Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Anton Vorontsov | 1635 | 98.08% | 2 | 16.67% |
Rob Herring | 10 | 0.60% | 2 | 16.67% |
Jakob Koschel | 6 | 0.36% | 1 | 8.33% |
Thierry Reding | 4 | 0.24% | 1 | 8.33% |
Paul Gortmaker | 3 | 0.18% | 1 | 8.33% |
Li Yang | 3 | 0.18% | 1 | 8.33% |
Linus Torvalds (pre-git) | 2 | 0.12% | 1 | 8.33% |
Thomas Gleixner | 2 | 0.12% | 1 | 8.33% |
Michael Ellerman | 1 | 0.06% | 1 | 8.33% |
Linus Torvalds | 1 | 0.06% | 1 | 8.33% |
Total | 1667 | 12 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Freescale General-purpose Timers Module * * Copyright (c) Freescale Semiconductor, Inc. 2006. * Shlomi Gridish <gridish@freescale.com> * Jerry Huang <Chang-Ming.Huang@freescale.com> * Copyright (c) MontaVista Software, Inc. 2008. * Anton Vorontsov <avorontsov@ru.mvista.com> */ #include <linux/kernel.h> #include <linux/err.h> #include <linux/errno.h> #include <linux/list.h> #include <linux/io.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/spinlock.h> #include <linux/bitops.h> #include <linux/slab.h> #include <linux/export.h> #include <asm/fsl_gtm.h> #define GTCFR_STP(x) ((x) & 1 ? 1 << 5 : 1 << 1) #define GTCFR_RST(x) ((x) & 1 ? 1 << 4 : 1 << 0) #define GTMDR_ICLK_MASK (3 << 1) #define GTMDR_ICLK_ICAS (0 << 1) #define GTMDR_ICLK_ICLK (1 << 1) #define GTMDR_ICLK_SLGO (2 << 1) #define GTMDR_FRR (1 << 3) #define GTMDR_ORI (1 << 4) #define GTMDR_SPS(x) ((x) << 8) struct gtm_timers_regs { u8 gtcfr1; /* Timer 1, Timer 2 global config register */ u8 res0[0x3]; u8 gtcfr2; /* Timer 3, timer 4 global config register */ u8 res1[0xB]; __be16 gtmdr1; /* Timer 1 mode register */ __be16 gtmdr2; /* Timer 2 mode register */ __be16 gtrfr1; /* Timer 1 reference register */ __be16 gtrfr2; /* Timer 2 reference register */ __be16 gtcpr1; /* Timer 1 capture register */ __be16 gtcpr2; /* Timer 2 capture register */ __be16 gtcnr1; /* Timer 1 counter */ __be16 gtcnr2; /* Timer 2 counter */ __be16 gtmdr3; /* Timer 3 mode register */ __be16 gtmdr4; /* Timer 4 mode register */ __be16 gtrfr3; /* Timer 3 reference register */ __be16 gtrfr4; /* Timer 4 reference register */ __be16 gtcpr3; /* Timer 3 capture register */ __be16 gtcpr4; /* Timer 4 capture register */ __be16 gtcnr3; /* Timer 3 counter */ __be16 gtcnr4; /* Timer 4 counter */ __be16 gtevr1; /* Timer 1 event register */ __be16 gtevr2; /* Timer 2 event register */ __be16 gtevr3; /* Timer 3 event register */ __be16 gtevr4; /* Timer 4 event register */ __be16 gtpsr1; /* Timer 1 prescale register */ __be16 gtpsr2; /* Timer 2 prescale register */ __be16 gtpsr3; /* Timer 3 prescale register */ __be16 gtpsr4; /* Timer 4 prescale register */ u8 res2[0x40]; } __attribute__ ((packed)); struct gtm { unsigned int clock; struct gtm_timers_regs __iomem *regs; struct gtm_timer timers[4]; spinlock_t lock; struct list_head list_node; }; static LIST_HEAD(gtms); /** * gtm_get_timer16 - request GTM timer to use it with the rest of GTM API * Context: non-IRQ * * This function reserves GTM timer for later use. It returns gtm_timer * structure to use with the rest of GTM API, you should use timer->irq * to manage timer interrupt. */ struct gtm_timer *gtm_get_timer16(void) { struct gtm *gtm; int i; list_for_each_entry(gtm, >ms, list_node) { spin_lock_irq(>m->lock); for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) { if (!gtm->timers[i].requested) { gtm->timers[i].requested = true; spin_unlock_irq(>m->lock); return >m->timers[i]; } } spin_unlock_irq(>m->lock); } if (!list_empty(>ms)) return ERR_PTR(-EBUSY); return ERR_PTR(-ENODEV); } EXPORT_SYMBOL(gtm_get_timer16); /** * gtm_get_specific_timer16 - request specific GTM timer * @gtm: specific GTM, pass here GTM's device_node->data * @timer: specific timer number, Timer1 is 0. * Context: non-IRQ * * This function reserves GTM timer for later use. It returns gtm_timer * structure to use with the rest of GTM API, you should use timer->irq * to manage timer interrupt. */ struct gtm_timer *gtm_get_specific_timer16(struct gtm *gtm, unsigned int timer) { struct gtm_timer *ret = ERR_PTR(-EBUSY); if (timer > 3) return ERR_PTR(-EINVAL); spin_lock_irq(>m->lock); if (gtm->timers[timer].requested) goto out; ret = >m->timers[timer]; ret->requested = true; out: spin_unlock_irq(>m->lock); return ret; } EXPORT_SYMBOL(gtm_get_specific_timer16); /** * gtm_put_timer16 - release 16 bits GTM timer * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer * Context: any * * This function releases GTM timer so others may request it. */ void gtm_put_timer16(struct gtm_timer *tmr) { gtm_stop_timer16(tmr); spin_lock_irq(&tmr->gtm->lock); tmr->requested = false; spin_unlock_irq(&tmr->gtm->lock); } EXPORT_SYMBOL(gtm_put_timer16); /* * This is back-end for the exported functions, it's used to reset single * timer in reference mode. */ static int gtm_set_ref_timer16(struct gtm_timer *tmr, int frequency, int reference_value, bool free_run) { struct gtm *gtm = tmr->gtm; int num = tmr - >m->timers[0]; unsigned int prescaler; u8 iclk = GTMDR_ICLK_ICLK; u8 psr; u8 sps; unsigned long flags; int max_prescaler = 256 * 256 * 16; /* CPM2 doesn't have primary prescaler */ if (!tmr->gtpsr) max_prescaler /= 256; prescaler = gtm->clock / frequency; /* * We have two 8 bit prescalers -- primary and secondary (psr, sps), * plus "slow go" mode (clk / 16). So, total prescale value is * 16 * (psr + 1) * (sps + 1). Though, for CPM2 GTMs we losing psr. */ if (prescaler > max_prescaler) return -EINVAL; if (prescaler > max_prescaler / 16) { iclk = GTMDR_ICLK_SLGO; prescaler /= 16; } if (prescaler <= 256) { psr = 0; sps = prescaler - 1; } else { psr = 256 - 1; sps = prescaler / 256 - 1; } spin_lock_irqsave(>m->lock, flags); /* * Properly reset timers: stop, reset, set up prescalers, reference * value and clear event register. */ clrsetbits_8(tmr->gtcfr, ~(GTCFR_STP(num) | GTCFR_RST(num)), GTCFR_STP(num) | GTCFR_RST(num)); setbits8(tmr->gtcfr, GTCFR_STP(num)); if (tmr->gtpsr) out_be16(tmr->gtpsr, psr); clrsetbits_be16(tmr->gtmdr, 0xFFFF, iclk | GTMDR_SPS(sps) | GTMDR_ORI | (free_run ? GTMDR_FRR : 0)); out_be16(tmr->gtcnr, 0); out_be16(tmr->gtrfr, reference_value); out_be16(tmr->gtevr, 0xFFFF); /* Let it be. */ clrbits8(tmr->gtcfr, GTCFR_STP(num)); spin_unlock_irqrestore(>m->lock, flags); return 0; } /** * gtm_set_timer16 - (re)set 16 bit timer with arbitrary precision * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer * @usec: timer interval in microseconds * @reload: if set, the timer will reset upon expiry rather than * continue running free. * Context: any * * This function (re)sets the GTM timer so that it counts up to the requested * interval value, and fires the interrupt when the value is reached. This * function will reduce the precision of the timer as needed in order for the * requested timeout to fit in a 16-bit register. */ int gtm_set_timer16(struct gtm_timer *tmr, unsigned long usec, bool reload) { /* quite obvious, frequency which is enough for µSec precision */ int freq = 1000000; unsigned int bit; bit = fls_long(usec); if (bit > 15) { freq >>= bit - 15; usec >>= bit - 15; } if (!freq) return -EINVAL; return gtm_set_ref_timer16(tmr, freq, usec, reload); } EXPORT_SYMBOL(gtm_set_timer16); /** * gtm_set_exact_timer16 - (re)set 16 bits timer * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer * @usec: timer interval in microseconds * @reload: if set, the timer will reset upon expiry rather than * continue running free. * Context: any * * This function (re)sets GTM timer so that it counts up to the requested * interval value, and fires the interrupt when the value is reached. If reload * flag was set, timer will also reset itself upon reference value, otherwise * it continues to increment. * * The _exact_ bit in the function name states that this function will not * crop precision of the "usec" argument, thus usec is limited to 16 bits * (single timer width). */ int gtm_set_exact_timer16(struct gtm_timer *tmr, u16 usec, bool reload) { /* quite obvious, frequency which is enough for µSec precision */ const int freq = 1000000; /* * We can lower the frequency (and probably power consumption) by * dividing both frequency and usec by 2 until there is no remainder. * But we won't bother with this unless savings are measured, so just * run the timer as is. */ return gtm_set_ref_timer16(tmr, freq, usec, reload); } EXPORT_SYMBOL(gtm_set_exact_timer16); /** * gtm_stop_timer16 - stop single timer * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer * Context: any * * This function simply stops the GTM timer. */ void gtm_stop_timer16(struct gtm_timer *tmr) { struct gtm *gtm = tmr->gtm; int num = tmr - >m->timers[0]; unsigned long flags; spin_lock_irqsave(>m->lock, flags); setbits8(tmr->gtcfr, GTCFR_STP(num)); out_be16(tmr->gtevr, 0xFFFF); spin_unlock_irqrestore(>m->lock, flags); } EXPORT_SYMBOL(gtm_stop_timer16); /** * gtm_ack_timer16 - acknowledge timer event (free-run timers only) * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer * @events: events mask to ack * Context: any * * Thus function used to acknowledge timer interrupt event, use it inside the * interrupt handler. */ void gtm_ack_timer16(struct gtm_timer *tmr, u16 events) { out_be16(tmr->gtevr, events); } EXPORT_SYMBOL(gtm_ack_timer16); static void __init gtm_set_shortcuts(struct device_node *np, struct gtm_timer *timers, struct gtm_timers_regs __iomem *regs) { /* * Yeah, I don't like this either, but timers' registers a bit messed, * so we have to provide shortcuts to write timer independent code. * Alternative option is to create gt*() accessors, but that will be * even uglier and cryptic. */ timers[0].gtcfr = ®s->gtcfr1; timers[0].gtmdr = ®s->gtmdr1; timers[0].gtcnr = ®s->gtcnr1; timers[0].gtrfr = ®s->gtrfr1; timers[0].gtevr = ®s->gtevr1; timers[1].gtcfr = ®s->gtcfr1; timers[1].gtmdr = ®s->gtmdr2; timers[1].gtcnr = ®s->gtcnr2; timers[1].gtrfr = ®s->gtrfr2; timers[1].gtevr = ®s->gtevr2; timers[2].gtcfr = ®s->gtcfr2; timers[2].gtmdr = ®s->gtmdr3; timers[2].gtcnr = ®s->gtcnr3; timers[2].gtrfr = ®s->gtrfr3; timers[2].gtevr = ®s->gtevr3; timers[3].gtcfr = ®s->gtcfr2; timers[3].gtmdr = ®s->gtmdr4; timers[3].gtcnr = ®s->gtcnr4; timers[3].gtrfr = ®s->gtrfr4; timers[3].gtevr = ®s->gtevr4; /* CPM2 doesn't have primary prescaler */ if (!of_device_is_compatible(np, "fsl,cpm2-gtm")) { timers[0].gtpsr = ®s->gtpsr1; timers[1].gtpsr = ®s->gtpsr2; timers[2].gtpsr = ®s->gtpsr3; timers[3].gtpsr = ®s->gtpsr4; } } static int __init fsl_gtm_init(void) { struct device_node *np; for_each_compatible_node(np, NULL, "fsl,gtm") { int i; struct gtm *gtm; const u32 *clock; int size; gtm = kzalloc(sizeof(*gtm), GFP_KERNEL); if (!gtm) { pr_err("%pOF: unable to allocate memory\n", np); continue; } spin_lock_init(>m->lock); clock = of_get_property(np, "clock-frequency", &size); if (!clock || size != sizeof(*clock)) { pr_err("%pOF: no clock-frequency\n", np); goto err; } gtm->clock = *clock; for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) { unsigned int irq; irq = irq_of_parse_and_map(np, i); if (!irq) { pr_err("%pOF: not enough interrupts specified\n", np); goto err; } gtm->timers[i].irq = irq; gtm->timers[i].gtm = gtm; } gtm->regs = of_iomap(np, 0); if (!gtm->regs) { pr_err("%pOF: unable to iomap registers\n", np); goto err; } gtm_set_shortcuts(np, gtm->timers, gtm->regs); list_add(>m->list_node, >ms); /* We don't want to lose the node and its ->data */ np->data = gtm; of_node_get(np); continue; err: kfree(gtm); } return 0; } arch_initcall(fsl_gtm_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1