Contributors: 44
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Nathan Fontenot |
729 |
22.67% |
5 |
6.10% |
Andrew Morton |
702 |
21.83% |
5 |
6.10% |
Paul Mackerras |
415 |
12.90% |
6 |
7.32% |
Robert Jennings |
179 |
5.57% |
2 |
2.44% |
Brian King |
177 |
5.50% |
3 |
3.66% |
Scott Cheloha |
169 |
5.25% |
1 |
1.22% |
Anton Blanchard |
161 |
5.01% |
6 |
7.32% |
Stephen Rothwell |
129 |
4.01% |
6 |
7.32% |
Laurent Dufour |
104 |
3.23% |
2 |
2.44% |
Nathan T. Lynch |
62 |
1.93% |
2 |
2.44% |
Shrikanth Hegde |
62 |
1.93% |
2 |
2.44% |
Nicholas Piggin |
48 |
1.49% |
3 |
3.66% |
Vaidyanathan Srinivasan |
47 |
1.46% |
1 |
1.22% |
Aravinda Prasad |
46 |
1.43% |
1 |
1.22% |
Benjamin Herrenschmidt |
25 |
0.78% |
3 |
3.66% |
Haren Myneni |
20 |
0.62% |
2 |
2.44% |
Will Schmidt |
19 |
0.59% |
2 |
2.44% |
Christophe Leroy |
16 |
0.50% |
1 |
1.22% |
Jeff Scheel |
14 |
0.44% |
1 |
1.22% |
Tyrel Datwyler |
10 |
0.31% |
1 |
1.22% |
Alexey Dobriyan |
8 |
0.25% |
1 |
1.22% |
Segher Boessenkool |
7 |
0.22% |
1 |
1.22% |
Olof Johansson |
6 |
0.19% |
1 |
1.22% |
Michael Bringmann |
5 |
0.16% |
1 |
1.22% |
Michael Ellerman |
5 |
0.16% |
2 |
2.44% |
Jeremy Kerr |
5 |
0.16% |
1 |
1.22% |
Suraj Jitindar Singh |
5 |
0.16% |
1 |
1.22% |
Ingo Molnar |
5 |
0.16% |
1 |
1.22% |
Al Viro |
4 |
0.12% |
2 |
2.44% |
Aneesh Kumar K.V |
4 |
0.12% |
1 |
1.22% |
Arnd Bergmann |
4 |
0.12% |
1 |
1.22% |
Harvey Harrison |
4 |
0.12% |
1 |
1.22% |
Denis V. Lunev |
3 |
0.09% |
1 |
1.22% |
Frans Pop |
2 |
0.06% |
1 |
1.22% |
Dmitry Torokhov |
2 |
0.06% |
1 |
1.22% |
Linus Torvalds (pre-git) |
2 |
0.06% |
1 |
1.22% |
Linus Torvalds |
2 |
0.06% |
2 |
2.44% |
Thomas Gleixner |
2 |
0.06% |
1 |
1.22% |
Russell Currey |
2 |
0.06% |
1 |
1.22% |
Yoann Padioleau |
1 |
0.03% |
1 |
1.22% |
Arjan van de Ven |
1 |
0.03% |
1 |
1.22% |
David Gibson |
1 |
0.03% |
1 |
1.22% |
Lucas De Marchi |
1 |
0.03% |
1 |
1.22% |
Joel H Schopp |
1 |
0.03% |
1 |
1.22% |
Total |
3216 |
|
82 |
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* PowerPC64 LPAR Configuration Information Driver
*
* Dave Engebretsen engebret@us.ibm.com
* Copyright (c) 2003 Dave Engebretsen
* Will Schmidt willschm@us.ibm.com
* SPLPAR updates, Copyright (c) 2003 Will Schmidt IBM Corporation.
* seq_file updates, Copyright (c) 2004 Will Schmidt IBM Corporation.
* Nathan Lynch nathanl@austin.ibm.com
* Added lparcfg_write, Copyright (C) 2004 Nathan Lynch IBM Corporation.
*
* This driver creates a proc file at /proc/ppc64/lparcfg which contains
* keyword - value pairs that specify the configuration of the partition.
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/proc_fs.h>
#include <linux/init.h>
#include <asm/papr-sysparm.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/hugetlb.h>
#include <asm/lppaca.h>
#include <asm/hvcall.h>
#include <asm/firmware.h>
#include <asm/rtas.h>
#include <asm/time.h>
#include <asm/vdso_datapage.h>
#include <asm/vio.h>
#include <asm/mmu.h>
#include <asm/machdep.h>
#include <asm/drmem.h>
#include "pseries.h"
#include "vas.h" /* pseries_vas_dlpar_cpu() */
/*
* This isn't a module but we expose that to userspace
* via /proc so leave the definitions here
*/
#define MODULE_VERS "1.9"
#define MODULE_NAME "lparcfg"
/* #define LPARCFG_DEBUG */
/*
* Track sum of all purrs across all processors. This is used to further
* calculate usage values by different applications
*/
static void cpu_get_purr(void *arg)
{
atomic64_t *sum = arg;
atomic64_add(mfspr(SPRN_PURR), sum);
}
static unsigned long get_purr(void)
{
atomic64_t purr = ATOMIC64_INIT(0);
on_each_cpu(cpu_get_purr, &purr, 1);
return atomic64_read(&purr);
}
/*
* Methods used to fetch LPAR data when running on a pSeries platform.
*/
struct hvcall_ppp_data {
u64 entitlement;
u64 unallocated_entitlement;
u16 group_num;
u16 pool_num;
u8 capped;
u8 weight;
u8 unallocated_weight;
u16 active_procs_in_pool;
u16 active_system_procs;
u16 phys_platform_procs;
u32 max_proc_cap_avail;
u32 entitled_proc_cap_avail;
};
/*
* H_GET_PPP hcall returns info in 4 parms.
* entitled_capacity,unallocated_capacity,
* aggregation, resource_capability).
*
* R4 = Entitled Processor Capacity Percentage.
* R5 = Unallocated Processor Capacity Percentage.
* R6 (AABBCCDDEEFFGGHH).
* XXXX - reserved (0)
* XXXX - reserved (0)
* XXXX - Group Number
* XXXX - Pool Number.
* R7 (IIJJKKLLMMNNOOPP).
* XX - reserved. (0)
* XX - bit 0-6 reserved (0). bit 7 is Capped indicator.
* XX - variable processor Capacity Weight
* XX - Unallocated Variable Processor Capacity Weight.
* XXXX - Active processors in Physical Processor Pool.
* XXXX - Processors active on platform.
* R8 (QQQQRRRRRRSSSSSS). if ibm,partition-performance-parameters-level >= 1
* XXXX - Physical platform procs allocated to virtualization.
* XXXXXX - Max procs capacity % available to the partitions pool.
* XXXXXX - Entitled procs capacity % available to the
* partitions pool.
*/
static unsigned int h_get_ppp(struct hvcall_ppp_data *ppp_data)
{
unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
long rc;
rc = plpar_hcall9(H_GET_PPP, retbuf);
ppp_data->entitlement = retbuf[0];
ppp_data->unallocated_entitlement = retbuf[1];
ppp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
ppp_data->pool_num = retbuf[2] & 0xffff;
ppp_data->capped = (retbuf[3] >> 6 * 8) & 0x01;
ppp_data->weight = (retbuf[3] >> 5 * 8) & 0xff;
ppp_data->unallocated_weight = (retbuf[3] >> 4 * 8) & 0xff;
ppp_data->active_procs_in_pool = (retbuf[3] >> 2 * 8) & 0xffff;
ppp_data->active_system_procs = retbuf[3] & 0xffff;
ppp_data->phys_platform_procs = retbuf[4] >> 6 * 8;
ppp_data->max_proc_cap_avail = (retbuf[4] >> 3 * 8) & 0xffffff;
ppp_data->entitled_proc_cap_avail = retbuf[4] & 0xffffff;
return rc;
}
static void show_gpci_data(struct seq_file *m)
{
struct hv_gpci_request_buffer *buf;
unsigned int affinity_score;
long ret;
buf = kmalloc(sizeof(*buf), GFP_KERNEL);
if (buf == NULL)
return;
/*
* Show the local LPAR's affinity score.
*
* 0xB1 selects the Affinity_Domain_Info_By_Partition subcall.
* The score is at byte 0xB in the output buffer.
*/
memset(&buf->params, 0, sizeof(buf->params));
buf->params.counter_request = cpu_to_be32(0xB1);
buf->params.starting_index = cpu_to_be32(-1); /* local LPAR */
buf->params.counter_info_version_in = 0x5; /* v5+ for score */
ret = plpar_hcall_norets(H_GET_PERF_COUNTER_INFO, virt_to_phys(buf),
sizeof(*buf));
if (ret != H_SUCCESS) {
pr_debug("hcall failed: H_GET_PERF_COUNTER_INFO: %ld, %x\n",
ret, be32_to_cpu(buf->params.detail_rc));
goto out;
}
affinity_score = buf->bytes[0xB];
seq_printf(m, "partition_affinity_score=%u\n", affinity_score);
out:
kfree(buf);
}
static long h_pic(unsigned long *pool_idle_time,
unsigned long *num_procs)
{
long rc;
unsigned long retbuf[PLPAR_HCALL_BUFSIZE] = {0};
rc = plpar_hcall(H_PIC, retbuf);
if (pool_idle_time)
*pool_idle_time = retbuf[0];
if (num_procs)
*num_procs = retbuf[1];
return rc;
}
unsigned long boot_pool_idle_time;
/*
* parse_ppp_data
* Parse out the data returned from h_get_ppp and h_pic
*/
static void parse_ppp_data(struct seq_file *m)
{
struct hvcall_ppp_data ppp_data;
struct device_node *root;
const __be32 *perf_level;
long rc;
rc = h_get_ppp(&ppp_data);
if (rc)
return;
seq_printf(m, "partition_entitled_capacity=%lld\n",
ppp_data.entitlement);
seq_printf(m, "group=%d\n", ppp_data.group_num);
seq_printf(m, "system_active_processors=%d\n",
ppp_data.active_system_procs);
/* pool related entries are appropriate for shared configs */
if (lppaca_shared_proc()) {
unsigned long pool_idle_time, pool_procs;
seq_printf(m, "pool=%d\n", ppp_data.pool_num);
/* report pool_capacity in percentage */
seq_printf(m, "pool_capacity=%d\n",
ppp_data.active_procs_in_pool * 100);
/* In case h_pic call is not successful, this would result in
* APP values being wrong in tools like lparstat.
*/
if (h_pic(&pool_idle_time, &pool_procs) == H_SUCCESS) {
seq_printf(m, "pool_idle_time=%ld\n", pool_idle_time);
seq_printf(m, "pool_num_procs=%ld\n", pool_procs);
seq_printf(m, "boot_pool_idle_time=%ld\n", boot_pool_idle_time);
}
}
seq_printf(m, "unallocated_capacity_weight=%d\n",
ppp_data.unallocated_weight);
seq_printf(m, "capacity_weight=%d\n", ppp_data.weight);
seq_printf(m, "capped=%d\n", ppp_data.capped);
seq_printf(m, "unallocated_capacity=%lld\n",
ppp_data.unallocated_entitlement);
/* The last bits of information returned from h_get_ppp are only
* valid if the ibm,partition-performance-parameters-level
* property is >= 1.
*/
root = of_find_node_by_path("/");
if (root) {
perf_level = of_get_property(root,
"ibm,partition-performance-parameters-level",
NULL);
if (perf_level && (be32_to_cpup(perf_level) >= 1)) {
seq_printf(m,
"physical_procs_allocated_to_virtualization=%d\n",
ppp_data.phys_platform_procs);
seq_printf(m, "max_proc_capacity_available=%d\n",
ppp_data.max_proc_cap_avail);
seq_printf(m, "entitled_proc_capacity_available=%d\n",
ppp_data.entitled_proc_cap_avail);
}
of_node_put(root);
}
}
/**
* parse_mpp_data
* Parse out data returned from h_get_mpp
*/
static void parse_mpp_data(struct seq_file *m)
{
struct hvcall_mpp_data mpp_data;
int rc;
rc = h_get_mpp(&mpp_data);
if (rc)
return;
seq_printf(m, "entitled_memory=%ld\n", mpp_data.entitled_mem);
if (mpp_data.mapped_mem != -1)
seq_printf(m, "mapped_entitled_memory=%ld\n",
mpp_data.mapped_mem);
seq_printf(m, "entitled_memory_group_number=%d\n", mpp_data.group_num);
seq_printf(m, "entitled_memory_pool_number=%d\n", mpp_data.pool_num);
seq_printf(m, "entitled_memory_weight=%d\n", mpp_data.mem_weight);
seq_printf(m, "unallocated_entitled_memory_weight=%d\n",
mpp_data.unallocated_mem_weight);
seq_printf(m, "unallocated_io_mapping_entitlement=%ld\n",
mpp_data.unallocated_entitlement);
if (mpp_data.pool_size != -1)
seq_printf(m, "entitled_memory_pool_size=%ld bytes\n",
mpp_data.pool_size);
seq_printf(m, "entitled_memory_loan_request=%ld\n",
mpp_data.loan_request);
seq_printf(m, "backing_memory=%ld bytes\n", mpp_data.backing_mem);
}
/**
* parse_mpp_x_data
* Parse out data returned from h_get_mpp_x
*/
static void parse_mpp_x_data(struct seq_file *m)
{
struct hvcall_mpp_x_data mpp_x_data;
if (!firmware_has_feature(FW_FEATURE_XCMO))
return;
if (h_get_mpp_x(&mpp_x_data))
return;
seq_printf(m, "coalesced_bytes=%ld\n", mpp_x_data.coalesced_bytes);
if (mpp_x_data.pool_coalesced_bytes)
seq_printf(m, "pool_coalesced_bytes=%ld\n",
mpp_x_data.pool_coalesced_bytes);
if (mpp_x_data.pool_purr_cycles)
seq_printf(m, "coalesce_pool_purr=%ld\n", mpp_x_data.pool_purr_cycles);
if (mpp_x_data.pool_spurr_cycles)
seq_printf(m, "coalesce_pool_spurr=%ld\n", mpp_x_data.pool_spurr_cycles);
}
/*
* Read the lpar name using the RTAS ibm,get-system-parameter call.
*
* The name read through this call is updated if changes are made by the end
* user on the hypervisor side.
*
* Some hypervisor (like Qemu) may not provide this value. In that case, a non
* null value is returned.
*/
static int read_rtas_lpar_name(struct seq_file *m)
{
struct papr_sysparm_buf *buf;
int err;
buf = papr_sysparm_buf_alloc();
if (!buf)
return -ENOMEM;
err = papr_sysparm_get(PAPR_SYSPARM_LPAR_NAME, buf);
if (!err)
seq_printf(m, "partition_name=%s\n", buf->val);
papr_sysparm_buf_free(buf);
return err;
}
/*
* Read the LPAR name from the Device Tree.
*
* The value read in the DT is not updated if the end-user is touching the LPAR
* name on the hypervisor side.
*/
static int read_dt_lpar_name(struct seq_file *m)
{
struct device_node *root = of_find_node_by_path("/");
const char *name;
int ret;
ret = of_property_read_string(root, "ibm,partition-name", &name);
of_node_put(root);
if (ret)
return -ENOENT;
seq_printf(m, "partition_name=%s\n", name);
return 0;
}
static void read_lpar_name(struct seq_file *m)
{
if (read_rtas_lpar_name(m))
read_dt_lpar_name(m);
}
#define SPLPAR_MAXLENGTH 1026*(sizeof(char))
/*
* parse_system_parameter_string()
* Retrieve the potential_processors, max_entitled_capacity and friends
* through the get-system-parameter rtas call. Replace keyword strings as
* necessary.
*/
static void parse_system_parameter_string(struct seq_file *m)
{
struct papr_sysparm_buf *buf;
buf = papr_sysparm_buf_alloc();
if (!buf)
return;
if (papr_sysparm_get(PAPR_SYSPARM_SHARED_PROC_LPAR_ATTRS, buf)) {
goto out_free;
} else {
const char *local_buffer;
int splpar_strlen;
int idx, w_idx;
char *workbuffer = kzalloc(SPLPAR_MAXLENGTH, GFP_KERNEL);
if (!workbuffer)
goto out_free;
splpar_strlen = be16_to_cpu(buf->len);
local_buffer = buf->val;
w_idx = 0;
idx = 0;
while ((*local_buffer) && (idx < splpar_strlen)) {
workbuffer[w_idx++] = local_buffer[idx++];
if ((local_buffer[idx] == ',')
|| (local_buffer[idx] == '\0')) {
workbuffer[w_idx] = '\0';
if (w_idx) {
/* avoid the empty string */
seq_printf(m, "%s\n", workbuffer);
}
memset(workbuffer, 0, SPLPAR_MAXLENGTH);
idx++; /* skip the comma */
w_idx = 0;
} else if (local_buffer[idx] == '=') {
/* code here to replace workbuffer contents
with different keyword strings */
if (0 == strcmp(workbuffer, "MaxEntCap")) {
strcpy(workbuffer,
"partition_max_entitled_capacity");
w_idx = strlen(workbuffer);
}
if (0 == strcmp(workbuffer, "MaxPlatProcs")) {
strcpy(workbuffer,
"system_potential_processors");
w_idx = strlen(workbuffer);
}
}
}
kfree(workbuffer);
local_buffer -= 2; /* back up over strlen value */
}
out_free:
papr_sysparm_buf_free(buf);
}
/* Return the number of processors in the system.
* This function reads through the device tree and counts
* the virtual processors, this does not include threads.
*/
static int lparcfg_count_active_processors(void)
{
struct device_node *cpus_dn;
int count = 0;
for_each_node_by_type(cpus_dn, "cpu") {
#ifdef LPARCFG_DEBUG
printk(KERN_ERR "cpus_dn %p\n", cpus_dn);
#endif
count++;
}
return count;
}
static void pseries_cmo_data(struct seq_file *m)
{
int cpu;
unsigned long cmo_faults = 0;
unsigned long cmo_fault_time = 0;
seq_printf(m, "cmo_enabled=%d\n", firmware_has_feature(FW_FEATURE_CMO));
if (!firmware_has_feature(FW_FEATURE_CMO))
return;
for_each_possible_cpu(cpu) {
cmo_faults += be64_to_cpu(lppaca_of(cpu).cmo_faults);
cmo_fault_time += be64_to_cpu(lppaca_of(cpu).cmo_fault_time);
}
seq_printf(m, "cmo_faults=%lu\n", cmo_faults);
seq_printf(m, "cmo_fault_time_usec=%lu\n",
cmo_fault_time / tb_ticks_per_usec);
seq_printf(m, "cmo_primary_psp=%d\n", cmo_get_primary_psp());
seq_printf(m, "cmo_secondary_psp=%d\n", cmo_get_secondary_psp());
seq_printf(m, "cmo_page_size=%lu\n", cmo_get_page_size());
}
static void splpar_dispatch_data(struct seq_file *m)
{
int cpu;
unsigned long dispatches = 0;
unsigned long dispatch_dispersions = 0;
for_each_possible_cpu(cpu) {
dispatches += be32_to_cpu(lppaca_of(cpu).yield_count);
dispatch_dispersions +=
be32_to_cpu(lppaca_of(cpu).dispersion_count);
}
seq_printf(m, "dispatches=%lu\n", dispatches);
seq_printf(m, "dispatch_dispersions=%lu\n", dispatch_dispersions);
}
static void parse_em_data(struct seq_file *m)
{
unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
if (firmware_has_feature(FW_FEATURE_LPAR) &&
plpar_hcall(H_GET_EM_PARMS, retbuf) == H_SUCCESS)
seq_printf(m, "power_mode_data=%016lx\n", retbuf[0]);
}
static void maxmem_data(struct seq_file *m)
{
unsigned long maxmem = 0;
maxmem += (unsigned long)drmem_info->n_lmbs * drmem_info->lmb_size;
maxmem += hugetlb_total_pages() * PAGE_SIZE;
seq_printf(m, "MaxMem=%lu\n", maxmem);
}
static int pseries_lparcfg_data(struct seq_file *m, void *v)
{
int partition_potential_processors;
int partition_active_processors;
struct device_node *rtas_node;
const __be32 *lrdrp = NULL;
rtas_node = of_find_node_by_path("/rtas");
if (rtas_node)
lrdrp = of_get_property(rtas_node, "ibm,lrdr-capacity", NULL);
if (lrdrp == NULL) {
partition_potential_processors = vdso_data->processorCount;
} else {
partition_potential_processors = be32_to_cpup(lrdrp + 4);
}
of_node_put(rtas_node);
partition_active_processors = lparcfg_count_active_processors();
if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
/* this call handles the ibm,get-system-parameter contents */
read_lpar_name(m);
parse_system_parameter_string(m);
parse_ppp_data(m);
parse_mpp_data(m);
parse_mpp_x_data(m);
pseries_cmo_data(m);
splpar_dispatch_data(m);
seq_printf(m, "purr=%ld\n", get_purr());
seq_printf(m, "tbr=%ld\n", mftb());
} else { /* non SPLPAR case */
seq_printf(m, "system_active_processors=%d\n",
partition_potential_processors);
seq_printf(m, "system_potential_processors=%d\n",
partition_potential_processors);
seq_printf(m, "partition_max_entitled_capacity=%d\n",
partition_potential_processors * 100);
seq_printf(m, "partition_entitled_capacity=%d\n",
partition_active_processors * 100);
}
show_gpci_data(m);
seq_printf(m, "partition_active_processors=%d\n",
partition_active_processors);
seq_printf(m, "partition_potential_processors=%d\n",
partition_potential_processors);
seq_printf(m, "shared_processor_mode=%d\n",
lppaca_shared_proc());
#ifdef CONFIG_PPC_64S_HASH_MMU
if (!radix_enabled())
seq_printf(m, "slb_size=%d\n", mmu_slb_size);
#endif
parse_em_data(m);
maxmem_data(m);
seq_printf(m, "security_flavor=%u\n", pseries_security_flavor);
return 0;
}
static ssize_t update_ppp(u64 *entitlement, u8 *weight)
{
struct hvcall_ppp_data ppp_data;
u8 new_weight;
u64 new_entitled;
ssize_t retval;
/* Get our current parameters */
retval = h_get_ppp(&ppp_data);
if (retval)
return retval;
if (entitlement) {
new_weight = ppp_data.weight;
new_entitled = *entitlement;
} else if (weight) {
new_weight = *weight;
new_entitled = ppp_data.entitlement;
} else
return -EINVAL;
pr_debug("%s: current_entitled = %llu, current_weight = %u\n",
__func__, ppp_data.entitlement, ppp_data.weight);
pr_debug("%s: new_entitled = %llu, new_weight = %u\n",
__func__, new_entitled, new_weight);
retval = plpar_hcall_norets(H_SET_PPP, new_entitled, new_weight);
return retval;
}
/**
* update_mpp
*
* Update the memory entitlement and weight for the partition. Caller must
* specify either a new entitlement or weight, not both, to be updated
* since the h_set_mpp call takes both entitlement and weight as parameters.
*/
static ssize_t update_mpp(u64 *entitlement, u8 *weight)
{
struct hvcall_mpp_data mpp_data;
u64 new_entitled;
u8 new_weight;
ssize_t rc;
if (entitlement) {
/* Check with vio to ensure the new memory entitlement
* can be handled.
*/
rc = vio_cmo_entitlement_update(*entitlement);
if (rc)
return rc;
}
rc = h_get_mpp(&mpp_data);
if (rc)
return rc;
if (entitlement) {
new_weight = mpp_data.mem_weight;
new_entitled = *entitlement;
} else if (weight) {
new_weight = *weight;
new_entitled = mpp_data.entitled_mem;
} else
return -EINVAL;
pr_debug("%s: current_entitled = %lu, current_weight = %u\n",
__func__, mpp_data.entitled_mem, mpp_data.mem_weight);
pr_debug("%s: new_entitled = %llu, new_weight = %u\n",
__func__, new_entitled, new_weight);
rc = plpar_hcall_norets(H_SET_MPP, new_entitled, new_weight);
return rc;
}
/*
* Interface for changing system parameters (variable capacity weight
* and entitled capacity). Format of input is "param_name=value";
* anything after value is ignored. Valid parameters at this time are
* "partition_entitled_capacity" and "capacity_weight". We use
* H_SET_PPP to alter parameters.
*
* This function should be invoked only on systems with
* FW_FEATURE_SPLPAR.
*/
static ssize_t lparcfg_write(struct file *file, const char __user * buf,
size_t count, loff_t * off)
{
char kbuf[64];
char *tmp;
u64 new_entitled, *new_entitled_ptr = &new_entitled;
u8 new_weight, *new_weight_ptr = &new_weight;
ssize_t retval;
if (!firmware_has_feature(FW_FEATURE_SPLPAR))
return -EINVAL;
if (count > sizeof(kbuf))
return -EINVAL;
if (copy_from_user(kbuf, buf, count))
return -EFAULT;
kbuf[count - 1] = '\0';
tmp = strchr(kbuf, '=');
if (!tmp)
return -EINVAL;
*tmp++ = '\0';
if (!strcmp(kbuf, "partition_entitled_capacity")) {
char *endp;
*new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10);
if (endp == tmp)
return -EINVAL;
retval = update_ppp(new_entitled_ptr, NULL);
if (retval == H_SUCCESS || retval == H_CONSTRAINED) {
/*
* The hypervisor assigns VAS resources based
* on entitled capacity for shared mode.
* Reconfig VAS windows based on DLPAR CPU events.
*/
if (pseries_vas_dlpar_cpu() != 0)
retval = H_HARDWARE;
}
} else if (!strcmp(kbuf, "capacity_weight")) {
char *endp;
*new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10);
if (endp == tmp)
return -EINVAL;
retval = update_ppp(NULL, new_weight_ptr);
} else if (!strcmp(kbuf, "entitled_memory")) {
char *endp;
*new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10);
if (endp == tmp)
return -EINVAL;
retval = update_mpp(new_entitled_ptr, NULL);
} else if (!strcmp(kbuf, "entitled_memory_weight")) {
char *endp;
*new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10);
if (endp == tmp)
return -EINVAL;
retval = update_mpp(NULL, new_weight_ptr);
} else
return -EINVAL;
if (retval == H_SUCCESS || retval == H_CONSTRAINED) {
retval = count;
} else if (retval == H_BUSY) {
retval = -EBUSY;
} else if (retval == H_HARDWARE) {
retval = -EIO;
} else if (retval == H_PARAMETER) {
retval = -EINVAL;
}
return retval;
}
static int lparcfg_data(struct seq_file *m, void *v)
{
struct device_node *rootdn;
const char *model = "";
const char *system_id = "";
const char *tmp;
const __be32 *lp_index_ptr;
unsigned int lp_index = 0;
seq_printf(m, "%s %s\n", MODULE_NAME, MODULE_VERS);
rootdn = of_find_node_by_path("/");
if (rootdn) {
tmp = of_get_property(rootdn, "model", NULL);
if (tmp)
model = tmp;
tmp = of_get_property(rootdn, "system-id", NULL);
if (tmp)
system_id = tmp;
lp_index_ptr = of_get_property(rootdn, "ibm,partition-no",
NULL);
if (lp_index_ptr)
lp_index = be32_to_cpup(lp_index_ptr);
of_node_put(rootdn);
}
seq_printf(m, "serial_number=%s\n", system_id);
seq_printf(m, "system_type=%s\n", model);
seq_printf(m, "partition_id=%d\n", (int)lp_index);
return pseries_lparcfg_data(m, v);
}
static int lparcfg_open(struct inode *inode, struct file *file)
{
return single_open(file, lparcfg_data, NULL);
}
static const struct proc_ops lparcfg_proc_ops = {
.proc_read = seq_read,
.proc_write = lparcfg_write,
.proc_open = lparcfg_open,
.proc_release = single_release,
.proc_lseek = seq_lseek,
};
static int __init lparcfg_init(void)
{
umode_t mode = 0444;
long retval;
/* Allow writing if we have FW_FEATURE_SPLPAR */
if (firmware_has_feature(FW_FEATURE_SPLPAR))
mode |= 0200;
if (!proc_create("powerpc/lparcfg", mode, NULL, &lparcfg_proc_ops)) {
printk(KERN_ERR "Failed to create powerpc/lparcfg\n");
return -EIO;
}
/* If this call fails, it would result in APP values
* being wrong for since boot reports of lparstat
*/
retval = h_pic(&boot_pool_idle_time, NULL);
if (retval != H_SUCCESS)
pr_debug("H_PIC failed during lparcfg init retval: %ld\n",
retval);
return 0;
}
machine_device_initcall(pseries, lparcfg_init);