, spu->problem_phys, spu->local_store_phys, spu_pdata(spu)->shadow_addr); dump_areas(spu_pdata(spu)->spe_id, (unsigned long)spu->priv2, (unsigned long)spu->problem, (unsigned long)spu->local_store, (unsigned long)spu_pdata(spu)->shadow); return 0; fail_ioremap: spu_unmap(spu); return -ENOMEM; } static int __init setup_interrupts(struct spu *spu) { int result; result = ps3_spe_irq_setup(PS3_BINDING_CPU_ANY, spu_pdata(spu)->spe_id, 0, &spu->irqs[0]); if (result) goto fail_alloc_0; result = ps3_spe_irq_setup(PS3_BINDING_CPU_ANY, spu_pdata(spu)->spe_id, 1, &spu->irqs[1]); if (result) goto fail_alloc_1; result = ps3_spe_irq_setup(PS3_BINDING_CPU_ANY, spu_pdata(spu)->spe_id, 2, &spu->irqs[2]); if (result) goto fail_alloc_2; return result; fail_alloc_2: ps3_spe_irq_destroy(spu->irqs[1]); fail_alloc_1: ps3_spe_irq_destroy(spu->irqs[0]); fail_alloc_0: spu->irqs[0] = spu->irqs[1] = spu->irqs[2] = 0; return result; } static int __init enable_spu(struct spu *spu) { int result; result = lv1_enable_logical_spe(spu_pdata(spu)->spe_id, spu_pdata(spu)->resource_id); if (result) { pr_debug("%s:%d: lv1_enable_logical_spe failed: %s\n", __func__, __LINE__, ps3_result(result)); goto fail_enable; } result = setup_areas(spu); if (result) goto fail_areas; result = setup_interrupts(spu); if (result) goto fail_interrupts; return 0; fail_interrupts: spu_unmap(spu); fail_areas: lv1_disable_logical_spe(spu_pdata(spu)->spe_id, 0); fail_enable: return result; } static int ps3_destroy_spu(struct spu *spu) { int result; pr_debug("%s:%d spu_%d\n", __func__, __LINE__, spu->number); result = lv1_disable_logical_spe(spu_pdata(spu)->spe_id, 0); BUG_ON(result); ps3_spe_irq_destroy(spu->irqs[2]); ps3_spe_irq_destroy(spu->irqs[1]); ps3_spe_irq_destroy(spu->irqs[0]); spu->irqs[0] = spu->irqs[1] = spu->irqs[2] = 0; spu_unmap(spu); result = lv1_destruct_logical_spe(spu_pdata(spu)->spe_id); BUG_ON(result); kfree(spu->pdata); spu->pdata = NULL; return 0; } static int __init ps3_create_spu(struct spu *spu, void *data) { int result; pr_debug("%s:%d spu_%d\n", __func__, __LINE__, spu->number); spu->pdata = kzalloc(sizeof(struct spu_pdata), GFP_KERNEL); if (!spu->pdata) { result = -ENOMEM; goto fail_malloc; } spu_pdata(spu)->resource_id = (unsigned long)data; /* Init cached reg values to HV defaults. */ spu_pdata(spu)->cache.sr1 = 0x33; result = construct_spu(spu); if (result) goto fail_construct; /* For now, just go ahead and enable it. */ result = enable_spu(spu); if (result) goto fail_enable; /* Make sure the spu is in SPE_EX_STATE_EXECUTED. */ /* need something better here!!! */ while (in_be64(&spu_pdata(spu)->shadow->spe_execution_status) != SPE_EX_STATE_EXECUTED) (void)0; return result; fail_enable: fail_construct: ps3_destroy_spu(spu); fail_malloc: return result; } static int __init ps3_enumerate_spus(int (*fn)(void *data)) { int result; unsigned int num_resource_id; unsigned int i; result = ps3_repository_read_num_spu_resource_id(&num_resource_id); pr_debug("%s:%d: num_resource_id %u\n", __func__, __LINE__, num_resource_id); /* * For now, just create logical spus equal to the number * of physical spus reserved for the partition. */ for (i = 0; i < num_resource_id; i++) { enum ps3_spu_resource_type resource_type; unsigned int resource_id; result = ps3_repository_read_spu_resource_id(i, &resource_type, &resource_id); if (result) break; if (resource_type == PS3_SPU_RESOURCE_TYPE_EXCLUSIVE) { result = fn((void*)(unsigned long)resource_id); if (result) break; } } if (result) { printk(KERN_WARNING "%s:%d: Error initializing spus\n", __func__, __LINE__); return result; } return num_resource_id; } static int ps3_init_affinity(void) { return 0; } /** * ps3_enable_spu - Enable SPU run control. * * An outstanding enhancement for the PS3 would be to add a guard to check * for incorrect access to the spu problem state when the spu context is * disabled. This check could be implemented with a flag added to the spu * context that would inhibit mapping problem state pages, and a routine * to unmap spu problem state pages. When the spu is enabled with * ps3_enable_spu() the flag would be set allowing pages to be mapped, * and when the spu is disabled with ps3_disable_spu() the flag would be * cleared and the mapped problem state pages would be unmapped. */ static void ps3_enable_spu(struct spu_context *ctx) { } static void ps3_disable_spu(struct spu_context *ctx) { ctx->ops->runcntl_stop(ctx); } static const struct spu_management_ops spu_management_ps3_ops = { .enumerate_spus = ps3_enumerate_spus, .create_spu = ps3_create_spu, .destroy_spu = ps3_destroy_spu, .enable_spu = ps3_enable_spu, .disable_spu = ps3_disable_spu, .init_affinity = ps3_init_affinity, }; /* spu_priv1_ops */ static void int_mask_and(struct spu *spu, int class, u64 mask) { u64 old_mask; /* are these serialized by caller??? */ old_mask = spu_int_mask_get(spu, class); spu_int_mask_set(spu, class, old_mask & mask); } static void int_mask_or(struct spu *spu, int class, u64 mask) { u64 old_mask; old_mask = spu_int_mask_get(spu, class); spu_int_mask_set(spu, class, old_mask | mask); } static void int_mask_set(struct spu *spu, int class, u64 mask) { spu_pdata(spu)->cache.masks[class] = mask; lv1_set_spe_interrupt_mask(spu_pdata(spu)->spe_id, class, spu_pdata(spu)->cache.masks[class]); } static u64 int_mask_get(struct spu *spu, int class) { return spu_pdata(spu)->cache.masks[class]; } static void int_stat_clear(struct spu *spu, int class, u64 stat) { /* Note that MFC_DSISR will be cleared when class1[MF] is set. */ lv1_clear_spe_interrupt_status(spu_pdata(spu)->spe_id, class, stat, 0); } static u64 int_stat_get(struct spu *spu, int class) { u64 stat; lv1_get_spe_interrupt_status(spu_pdata(spu)->spe_id, class, &stat); return stat; } static void cpu_affinity_set(struct spu *spu, int cpu) { /* No support. */ } static u64 mfc_dar_get(struct spu *spu) { return in_be64(&spu_pdata(spu)->shadow->mfc_dar_RW); } static void mfc_dsisr_set(struct spu *spu, u64 dsisr) { /* Nothing to do, cleared in int_stat_clear(). */ } static u64 mfc_dsisr_get(struct spu *spu) { return in_be64(&spu_pdata(spu)->shadow->mfc_dsisr_RW); } static void mfc_sdr_setup(struct spu *spu) { /* Nothing to do. */ } static void mfc_sr1_set(struct spu *spu, u64 sr1) { /* Check bits allowed by HV. */ static const u64 allowed = ~(MFC_STATE1_LOCAL_STORAGE_DECODE_MASK | MFC_STATE1_PROBLEM_STATE_MASK); BUG_ON((sr1 & allowed) != (spu_pdata(spu)->cache.sr1 & allowed)); spu_pdata(spu)->cache.sr1 = sr1; lv1_set_spe_privilege_state_area_1_register( spu_pdata(spu)->spe_id, offsetof(struct spu_priv1, mfc_sr1_RW), spu_pdata(spu)->cache.sr1); } static u64 mfc_sr1_get(struct spu *spu) { return spu_pdata(spu)->cache.sr1; } static void mfc_tclass_id_set(struct spu *spu, u64 tclass_id) { spu_pdata(spu)->cache.tclass_id = tclass_id; lv1_set_spe_privilege_state_area_1_register( spu_pdata(spu)->spe_id, offsetof(struct spu_priv1, mfc_tclass_id_RW), spu_pdata(spu)->cache.tclass_id); } static u64 mfc_tclass_id_get(struct spu *spu) { return spu_pdata(spu)->cache.tclass_id; } static void tlb_invalidate(struct spu *spu) { /* Nothing to do. */ } static void resource_allocation_groupID_set(struct spu *spu, u64 id) { /* No support. */ } static u64 resource_allocation_groupID_get(struct spu *spu) { return 0; /* No support. */ } static void resource_allocation_enable_set(struct spu *spu, u64 enable) { /* No support. */ } static u64 resource_allocation_enable_get(struct spu *spu) { return 0; /* No support. */ } static const struct spu_priv1_ops spu_priv1_ps3_ops = { .int_mask_and = int_mask_and, .int_mask_or = int_mask_or, .int_mask_set = int_mask_set, .int_mask_get = int_mask_get, .int_stat_clear = int_stat_clear, .int_stat_get = int_stat_get, .cpu_affinity_set = cpu_affinity_set, .mfc_dar_get = mfc_dar_get, .mfc_dsisr_set = mfc_dsisr_set, .mfc_dsisr_get = mfc_dsisr_get, .mfc_sdr_setup = mfc_sdr_setup, .mfc_sr1_set = mfc_sr1_set, .mfc_sr1_get = mfc_sr1_get, .mfc_tclass_id_set = mfc_tclass_id_set, .mfc_tclass_id_get = mfc_tclass_id_get, .tlb_invalidate = tlb_invalidate, .resource_allocation_groupID_set = resource_allocation_groupID_set, .resource_allocation_groupID_get = resource_allocation_groupID_get, .resource_allocation_enable_set = resource_allocation_enable_set, .resource_allocation_enable_get = resource_allocation_enable_get, }; void ps3_spu_set_platform(void) { spu_priv1_ops = &spu_priv1_ps3_ops; spu_management_ops = &spu_management_ps3_ops; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1