Contributors: 25
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Pekka J Enberg |
502 |
37.38% |
10 |
21.74% |
Palmer Dabbelt |
377 |
28.07% |
2 |
4.35% |
JiSheng Zhang |
85 |
6.33% |
1 |
2.17% |
Eric Lin |
80 |
5.96% |
2 |
4.35% |
Guo Ren |
57 |
4.24% |
3 |
6.52% |
Alexandre Ghiti |
52 |
3.87% |
3 |
6.52% |
Liu Shixin |
25 |
1.86% |
1 |
2.17% |
Suren Baghdasaryan |
23 |
1.71% |
2 |
4.35% |
Dylan Jhong |
22 |
1.64% |
1 |
2.17% |
Andreas Schwab |
18 |
1.34% |
1 |
2.17% |
Ben Hutchings |
16 |
1.19% |
1 |
2.17% |
Björn Töpel |
14 |
1.04% |
2 |
4.35% |
Liu Shaohua |
14 |
1.04% |
1 |
2.17% |
Zhe Qiao |
14 |
1.04% |
1 |
2.17% |
Peter Xu |
11 |
0.82% |
4 |
8.70% |
ShihPo Hung |
6 |
0.45% |
1 |
2.17% |
Kefeng Wang |
5 |
0.37% |
1 |
2.17% |
Andrew Bresticker |
5 |
0.37% |
1 |
2.17% |
Souptick Joarder |
4 |
0.30% |
1 |
2.17% |
Al Viro |
4 |
0.30% |
1 |
2.17% |
Paul Walmsley |
3 |
0.22% |
1 |
2.17% |
Thomas Gleixner |
2 |
0.15% |
1 |
2.17% |
Michel Lespinasse |
2 |
0.15% |
2 |
4.35% |
Christoph Hellwig |
1 |
0.07% |
1 |
2.17% |
Eric W. Biedermann |
1 |
0.07% |
1 |
2.17% |
Total |
1343 |
|
46 |
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2009 Sunplus Core Technology Co., Ltd.
* Lennox Wu <lennox.wu@sunplusct.com>
* Chen Liqin <liqin.chen@sunplusct.com>
* Copyright (C) 2012 Regents of the University of California
*/
#include <linux/mm.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/perf_event.h>
#include <linux/signal.h>
#include <linux/uaccess.h>
#include <linux/kprobes.h>
#include <linux/kfence.h>
#include <linux/entry-common.h>
#include <asm/ptrace.h>
#include <asm/tlbflush.h>
#include "../kernel/head.h"
static void die_kernel_fault(const char *msg, unsigned long addr,
struct pt_regs *regs)
{
bust_spinlocks(1);
pr_alert("Unable to handle kernel %s at virtual address " REG_FMT "\n", msg,
addr);
bust_spinlocks(0);
die(regs, "Oops");
make_task_dead(SIGKILL);
}
static inline void no_context(struct pt_regs *regs, unsigned long addr)
{
const char *msg;
/* Are we prepared to handle this kernel fault? */
if (fixup_exception(regs))
return;
/*
* Oops. The kernel tried to access some bad page. We'll have to
* terminate things with extreme prejudice.
*/
if (addr < PAGE_SIZE)
msg = "NULL pointer dereference";
else {
if (kfence_handle_page_fault(addr, regs->cause == EXC_STORE_PAGE_FAULT, regs))
return;
msg = "paging request";
}
die_kernel_fault(msg, addr, regs);
}
static inline void mm_fault_error(struct pt_regs *regs, unsigned long addr, vm_fault_t fault)
{
if (!user_mode(regs)) {
no_context(regs, addr);
return;
}
if (fault & VM_FAULT_OOM) {
/*
* We ran out of memory, call the OOM killer, and return the userspace
* (which will retry the fault, or kill us if we got oom-killed).
*/
pagefault_out_of_memory();
return;
} else if (fault & (VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) {
/* Kernel mode? Handle exceptions or die */
do_trap(regs, SIGBUS, BUS_ADRERR, addr);
return;
} else if (fault & VM_FAULT_SIGSEGV) {
do_trap(regs, SIGSEGV, SEGV_MAPERR, addr);
return;
}
BUG();
}
static inline void
bad_area_nosemaphore(struct pt_regs *regs, int code, unsigned long addr)
{
/*
* Something tried to access memory that isn't in our memory map.
* Fix it, but check if it's kernel or user first.
*/
/* User mode accesses just cause a SIGSEGV */
if (user_mode(regs)) {
do_trap(regs, SIGSEGV, code, addr);
return;
}
no_context(regs, addr);
}
static inline void
bad_area(struct pt_regs *regs, struct mm_struct *mm, int code,
unsigned long addr)
{
mmap_read_unlock(mm);
bad_area_nosemaphore(regs, code, addr);
}
static inline void vmalloc_fault(struct pt_regs *regs, int code, unsigned long addr)
{
pgd_t *pgd, *pgd_k;
pud_t *pud_k;
p4d_t *p4d_k;
pmd_t *pmd_k;
pte_t *pte_k;
int index;
unsigned long pfn;
/* User mode accesses just cause a SIGSEGV */
if (user_mode(regs))
return do_trap(regs, SIGSEGV, code, addr);
/*
* Synchronize this task's top level page-table
* with the 'reference' page table.
*
* Do _not_ use "tsk->active_mm->pgd" here.
* We might be inside an interrupt in the middle
* of a task switch.
*/
index = pgd_index(addr);
pfn = csr_read(CSR_SATP) & SATP_PPN;
pgd = (pgd_t *)pfn_to_virt(pfn) + index;
pgd_k = init_mm.pgd + index;
if (!pgd_present(pgdp_get(pgd_k))) {
no_context(regs, addr);
return;
}
set_pgd(pgd, pgdp_get(pgd_k));
p4d_k = p4d_offset(pgd_k, addr);
if (!p4d_present(p4dp_get(p4d_k))) {
no_context(regs, addr);
return;
}
pud_k = pud_offset(p4d_k, addr);
if (!pud_present(pudp_get(pud_k))) {
no_context(regs, addr);
return;
}
if (pud_leaf(pudp_get(pud_k)))
goto flush_tlb;
/*
* Since the vmalloc area is global, it is unnecessary
* to copy individual PTEs
*/
pmd_k = pmd_offset(pud_k, addr);
if (!pmd_present(pmdp_get(pmd_k))) {
no_context(regs, addr);
return;
}
if (pmd_leaf(pmdp_get(pmd_k)))
goto flush_tlb;
/*
* Make sure the actual PTE exists as well to
* catch kernel vmalloc-area accesses to non-mapped
* addresses. If we don't do this, this will just
* silently loop forever.
*/
pte_k = pte_offset_kernel(pmd_k, addr);
if (!pte_present(ptep_get(pte_k))) {
no_context(regs, addr);
return;
}
/*
* The kernel assumes that TLBs don't cache invalid
* entries, but in RISC-V, SFENCE.VMA specifies an
* ordering constraint, not a cache flush; it is
* necessary even after writing invalid entries.
*/
flush_tlb:
local_flush_tlb_page(addr);
}
static inline bool access_error(unsigned long cause, struct vm_area_struct *vma)
{
switch (cause) {
case EXC_INST_PAGE_FAULT:
if (!(vma->vm_flags & VM_EXEC)) {
return true;
}
break;
case EXC_LOAD_PAGE_FAULT:
/* Write implies read */
if (!(vma->vm_flags & (VM_READ | VM_WRITE))) {
return true;
}
break;
case EXC_STORE_PAGE_FAULT:
if (!(vma->vm_flags & VM_WRITE)) {
return true;
}
break;
default:
panic("%s: unhandled cause %lu", __func__, cause);
}
return false;
}
/*
* This routine handles page faults. It determines the address and the
* problem, and then passes it off to one of the appropriate routines.
*/
void handle_page_fault(struct pt_regs *regs)
{
struct task_struct *tsk;
struct vm_area_struct *vma;
struct mm_struct *mm;
unsigned long addr, cause;
unsigned int flags = FAULT_FLAG_DEFAULT;
int code = SEGV_MAPERR;
vm_fault_t fault;
cause = regs->cause;
addr = regs->badaddr;
tsk = current;
mm = tsk->mm;
if (kprobe_page_fault(regs, cause))
return;
/*
* Fault-in kernel-space virtual memory on-demand.
* The 'reference' page table is init_mm.pgd.
*
* NOTE! We MUST NOT take any locks for this case. We may
* be in an interrupt or a critical region, and should
* only copy the information from the master page table,
* nothing more.
*/
if ((!IS_ENABLED(CONFIG_MMU) || !IS_ENABLED(CONFIG_64BIT)) &&
unlikely(addr >= VMALLOC_START && addr < VMALLOC_END)) {
vmalloc_fault(regs, code, addr);
return;
}
/* Enable interrupts if they were enabled in the parent context. */
if (!regs_irqs_disabled(regs))
local_irq_enable();
/*
* If we're in an interrupt, have no user context, or are running
* in an atomic region, then we must not take the fault.
*/
if (unlikely(faulthandler_disabled() || !mm)) {
tsk->thread.bad_cause = cause;
no_context(regs, addr);
return;
}
if (user_mode(regs))
flags |= FAULT_FLAG_USER;
if (!user_mode(regs) && addr < TASK_SIZE && unlikely(!(regs->status & SR_SUM))) {
if (fixup_exception(regs))
return;
die_kernel_fault("access to user memory without uaccess routines", addr, regs);
}
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
if (cause == EXC_STORE_PAGE_FAULT)
flags |= FAULT_FLAG_WRITE;
else if (cause == EXC_INST_PAGE_FAULT)
flags |= FAULT_FLAG_INSTRUCTION;
if (!(flags & FAULT_FLAG_USER))
goto lock_mmap;
vma = lock_vma_under_rcu(mm, addr);
if (!vma)
goto lock_mmap;
if (unlikely(access_error(cause, vma))) {
vma_end_read(vma);
count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
tsk->thread.bad_cause = cause;
bad_area_nosemaphore(regs, SEGV_ACCERR, addr);
return;
}
fault = handle_mm_fault(vma, addr, flags | FAULT_FLAG_VMA_LOCK, regs);
if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
vma_end_read(vma);
if (!(fault & VM_FAULT_RETRY)) {
count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
goto done;
}
count_vm_vma_lock_event(VMA_LOCK_RETRY);
if (fault & VM_FAULT_MAJOR)
flags |= FAULT_FLAG_TRIED;
if (fault_signal_pending(fault, regs)) {
if (!user_mode(regs))
no_context(regs, addr);
return;
}
lock_mmap:
retry:
vma = lock_mm_and_find_vma(mm, addr, regs);
if (unlikely(!vma)) {
tsk->thread.bad_cause = cause;
bad_area_nosemaphore(regs, code, addr);
return;
}
/*
* Ok, we have a good vm_area for this memory access, so
* we can handle it.
*/
code = SEGV_ACCERR;
if (unlikely(access_error(cause, vma))) {
tsk->thread.bad_cause = cause;
bad_area(regs, mm, code, addr);
return;
}
/*
* If for any reason at all we could not handle the fault,
* make sure we exit gracefully rather than endlessly redo
* the fault.
*/
fault = handle_mm_fault(vma, addr, flags, regs);
/*
* If we need to retry but a fatal signal is pending, handle the
* signal first. We do not need to release the mmap_lock because it
* would already be released in __lock_page_or_retry in mm/filemap.c.
*/
if (fault_signal_pending(fault, regs)) {
if (!user_mode(regs))
no_context(regs, addr);
return;
}
/* The fault is fully completed (including releasing mmap lock) */
if (fault & VM_FAULT_COMPLETED)
return;
if (unlikely(fault & VM_FAULT_RETRY)) {
flags |= FAULT_FLAG_TRIED;
/*
* No need to mmap_read_unlock(mm) as we would
* have already released it in __lock_page_or_retry
* in mm/filemap.c.
*/
goto retry;
}
mmap_read_unlock(mm);
done:
if (unlikely(fault & VM_FAULT_ERROR)) {
tsk->thread.bad_cause = cause;
mm_fault_error(regs, addr, fault);
return;
}
return;
}