Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Michael Ellerman | 1501 | 51.51% | 10 | 20.00% |
Cédric Le Goater | 1004 | 34.45% | 9 | 18.00% |
Brian King | 175 | 6.01% | 3 | 6.00% |
Anton Blanchard | 89 | 3.05% | 4 | 8.00% |
Gavin Shan | 36 | 1.24% | 3 | 6.00% |
Alexander Gordeev | 28 | 0.96% | 1 | 2.00% |
Nishanth Aravamudan | 13 | 0.45% | 1 | 2.00% |
Alexey Kardashevskiy | 12 | 0.41% | 2 | 4.00% |
Benjamin Herrenschmidt | 12 | 0.41% | 4 | 8.00% |
Thomas Gleixner | 11 | 0.38% | 5 | 10.00% |
Kumar Gala | 8 | 0.27% | 1 | 2.00% |
Oliver O'Halloran | 6 | 0.21% | 1 | 2.00% |
Rob Herring | 5 | 0.17% | 1 | 2.00% |
Nathan T. Lynch | 4 | 0.14% | 1 | 2.00% |
Greg Kurz | 3 | 0.10% | 1 | 2.00% |
Christophe Leroy | 3 | 0.10% | 1 | 2.00% |
Daniel Axtens | 3 | 0.10% | 1 | 2.00% |
Sam Bobroff | 1 | 0.03% | 1 | 2.00% |
Total | 2914 | 50 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2006 Jake Moilanen <moilanen@austin.ibm.com>, IBM Corp. * Copyright 2006-2007 Michael Ellerman, IBM Corp. */ #include <linux/crash_dump.h> #include <linux/device.h> #include <linux/irq.h> #include <linux/irqdomain.h> #include <linux/msi.h> #include <asm/rtas.h> #include <asm/hw_irq.h> #include <asm/ppc-pci.h> #include <asm/machdep.h> #include <asm/xive.h> #include "pseries.h" static int query_token, change_token; #define RTAS_QUERY_FN 0 #define RTAS_CHANGE_FN 1 #define RTAS_RESET_FN 2 #define RTAS_CHANGE_MSI_FN 3 #define RTAS_CHANGE_MSIX_FN 4 #define RTAS_CHANGE_32MSI_FN 5 #define RTAS_CHANGE_32MSIX_FN 6 /* RTAS Helpers */ static int rtas_change_msi(struct pci_dn *pdn, u32 func, u32 num_irqs) { u32 addr, seq_num, rtas_ret[3]; unsigned long buid; int rc; addr = rtas_config_addr(pdn->busno, pdn->devfn, 0); buid = pdn->phb->buid; seq_num = 1; do { if (func == RTAS_CHANGE_MSI_FN || func == RTAS_CHANGE_MSIX_FN || func == RTAS_CHANGE_32MSI_FN || func == RTAS_CHANGE_32MSIX_FN) rc = rtas_call(change_token, 6, 4, rtas_ret, addr, BUID_HI(buid), BUID_LO(buid), func, num_irqs, seq_num); else rc = rtas_call(change_token, 6, 3, rtas_ret, addr, BUID_HI(buid), BUID_LO(buid), func, num_irqs, seq_num); seq_num = rtas_ret[1]; } while (rtas_busy_delay(rc)); /* * If the RTAS call succeeded, return the number of irqs allocated. * If not, make sure we return a negative error code. */ if (rc == 0) rc = rtas_ret[0]; else if (rc > 0) rc = -rc; pr_debug("rtas_msi: ibm,change_msi(func=%d,num=%d), got %d rc = %d\n", func, num_irqs, rtas_ret[0], rc); return rc; } static void rtas_disable_msi(struct pci_dev *pdev) { struct pci_dn *pdn; pdn = pci_get_pdn(pdev); if (!pdn) return; /* * disabling MSI with the explicit interface also disables MSI-X */ if (rtas_change_msi(pdn, RTAS_CHANGE_MSI_FN, 0) != 0) { /* * may have failed because explicit interface is not * present */ if (rtas_change_msi(pdn, RTAS_CHANGE_FN, 0) != 0) { pr_debug("rtas_msi: Setting MSIs to 0 failed!\n"); } } } static int rtas_query_irq_number(struct pci_dn *pdn, int offset) { u32 addr, rtas_ret[2]; unsigned long buid; int rc; addr = rtas_config_addr(pdn->busno, pdn->devfn, 0); buid = pdn->phb->buid; do { rc = rtas_call(query_token, 4, 3, rtas_ret, addr, BUID_HI(buid), BUID_LO(buid), offset); } while (rtas_busy_delay(rc)); if (rc) { pr_debug("rtas_msi: error (%d) querying source number\n", rc); return rc; } return rtas_ret[0]; } static int check_req(struct pci_dev *pdev, int nvec, char *prop_name) { struct device_node *dn; const __be32 *p; u32 req_msi; dn = pci_device_to_OF_node(pdev); p = of_get_property(dn, prop_name, NULL); if (!p) { pr_debug("rtas_msi: No %s on %pOF\n", prop_name, dn); return -ENOENT; } req_msi = be32_to_cpup(p); if (req_msi < nvec) { pr_debug("rtas_msi: %s requests < %d MSIs\n", prop_name, nvec); if (req_msi == 0) /* Be paranoid */ return -ENOSPC; return req_msi; } return 0; } static int check_req_msi(struct pci_dev *pdev, int nvec) { return check_req(pdev, nvec, "ibm,req#msi"); } static int check_req_msix(struct pci_dev *pdev, int nvec) { return check_req(pdev, nvec, "ibm,req#msi-x"); } /* Quota calculation */ static struct device_node *__find_pe_total_msi(struct device_node *node, int *total) { struct device_node *dn; const __be32 *p; dn = of_node_get(node); while (dn) { p = of_get_property(dn, "ibm,pe-total-#msi", NULL); if (p) { pr_debug("rtas_msi: found prop on dn %pOF\n", dn); *total = be32_to_cpup(p); return dn; } dn = of_get_next_parent(dn); } return NULL; } static struct device_node *find_pe_total_msi(struct pci_dev *dev, int *total) { return __find_pe_total_msi(pci_device_to_OF_node(dev), total); } static struct device_node *find_pe_dn(struct pci_dev *dev, int *total) { struct device_node *dn; struct eeh_dev *edev; /* Found our PE and assume 8 at that point. */ dn = pci_device_to_OF_node(dev); if (!dn) return NULL; /* Get the top level device in the PE */ edev = pdn_to_eeh_dev(PCI_DN(dn)); if (edev->pe) edev = list_first_entry(&edev->pe->edevs, struct eeh_dev, entry); dn = pci_device_to_OF_node(edev->pdev); if (!dn) return NULL; /* We actually want the parent */ dn = of_get_parent(dn); if (!dn) return NULL; /* Hardcode of 8 for old firmwares */ *total = 8; pr_debug("rtas_msi: using PE dn %pOF\n", dn); return dn; } struct msi_counts { struct device_node *requestor; int num_devices; int request; int quota; int spare; int over_quota; }; static void *count_non_bridge_devices(struct device_node *dn, void *data) { struct msi_counts *counts = data; const __be32 *p; u32 class; pr_debug("rtas_msi: counting %pOF\n", dn); p = of_get_property(dn, "class-code", NULL); class = p ? be32_to_cpup(p) : 0; if ((class >> 8) != PCI_CLASS_BRIDGE_PCI) counts->num_devices++; return NULL; } static void *count_spare_msis(struct device_node *dn, void *data) { struct msi_counts *counts = data; const __be32 *p; int req; if (dn == counts->requestor) req = counts->request; else { /* We don't know if a driver will try to use MSI or MSI-X, * so we just have to punt and use the larger of the two. */ req = 0; p = of_get_property(dn, "ibm,req#msi", NULL); if (p) req = be32_to_cpup(p); p = of_get_property(dn, "ibm,req#msi-x", NULL); if (p) req = max(req, (int)be32_to_cpup(p)); } if (req < counts->quota) counts->spare += counts->quota - req; else if (req > counts->quota) counts->over_quota++; return NULL; } static int msi_quota_for_device(struct pci_dev *dev, int request) { struct device_node *pe_dn; struct msi_counts counts; int total; pr_debug("rtas_msi: calc quota for %s, request %d\n", pci_name(dev), request); pe_dn = find_pe_total_msi(dev, &total); if (!pe_dn) pe_dn = find_pe_dn(dev, &total); if (!pe_dn) { pr_err("rtas_msi: couldn't find PE for %s\n", pci_name(dev)); goto out; } pr_debug("rtas_msi: found PE %pOF\n", pe_dn); memset(&counts, 0, sizeof(struct msi_counts)); /* Work out how many devices we have below this PE */ pci_traverse_device_nodes(pe_dn, count_non_bridge_devices, &counts); if (counts.num_devices == 0) { pr_err("rtas_msi: found 0 devices under PE for %s\n", pci_name(dev)); goto out; } counts.quota = total / counts.num_devices; if (request <= counts.quota) goto out; /* else, we have some more calculating to do */ counts.requestor = pci_device_to_OF_node(dev); counts.request = request; pci_traverse_device_nodes(pe_dn, count_spare_msis, &counts); /* If the quota isn't an integer multiple of the total, we can * use the remainder as spare MSIs for anyone that wants them. */ counts.spare += total % counts.num_devices; /* Divide any spare by the number of over-quota requestors */ if (counts.over_quota) counts.quota += counts.spare / counts.over_quota; /* And finally clamp the request to the possibly adjusted quota */ request = min(counts.quota, request); pr_debug("rtas_msi: request clamped to quota %d\n", request); out: of_node_put(pe_dn); return request; } static void rtas_hack_32bit_msi_gen2(struct pci_dev *pdev) { u32 addr_hi, addr_lo; /* * We should only get in here for IODA1 configs. This is based on the * fact that we using RTAS for MSIs, we don't have the 32 bit MSI RTAS * support, and we are in a PCIe Gen2 slot. */ dev_info(&pdev->dev, "rtas_msi: No 32 bit MSI firmware support, forcing 32 bit MSI\n"); pci_read_config_dword(pdev, pdev->msi_cap + PCI_MSI_ADDRESS_HI, &addr_hi); addr_lo = 0xffff0000 | ((addr_hi >> (48 - 32)) << 4); pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_ADDRESS_LO, addr_lo); pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_ADDRESS_HI, 0); } static int rtas_prepare_msi_irqs(struct pci_dev *pdev, int nvec_in, int type, msi_alloc_info_t *arg) { struct pci_dn *pdn; int quota, rc; int nvec = nvec_in; int use_32bit_msi_hack = 0; if (type == PCI_CAP_ID_MSIX) rc = check_req_msix(pdev, nvec); else rc = check_req_msi(pdev, nvec); if (rc) return rc; quota = msi_quota_for_device(pdev, nvec); if (quota && quota < nvec) return quota; /* * Firmware currently refuse any non power of two allocation * so we round up if the quota will allow it. */ if (type == PCI_CAP_ID_MSIX) { int m = roundup_pow_of_two(nvec); quota = msi_quota_for_device(pdev, m); if (quota >= m) nvec = m; } pdn = pci_get_pdn(pdev); /* * Try the new more explicit firmware interface, if that fails fall * back to the old interface. The old interface is known to never * return MSI-Xs. */ again: if (type == PCI_CAP_ID_MSI) { if (pdev->no_64bit_msi) { rc = rtas_change_msi(pdn, RTAS_CHANGE_32MSI_FN, nvec); if (rc < 0) { /* * We only want to run the 32 bit MSI hack below if * the max bus speed is Gen2 speed */ if (pdev->bus->max_bus_speed != PCIE_SPEED_5_0GT) return rc; use_32bit_msi_hack = 1; } } else rc = -1; if (rc < 0) rc = rtas_change_msi(pdn, RTAS_CHANGE_MSI_FN, nvec); if (rc < 0) { pr_debug("rtas_msi: trying the old firmware call.\n"); rc = rtas_change_msi(pdn, RTAS_CHANGE_FN, nvec); } if (use_32bit_msi_hack && rc > 0) rtas_hack_32bit_msi_gen2(pdev); } else { if (pdev->no_64bit_msi) rc = rtas_change_msi(pdn, RTAS_CHANGE_32MSIX_FN, nvec); else rc = rtas_change_msi(pdn, RTAS_CHANGE_MSIX_FN, nvec); } if (rc != nvec) { if (nvec != nvec_in) { nvec = nvec_in; goto again; } pr_debug("rtas_msi: rtas_change_msi() failed\n"); return rc; } return 0; } static int pseries_msi_ops_prepare(struct irq_domain *domain, struct device *dev, int nvec, msi_alloc_info_t *arg) { struct pci_dev *pdev = to_pci_dev(dev); int type = pdev->msix_enabled ? PCI_CAP_ID_MSIX : PCI_CAP_ID_MSI; return rtas_prepare_msi_irqs(pdev, nvec, type, arg); } /* * ->msi_free() is called before irq_domain_free_irqs_top() when the * handler data is still available. Use that to clear the XIVE * controller data. */ static void pseries_msi_ops_msi_free(struct irq_domain *domain, struct msi_domain_info *info, unsigned int irq) { if (xive_enabled()) xive_irq_free_data(irq); } /* * RTAS can not disable one MSI at a time. It's all or nothing. Do it * at the end after all IRQs have been freed. */ static void pseries_msi_post_free(struct irq_domain *domain, struct device *dev) { if (WARN_ON_ONCE(!dev_is_pci(dev))) return; rtas_disable_msi(to_pci_dev(dev)); } static struct msi_domain_ops pseries_pci_msi_domain_ops = { .msi_prepare = pseries_msi_ops_prepare, .msi_free = pseries_msi_ops_msi_free, .msi_post_free = pseries_msi_post_free, }; static void pseries_msi_shutdown(struct irq_data *d) { d = d->parent_data; if (d->chip->irq_shutdown) d->chip->irq_shutdown(d); } static void pseries_msi_mask(struct irq_data *d) { pci_msi_mask_irq(d); irq_chip_mask_parent(d); } static void pseries_msi_unmask(struct irq_data *d) { pci_msi_unmask_irq(d); irq_chip_unmask_parent(d); } static void pseries_msi_write_msg(struct irq_data *data, struct msi_msg *msg) { struct msi_desc *entry = irq_data_get_msi_desc(data); /* * Do not update the MSIx vector table. It's not strictly necessary * because the table is initialized by the underlying hypervisor, PowerVM * or QEMU/KVM. However, if the MSIx vector entry is cleared, any further * activation will fail. This can happen in some drivers (eg. IPR) which * deactivate an IRQ used for testing MSI support. */ entry->msg = *msg; } static struct irq_chip pseries_pci_msi_irq_chip = { .name = "pSeries-PCI-MSI", .irq_shutdown = pseries_msi_shutdown, .irq_mask = pseries_msi_mask, .irq_unmask = pseries_msi_unmask, .irq_eoi = irq_chip_eoi_parent, .irq_write_msi_msg = pseries_msi_write_msg, }; /* * Set MSI_FLAG_MSIX_CONTIGUOUS as there is no way to express to * firmware to request a discontiguous or non-zero based range of * MSI-X entries. Core code will reject such setup attempts. */ static struct msi_domain_info pseries_msi_domain_info = { .flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX | MSI_FLAG_MSIX_CONTIGUOUS), .ops = &pseries_pci_msi_domain_ops, .chip = &pseries_pci_msi_irq_chip, }; static void pseries_msi_compose_msg(struct irq_data *data, struct msi_msg *msg) { __pci_read_msi_msg(irq_data_get_msi_desc(data), msg); } static struct irq_chip pseries_msi_irq_chip = { .name = "pSeries-MSI", .irq_shutdown = pseries_msi_shutdown, .irq_mask = irq_chip_mask_parent, .irq_unmask = irq_chip_unmask_parent, .irq_eoi = irq_chip_eoi_parent, .irq_set_affinity = irq_chip_set_affinity_parent, .irq_compose_msi_msg = pseries_msi_compose_msg, }; static int pseries_irq_parent_domain_alloc(struct irq_domain *domain, unsigned int virq, irq_hw_number_t hwirq) { struct irq_fwspec parent_fwspec; int ret; parent_fwspec.fwnode = domain->parent->fwnode; parent_fwspec.param_count = 2; parent_fwspec.param[0] = hwirq; parent_fwspec.param[1] = IRQ_TYPE_EDGE_RISING; ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &parent_fwspec); if (ret) return ret; return 0; } static int pseries_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs, void *arg) { struct pci_controller *phb = domain->host_data; msi_alloc_info_t *info = arg; struct msi_desc *desc = info->desc; struct pci_dev *pdev = msi_desc_to_pci_dev(desc); int hwirq; int i, ret; hwirq = rtas_query_irq_number(pci_get_pdn(pdev), desc->msi_index); if (hwirq < 0) { dev_err(&pdev->dev, "Failed to query HW IRQ: %d\n", hwirq); return hwirq; } dev_dbg(&pdev->dev, "%s bridge %pOF %d/%x #%d\n", __func__, phb->dn, virq, hwirq, nr_irqs); for (i = 0; i < nr_irqs; i++) { ret = pseries_irq_parent_domain_alloc(domain, virq + i, hwirq + i); if (ret) goto out; irq_domain_set_hwirq_and_chip(domain, virq + i, hwirq + i, &pseries_msi_irq_chip, domain->host_data); } return 0; out: /* TODO: handle RTAS cleanup in ->msi_finish() ? */ irq_domain_free_irqs_parent(domain, virq, i - 1); return ret; } static void pseries_irq_domain_free(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs) { struct irq_data *d = irq_domain_get_irq_data(domain, virq); struct pci_controller *phb = irq_data_get_irq_chip_data(d); pr_debug("%s bridge %pOF %d #%d\n", __func__, phb->dn, virq, nr_irqs); /* XIVE domain data is cleared through ->msi_free() */ } static const struct irq_domain_ops pseries_irq_domain_ops = { .alloc = pseries_irq_domain_alloc, .free = pseries_irq_domain_free, }; static int __pseries_msi_allocate_domains(struct pci_controller *phb, unsigned int count) { struct irq_domain *parent = irq_get_default_host(); phb->fwnode = irq_domain_alloc_named_id_fwnode("pSeries-MSI", phb->global_number); if (!phb->fwnode) return -ENOMEM; phb->dev_domain = irq_domain_create_hierarchy(parent, 0, count, phb->fwnode, &pseries_irq_domain_ops, phb); if (!phb->dev_domain) { pr_err("PCI: failed to create IRQ domain bridge %pOF (domain %d)\n", phb->dn, phb->global_number); irq_domain_free_fwnode(phb->fwnode); return -ENOMEM; } phb->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(phb->dn), &pseries_msi_domain_info, phb->dev_domain); if (!phb->msi_domain) { pr_err("PCI: failed to create MSI IRQ domain bridge %pOF (domain %d)\n", phb->dn, phb->global_number); irq_domain_free_fwnode(phb->fwnode); irq_domain_remove(phb->dev_domain); return -ENOMEM; } return 0; } int pseries_msi_allocate_domains(struct pci_controller *phb) { int count; if (!__find_pe_total_msi(phb->dn, &count)) { pr_err("PCI: failed to find MSIs for bridge %pOF (domain %d)\n", phb->dn, phb->global_number); return -ENOSPC; } return __pseries_msi_allocate_domains(phb, count); } void pseries_msi_free_domains(struct pci_controller *phb) { if (phb->msi_domain) irq_domain_remove(phb->msi_domain); if (phb->dev_domain) irq_domain_remove(phb->dev_domain); if (phb->fwnode) irq_domain_free_fwnode(phb->fwnode); } static void rtas_msi_pci_irq_fixup(struct pci_dev *pdev) { /* No LSI -> leave MSIs (if any) configured */ if (!pdev->irq) { dev_dbg(&pdev->dev, "rtas_msi: no LSI, nothing to do.\n"); return; } /* No MSI -> MSIs can't have been assigned by fw, leave LSI */ if (check_req_msi(pdev, 1) && check_req_msix(pdev, 1)) { dev_dbg(&pdev->dev, "rtas_msi: no req#msi/x, nothing to do.\n"); return; } dev_dbg(&pdev->dev, "rtas_msi: disabling existing MSI.\n"); rtas_disable_msi(pdev); } static int rtas_msi_init(void) { query_token = rtas_function_token(RTAS_FN_IBM_QUERY_INTERRUPT_SOURCE_NUMBER); change_token = rtas_function_token(RTAS_FN_IBM_CHANGE_MSI); if ((query_token == RTAS_UNKNOWN_SERVICE) || (change_token == RTAS_UNKNOWN_SERVICE)) { pr_debug("rtas_msi: no RTAS tokens, no MSI support.\n"); return -1; } pr_debug("rtas_msi: Registering RTAS MSI callbacks.\n"); WARN_ON(ppc_md.pci_irq_fixup); ppc_md.pci_irq_fixup = rtas_msi_pci_irq_fixup; return 0; } machine_arch_initcall(pseries, rtas_msi_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1