Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Harald Freudenberger | 1816 | 32.64% | 7 | 14.58% |
Gerald Schaefer | 815 | 14.65% | 3 | 6.25% |
Martin Schwidefsky | 726 | 13.05% | 5 | 10.42% |
Eric Biggers | 565 | 10.15% | 2 | 4.17% |
Herbert Xu | 551 | 9.90% | 7 | 14.58% |
Jan Glauber | 504 | 9.06% | 4 | 8.33% |
Sebastian Andrzej Siewior | 501 | 9.00% | 2 | 4.17% |
Torsten Duwe | 22 | 0.40% | 1 | 2.08% |
Ard Biesheuvel | 17 | 0.31% | 3 | 6.25% |
Andrew Morton | 11 | 0.20% | 1 | 2.08% |
Rik Snel | 8 | 0.14% | 1 | 2.08% |
Stephan Mueller | 8 | 0.14% | 2 | 4.17% |
Heiko Carstens | 7 | 0.13% | 3 | 6.25% |
Hendrik Brueckner | 5 | 0.09% | 1 | 2.08% |
Roel Kluin | 3 | 0.05% | 2 | 4.17% |
Jann Horn | 2 | 0.04% | 1 | 2.08% |
Greg Kroah-Hartman | 2 | 0.04% | 2 | 4.17% |
Kees Cook | 1 | 0.02% | 1 | 2.08% |
Total | 5564 | 48 |
// SPDX-License-Identifier: GPL-2.0+ /* * Cryptographic API. * * s390 implementation of the AES Cipher Algorithm. * * s390 Version: * Copyright IBM Corp. 2005, 2017 * Author(s): Jan Glauber (jang@de.ibm.com) * Sebastian Siewior (sebastian@breakpoint.cc> SW-Fallback * Patrick Steuer <patrick.steuer@de.ibm.com> * Harald Freudenberger <freude@de.ibm.com> * * Derived from "crypto/aes_generic.c" */ #define KMSG_COMPONENT "aes_s390" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <crypto/aes.h> #include <crypto/algapi.h> #include <crypto/ghash.h> #include <crypto/internal/aead.h> #include <crypto/internal/cipher.h> #include <crypto/internal/skcipher.h> #include <crypto/scatterwalk.h> #include <linux/err.h> #include <linux/module.h> #include <linux/cpufeature.h> #include <linux/init.h> #include <linux/mutex.h> #include <linux/fips.h> #include <linux/string.h> #include <crypto/xts.h> #include <asm/cpacf.h> static u8 *ctrblk; static DEFINE_MUTEX(ctrblk_lock); static cpacf_mask_t km_functions, kmc_functions, kmctr_functions, kma_functions; struct s390_aes_ctx { u8 key[AES_MAX_KEY_SIZE]; int key_len; unsigned long fc; union { struct crypto_skcipher *skcipher; struct crypto_cipher *cip; } fallback; }; struct s390_xts_ctx { u8 key[32]; u8 pcc_key[32]; int key_len; unsigned long fc; struct crypto_skcipher *fallback; }; struct gcm_sg_walk { struct scatter_walk walk; unsigned int walk_bytes; u8 *walk_ptr; unsigned int walk_bytes_remain; u8 buf[AES_BLOCK_SIZE]; unsigned int buf_bytes; u8 *ptr; unsigned int nbytes; }; static int setkey_fallback_cip(struct crypto_tfm *tfm, const u8 *in_key, unsigned int key_len) { struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm); sctx->fallback.cip->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; sctx->fallback.cip->base.crt_flags |= (tfm->crt_flags & CRYPTO_TFM_REQ_MASK); return crypto_cipher_setkey(sctx->fallback.cip, in_key, key_len); } static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key, unsigned int key_len) { struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm); unsigned long fc; /* Pick the correct function code based on the key length */ fc = (key_len == 16) ? CPACF_KM_AES_128 : (key_len == 24) ? CPACF_KM_AES_192 : (key_len == 32) ? CPACF_KM_AES_256 : 0; /* Check if the function code is available */ sctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0; if (!sctx->fc) return setkey_fallback_cip(tfm, in_key, key_len); sctx->key_len = key_len; memcpy(sctx->key, in_key, key_len); return 0; } static void crypto_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) { struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm); if (unlikely(!sctx->fc)) { crypto_cipher_encrypt_one(sctx->fallback.cip, out, in); return; } cpacf_km(sctx->fc, &sctx->key, out, in, AES_BLOCK_SIZE); } static void crypto_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) { struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm); if (unlikely(!sctx->fc)) { crypto_cipher_decrypt_one(sctx->fallback.cip, out, in); return; } cpacf_km(sctx->fc | CPACF_DECRYPT, &sctx->key, out, in, AES_BLOCK_SIZE); } static int fallback_init_cip(struct crypto_tfm *tfm) { const char *name = tfm->__crt_alg->cra_name; struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm); sctx->fallback.cip = crypto_alloc_cipher(name, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(sctx->fallback.cip)) { pr_err("Allocating AES fallback algorithm %s failed\n", name); return PTR_ERR(sctx->fallback.cip); } return 0; } static void fallback_exit_cip(struct crypto_tfm *tfm) { struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm); crypto_free_cipher(sctx->fallback.cip); sctx->fallback.cip = NULL; } static struct crypto_alg aes_alg = { .cra_name = "aes", .cra_driver_name = "aes-s390", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_CIPHER | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct s390_aes_ctx), .cra_module = THIS_MODULE, .cra_init = fallback_init_cip, .cra_exit = fallback_exit_cip, .cra_u = { .cipher = { .cia_min_keysize = AES_MIN_KEY_SIZE, .cia_max_keysize = AES_MAX_KEY_SIZE, .cia_setkey = aes_set_key, .cia_encrypt = crypto_aes_encrypt, .cia_decrypt = crypto_aes_decrypt, } } }; static int setkey_fallback_skcipher(struct crypto_skcipher *tfm, const u8 *key, unsigned int len) { struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm); crypto_skcipher_clear_flags(sctx->fallback.skcipher, CRYPTO_TFM_REQ_MASK); crypto_skcipher_set_flags(sctx->fallback.skcipher, crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_REQ_MASK); return crypto_skcipher_setkey(sctx->fallback.skcipher, key, len); } static int fallback_skcipher_crypt(struct s390_aes_ctx *sctx, struct skcipher_request *req, unsigned long modifier) { struct skcipher_request *subreq = skcipher_request_ctx(req); *subreq = *req; skcipher_request_set_tfm(subreq, sctx->fallback.skcipher); return (modifier & CPACF_DECRYPT) ? crypto_skcipher_decrypt(subreq) : crypto_skcipher_encrypt(subreq); } static int ecb_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len) { struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm); unsigned long fc; /* Pick the correct function code based on the key length */ fc = (key_len == 16) ? CPACF_KM_AES_128 : (key_len == 24) ? CPACF_KM_AES_192 : (key_len == 32) ? CPACF_KM_AES_256 : 0; /* Check if the function code is available */ sctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0; if (!sctx->fc) return setkey_fallback_skcipher(tfm, in_key, key_len); sctx->key_len = key_len; memcpy(sctx->key, in_key, key_len); return 0; } static int ecb_aes_crypt(struct skcipher_request *req, unsigned long modifier) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; unsigned int nbytes, n; int ret; if (unlikely(!sctx->fc)) return fallback_skcipher_crypt(sctx, req, modifier); ret = skcipher_walk_virt(&walk, req, false); while ((nbytes = walk.nbytes) != 0) { /* only use complete blocks */ n = nbytes & ~(AES_BLOCK_SIZE - 1); cpacf_km(sctx->fc | modifier, sctx->key, walk.dst.virt.addr, walk.src.virt.addr, n); ret = skcipher_walk_done(&walk, nbytes - n); } return ret; } static int ecb_aes_encrypt(struct skcipher_request *req) { return ecb_aes_crypt(req, 0); } static int ecb_aes_decrypt(struct skcipher_request *req) { return ecb_aes_crypt(req, CPACF_DECRYPT); } static int fallback_init_skcipher(struct crypto_skcipher *tfm) { const char *name = crypto_tfm_alg_name(&tfm->base); struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm); sctx->fallback.skcipher = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC); if (IS_ERR(sctx->fallback.skcipher)) { pr_err("Allocating AES fallback algorithm %s failed\n", name); return PTR_ERR(sctx->fallback.skcipher); } crypto_skcipher_set_reqsize(tfm, sizeof(struct skcipher_request) + crypto_skcipher_reqsize(sctx->fallback.skcipher)); return 0; } static void fallback_exit_skcipher(struct crypto_skcipher *tfm) { struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm); crypto_free_skcipher(sctx->fallback.skcipher); } static struct skcipher_alg ecb_aes_alg = { .base.cra_name = "ecb(aes)", .base.cra_driver_name = "ecb-aes-s390", .base.cra_priority = 401, /* combo: aes + ecb + 1 */ .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct s390_aes_ctx), .base.cra_module = THIS_MODULE, .init = fallback_init_skcipher, .exit = fallback_exit_skcipher, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = ecb_aes_set_key, .encrypt = ecb_aes_encrypt, .decrypt = ecb_aes_decrypt, }; static int cbc_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len) { struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm); unsigned long fc; /* Pick the correct function code based on the key length */ fc = (key_len == 16) ? CPACF_KMC_AES_128 : (key_len == 24) ? CPACF_KMC_AES_192 : (key_len == 32) ? CPACF_KMC_AES_256 : 0; /* Check if the function code is available */ sctx->fc = (fc && cpacf_test_func(&kmc_functions, fc)) ? fc : 0; if (!sctx->fc) return setkey_fallback_skcipher(tfm, in_key, key_len); sctx->key_len = key_len; memcpy(sctx->key, in_key, key_len); return 0; } static int cbc_aes_crypt(struct skcipher_request *req, unsigned long modifier) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; unsigned int nbytes, n; int ret; struct { u8 iv[AES_BLOCK_SIZE]; u8 key[AES_MAX_KEY_SIZE]; } param; if (unlikely(!sctx->fc)) return fallback_skcipher_crypt(sctx, req, modifier); ret = skcipher_walk_virt(&walk, req, false); if (ret) return ret; memcpy(param.iv, walk.iv, AES_BLOCK_SIZE); memcpy(param.key, sctx->key, sctx->key_len); while ((nbytes = walk.nbytes) != 0) { /* only use complete blocks */ n = nbytes & ~(AES_BLOCK_SIZE - 1); cpacf_kmc(sctx->fc | modifier, ¶m, walk.dst.virt.addr, walk.src.virt.addr, n); memcpy(walk.iv, param.iv, AES_BLOCK_SIZE); ret = skcipher_walk_done(&walk, nbytes - n); } memzero_explicit(¶m, sizeof(param)); return ret; } static int cbc_aes_encrypt(struct skcipher_request *req) { return cbc_aes_crypt(req, 0); } static int cbc_aes_decrypt(struct skcipher_request *req) { return cbc_aes_crypt(req, CPACF_DECRYPT); } static struct skcipher_alg cbc_aes_alg = { .base.cra_name = "cbc(aes)", .base.cra_driver_name = "cbc-aes-s390", .base.cra_priority = 402, /* ecb-aes-s390 + 1 */ .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct s390_aes_ctx), .base.cra_module = THIS_MODULE, .init = fallback_init_skcipher, .exit = fallback_exit_skcipher, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = cbc_aes_set_key, .encrypt = cbc_aes_encrypt, .decrypt = cbc_aes_decrypt, }; static int xts_fallback_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int len) { struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm); crypto_skcipher_clear_flags(xts_ctx->fallback, CRYPTO_TFM_REQ_MASK); crypto_skcipher_set_flags(xts_ctx->fallback, crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_REQ_MASK); return crypto_skcipher_setkey(xts_ctx->fallback, key, len); } static int xts_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len) { struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm); unsigned long fc; int err; err = xts_fallback_setkey(tfm, in_key, key_len); if (err) return err; /* Pick the correct function code based on the key length */ fc = (key_len == 32) ? CPACF_KM_XTS_128 : (key_len == 64) ? CPACF_KM_XTS_256 : 0; /* Check if the function code is available */ xts_ctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0; if (!xts_ctx->fc) return 0; /* Split the XTS key into the two subkeys */ key_len = key_len / 2; xts_ctx->key_len = key_len; memcpy(xts_ctx->key, in_key, key_len); memcpy(xts_ctx->pcc_key, in_key + key_len, key_len); return 0; } static int xts_aes_crypt(struct skcipher_request *req, unsigned long modifier) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; unsigned int offset, nbytes, n; int ret; struct { u8 key[32]; u8 tweak[16]; u8 block[16]; u8 bit[16]; u8 xts[16]; } pcc_param; struct { u8 key[32]; u8 init[16]; } xts_param; if (req->cryptlen < AES_BLOCK_SIZE) return -EINVAL; if (unlikely(!xts_ctx->fc || (req->cryptlen % AES_BLOCK_SIZE) != 0)) { struct skcipher_request *subreq = skcipher_request_ctx(req); *subreq = *req; skcipher_request_set_tfm(subreq, xts_ctx->fallback); return (modifier & CPACF_DECRYPT) ? crypto_skcipher_decrypt(subreq) : crypto_skcipher_encrypt(subreq); } ret = skcipher_walk_virt(&walk, req, false); if (ret) return ret; offset = xts_ctx->key_len & 0x10; memset(pcc_param.block, 0, sizeof(pcc_param.block)); memset(pcc_param.bit, 0, sizeof(pcc_param.bit)); memset(pcc_param.xts, 0, sizeof(pcc_param.xts)); memcpy(pcc_param.tweak, walk.iv, sizeof(pcc_param.tweak)); memcpy(pcc_param.key + offset, xts_ctx->pcc_key, xts_ctx->key_len); cpacf_pcc(xts_ctx->fc, pcc_param.key + offset); memcpy(xts_param.key + offset, xts_ctx->key, xts_ctx->key_len); memcpy(xts_param.init, pcc_param.xts, 16); while ((nbytes = walk.nbytes) != 0) { /* only use complete blocks */ n = nbytes & ~(AES_BLOCK_SIZE - 1); cpacf_km(xts_ctx->fc | modifier, xts_param.key + offset, walk.dst.virt.addr, walk.src.virt.addr, n); ret = skcipher_walk_done(&walk, nbytes - n); } memzero_explicit(&pcc_param, sizeof(pcc_param)); memzero_explicit(&xts_param, sizeof(xts_param)); return ret; } static int xts_aes_encrypt(struct skcipher_request *req) { return xts_aes_crypt(req, 0); } static int xts_aes_decrypt(struct skcipher_request *req) { return xts_aes_crypt(req, CPACF_DECRYPT); } static int xts_fallback_init(struct crypto_skcipher *tfm) { const char *name = crypto_tfm_alg_name(&tfm->base); struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm); xts_ctx->fallback = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC); if (IS_ERR(xts_ctx->fallback)) { pr_err("Allocating XTS fallback algorithm %s failed\n", name); return PTR_ERR(xts_ctx->fallback); } crypto_skcipher_set_reqsize(tfm, sizeof(struct skcipher_request) + crypto_skcipher_reqsize(xts_ctx->fallback)); return 0; } static void xts_fallback_exit(struct crypto_skcipher *tfm) { struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm); crypto_free_skcipher(xts_ctx->fallback); } static struct skcipher_alg xts_aes_alg = { .base.cra_name = "xts(aes)", .base.cra_driver_name = "xts-aes-s390", .base.cra_priority = 402, /* ecb-aes-s390 + 1 */ .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct s390_xts_ctx), .base.cra_module = THIS_MODULE, .init = xts_fallback_init, .exit = xts_fallback_exit, .min_keysize = 2 * AES_MIN_KEY_SIZE, .max_keysize = 2 * AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = xts_aes_set_key, .encrypt = xts_aes_encrypt, .decrypt = xts_aes_decrypt, }; static int ctr_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len) { struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm); unsigned long fc; /* Pick the correct function code based on the key length */ fc = (key_len == 16) ? CPACF_KMCTR_AES_128 : (key_len == 24) ? CPACF_KMCTR_AES_192 : (key_len == 32) ? CPACF_KMCTR_AES_256 : 0; /* Check if the function code is available */ sctx->fc = (fc && cpacf_test_func(&kmctr_functions, fc)) ? fc : 0; if (!sctx->fc) return setkey_fallback_skcipher(tfm, in_key, key_len); sctx->key_len = key_len; memcpy(sctx->key, in_key, key_len); return 0; } static unsigned int __ctrblk_init(u8 *ctrptr, u8 *iv, unsigned int nbytes) { unsigned int i, n; /* only use complete blocks, max. PAGE_SIZE */ memcpy(ctrptr, iv, AES_BLOCK_SIZE); n = (nbytes > PAGE_SIZE) ? PAGE_SIZE : nbytes & ~(AES_BLOCK_SIZE - 1); for (i = (n / AES_BLOCK_SIZE) - 1; i > 0; i--) { memcpy(ctrptr + AES_BLOCK_SIZE, ctrptr, AES_BLOCK_SIZE); crypto_inc(ctrptr + AES_BLOCK_SIZE, AES_BLOCK_SIZE); ctrptr += AES_BLOCK_SIZE; } return n; } static int ctr_aes_crypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm); u8 buf[AES_BLOCK_SIZE], *ctrptr; struct skcipher_walk walk; unsigned int n, nbytes; int ret, locked; if (unlikely(!sctx->fc)) return fallback_skcipher_crypt(sctx, req, 0); locked = mutex_trylock(&ctrblk_lock); ret = skcipher_walk_virt(&walk, req, false); while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) { n = AES_BLOCK_SIZE; if (nbytes >= 2*AES_BLOCK_SIZE && locked) n = __ctrblk_init(ctrblk, walk.iv, nbytes); ctrptr = (n > AES_BLOCK_SIZE) ? ctrblk : walk.iv; cpacf_kmctr(sctx->fc, sctx->key, walk.dst.virt.addr, walk.src.virt.addr, n, ctrptr); if (ctrptr == ctrblk) memcpy(walk.iv, ctrptr + n - AES_BLOCK_SIZE, AES_BLOCK_SIZE); crypto_inc(walk.iv, AES_BLOCK_SIZE); ret = skcipher_walk_done(&walk, nbytes - n); } if (locked) mutex_unlock(&ctrblk_lock); /* * final block may be < AES_BLOCK_SIZE, copy only nbytes */ if (nbytes) { memset(buf, 0, AES_BLOCK_SIZE); memcpy(buf, walk.src.virt.addr, nbytes); cpacf_kmctr(sctx->fc, sctx->key, buf, buf, AES_BLOCK_SIZE, walk.iv); memcpy(walk.dst.virt.addr, buf, nbytes); crypto_inc(walk.iv, AES_BLOCK_SIZE); ret = skcipher_walk_done(&walk, 0); } return ret; } static struct skcipher_alg ctr_aes_alg = { .base.cra_name = "ctr(aes)", .base.cra_driver_name = "ctr-aes-s390", .base.cra_priority = 402, /* ecb-aes-s390 + 1 */ .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK, .base.cra_blocksize = 1, .base.cra_ctxsize = sizeof(struct s390_aes_ctx), .base.cra_module = THIS_MODULE, .init = fallback_init_skcipher, .exit = fallback_exit_skcipher, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = ctr_aes_set_key, .encrypt = ctr_aes_crypt, .decrypt = ctr_aes_crypt, .chunksize = AES_BLOCK_SIZE, }; static int gcm_aes_setkey(struct crypto_aead *tfm, const u8 *key, unsigned int keylen) { struct s390_aes_ctx *ctx = crypto_aead_ctx(tfm); switch (keylen) { case AES_KEYSIZE_128: ctx->fc = CPACF_KMA_GCM_AES_128; break; case AES_KEYSIZE_192: ctx->fc = CPACF_KMA_GCM_AES_192; break; case AES_KEYSIZE_256: ctx->fc = CPACF_KMA_GCM_AES_256; break; default: return -EINVAL; } memcpy(ctx->key, key, keylen); ctx->key_len = keylen; return 0; } static int gcm_aes_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { switch (authsize) { case 4: case 8: case 12: case 13: case 14: case 15: case 16: break; default: return -EINVAL; } return 0; } static void gcm_walk_start(struct gcm_sg_walk *gw, struct scatterlist *sg, unsigned int len) { memset(gw, 0, sizeof(*gw)); gw->walk_bytes_remain = len; scatterwalk_start(&gw->walk, sg); } static inline unsigned int _gcm_sg_clamp_and_map(struct gcm_sg_walk *gw) { struct scatterlist *nextsg; gw->walk_bytes = scatterwalk_clamp(&gw->walk, gw->walk_bytes_remain); while (!gw->walk_bytes) { nextsg = sg_next(gw->walk.sg); if (!nextsg) return 0; scatterwalk_start(&gw->walk, nextsg); gw->walk_bytes = scatterwalk_clamp(&gw->walk, gw->walk_bytes_remain); } gw->walk_ptr = scatterwalk_map(&gw->walk); return gw->walk_bytes; } static inline void _gcm_sg_unmap_and_advance(struct gcm_sg_walk *gw, unsigned int nbytes) { gw->walk_bytes_remain -= nbytes; scatterwalk_unmap(gw->walk_ptr); scatterwalk_advance(&gw->walk, nbytes); scatterwalk_done(&gw->walk, 0, gw->walk_bytes_remain); gw->walk_ptr = NULL; } static int gcm_in_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded) { int n; if (gw->buf_bytes && gw->buf_bytes >= minbytesneeded) { gw->ptr = gw->buf; gw->nbytes = gw->buf_bytes; goto out; } if (gw->walk_bytes_remain == 0) { gw->ptr = NULL; gw->nbytes = 0; goto out; } if (!_gcm_sg_clamp_and_map(gw)) { gw->ptr = NULL; gw->nbytes = 0; goto out; } if (!gw->buf_bytes && gw->walk_bytes >= minbytesneeded) { gw->ptr = gw->walk_ptr; gw->nbytes = gw->walk_bytes; goto out; } while (1) { n = min(gw->walk_bytes, AES_BLOCK_SIZE - gw->buf_bytes); memcpy(gw->buf + gw->buf_bytes, gw->walk_ptr, n); gw->buf_bytes += n; _gcm_sg_unmap_and_advance(gw, n); if (gw->buf_bytes >= minbytesneeded) { gw->ptr = gw->buf; gw->nbytes = gw->buf_bytes; goto out; } if (!_gcm_sg_clamp_and_map(gw)) { gw->ptr = NULL; gw->nbytes = 0; goto out; } } out: return gw->nbytes; } static int gcm_out_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded) { if (gw->walk_bytes_remain == 0) { gw->ptr = NULL; gw->nbytes = 0; goto out; } if (!_gcm_sg_clamp_and_map(gw)) { gw->ptr = NULL; gw->nbytes = 0; goto out; } if (gw->walk_bytes >= minbytesneeded) { gw->ptr = gw->walk_ptr; gw->nbytes = gw->walk_bytes; goto out; } scatterwalk_unmap(gw->walk_ptr); gw->walk_ptr = NULL; gw->ptr = gw->buf; gw->nbytes = sizeof(gw->buf); out: return gw->nbytes; } static int gcm_in_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone) { if (gw->ptr == NULL) return 0; if (gw->ptr == gw->buf) { int n = gw->buf_bytes - bytesdone; if (n > 0) { memmove(gw->buf, gw->buf + bytesdone, n); gw->buf_bytes = n; } else gw->buf_bytes = 0; } else _gcm_sg_unmap_and_advance(gw, bytesdone); return bytesdone; } static int gcm_out_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone) { int i, n; if (gw->ptr == NULL) return 0; if (gw->ptr == gw->buf) { for (i = 0; i < bytesdone; i += n) { if (!_gcm_sg_clamp_and_map(gw)) return i; n = min(gw->walk_bytes, bytesdone - i); memcpy(gw->walk_ptr, gw->buf + i, n); _gcm_sg_unmap_and_advance(gw, n); } } else _gcm_sg_unmap_and_advance(gw, bytesdone); return bytesdone; } static int gcm_aes_crypt(struct aead_request *req, unsigned int flags) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct s390_aes_ctx *ctx = crypto_aead_ctx(tfm); unsigned int ivsize = crypto_aead_ivsize(tfm); unsigned int taglen = crypto_aead_authsize(tfm); unsigned int aadlen = req->assoclen; unsigned int pclen = req->cryptlen; int ret = 0; unsigned int n, len, in_bytes, out_bytes, min_bytes, bytes, aad_bytes, pc_bytes; struct gcm_sg_walk gw_in, gw_out; u8 tag[GHASH_DIGEST_SIZE]; struct { u32 _[3]; /* reserved */ u32 cv; /* Counter Value */ u8 t[GHASH_DIGEST_SIZE];/* Tag */ u8 h[AES_BLOCK_SIZE]; /* Hash-subkey */ u64 taadl; /* Total AAD Length */ u64 tpcl; /* Total Plain-/Cipher-text Length */ u8 j0[GHASH_BLOCK_SIZE];/* initial counter value */ u8 k[AES_MAX_KEY_SIZE]; /* Key */ } param; /* * encrypt * req->src: aad||plaintext * req->dst: aad||ciphertext||tag * decrypt * req->src: aad||ciphertext||tag * req->dst: aad||plaintext, return 0 or -EBADMSG * aad, plaintext and ciphertext may be empty. */ if (flags & CPACF_DECRYPT) pclen -= taglen; len = aadlen + pclen; memset(¶m, 0, sizeof(param)); param.cv = 1; param.taadl = aadlen * 8; param.tpcl = pclen * 8; memcpy(param.j0, req->iv, ivsize); *(u32 *)(param.j0 + ivsize) = 1; memcpy(param.k, ctx->key, ctx->key_len); gcm_walk_start(&gw_in, req->src, len); gcm_walk_start(&gw_out, req->dst, len); do { min_bytes = min_t(unsigned int, aadlen > 0 ? aadlen : pclen, AES_BLOCK_SIZE); in_bytes = gcm_in_walk_go(&gw_in, min_bytes); out_bytes = gcm_out_walk_go(&gw_out, min_bytes); bytes = min(in_bytes, out_bytes); if (aadlen + pclen <= bytes) { aad_bytes = aadlen; pc_bytes = pclen; flags |= CPACF_KMA_LAAD | CPACF_KMA_LPC; } else { if (aadlen <= bytes) { aad_bytes = aadlen; pc_bytes = (bytes - aadlen) & ~(AES_BLOCK_SIZE - 1); flags |= CPACF_KMA_LAAD; } else { aad_bytes = bytes & ~(AES_BLOCK_SIZE - 1); pc_bytes = 0; } } if (aad_bytes > 0) memcpy(gw_out.ptr, gw_in.ptr, aad_bytes); cpacf_kma(ctx->fc | flags, ¶m, gw_out.ptr + aad_bytes, gw_in.ptr + aad_bytes, pc_bytes, gw_in.ptr, aad_bytes); n = aad_bytes + pc_bytes; if (gcm_in_walk_done(&gw_in, n) != n) return -ENOMEM; if (gcm_out_walk_done(&gw_out, n) != n) return -ENOMEM; aadlen -= aad_bytes; pclen -= pc_bytes; } while (aadlen + pclen > 0); if (flags & CPACF_DECRYPT) { scatterwalk_map_and_copy(tag, req->src, len, taglen, 0); if (crypto_memneq(tag, param.t, taglen)) ret = -EBADMSG; } else scatterwalk_map_and_copy(param.t, req->dst, len, taglen, 1); memzero_explicit(¶m, sizeof(param)); return ret; } static int gcm_aes_encrypt(struct aead_request *req) { return gcm_aes_crypt(req, CPACF_ENCRYPT); } static int gcm_aes_decrypt(struct aead_request *req) { return gcm_aes_crypt(req, CPACF_DECRYPT); } static struct aead_alg gcm_aes_aead = { .setkey = gcm_aes_setkey, .setauthsize = gcm_aes_setauthsize, .encrypt = gcm_aes_encrypt, .decrypt = gcm_aes_decrypt, .ivsize = GHASH_BLOCK_SIZE - sizeof(u32), .maxauthsize = GHASH_DIGEST_SIZE, .chunksize = AES_BLOCK_SIZE, .base = { .cra_blocksize = 1, .cra_ctxsize = sizeof(struct s390_aes_ctx), .cra_priority = 900, .cra_name = "gcm(aes)", .cra_driver_name = "gcm-aes-s390", .cra_module = THIS_MODULE, }, }; static struct crypto_alg *aes_s390_alg; static struct skcipher_alg *aes_s390_skcipher_algs[4]; static int aes_s390_skciphers_num; static struct aead_alg *aes_s390_aead_alg; static int aes_s390_register_skcipher(struct skcipher_alg *alg) { int ret; ret = crypto_register_skcipher(alg); if (!ret) aes_s390_skcipher_algs[aes_s390_skciphers_num++] = alg; return ret; } static void aes_s390_fini(void) { if (aes_s390_alg) crypto_unregister_alg(aes_s390_alg); while (aes_s390_skciphers_num--) crypto_unregister_skcipher(aes_s390_skcipher_algs[aes_s390_skciphers_num]); if (ctrblk) free_page((unsigned long) ctrblk); if (aes_s390_aead_alg) crypto_unregister_aead(aes_s390_aead_alg); } static int __init aes_s390_init(void) { int ret; /* Query available functions for KM, KMC, KMCTR and KMA */ cpacf_query(CPACF_KM, &km_functions); cpacf_query(CPACF_KMC, &kmc_functions); cpacf_query(CPACF_KMCTR, &kmctr_functions); cpacf_query(CPACF_KMA, &kma_functions); if (cpacf_test_func(&km_functions, CPACF_KM_AES_128) || cpacf_test_func(&km_functions, CPACF_KM_AES_192) || cpacf_test_func(&km_functions, CPACF_KM_AES_256)) { ret = crypto_register_alg(&aes_alg); if (ret) goto out_err; aes_s390_alg = &aes_alg; ret = aes_s390_register_skcipher(&ecb_aes_alg); if (ret) goto out_err; } if (cpacf_test_func(&kmc_functions, CPACF_KMC_AES_128) || cpacf_test_func(&kmc_functions, CPACF_KMC_AES_192) || cpacf_test_func(&kmc_functions, CPACF_KMC_AES_256)) { ret = aes_s390_register_skcipher(&cbc_aes_alg); if (ret) goto out_err; } if (cpacf_test_func(&km_functions, CPACF_KM_XTS_128) || cpacf_test_func(&km_functions, CPACF_KM_XTS_256)) { ret = aes_s390_register_skcipher(&xts_aes_alg); if (ret) goto out_err; } if (cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_128) || cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_192) || cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_256)) { ctrblk = (u8 *) __get_free_page(GFP_KERNEL); if (!ctrblk) { ret = -ENOMEM; goto out_err; } ret = aes_s390_register_skcipher(&ctr_aes_alg); if (ret) goto out_err; } if (cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_128) || cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_192) || cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_256)) { ret = crypto_register_aead(&gcm_aes_aead); if (ret) goto out_err; aes_s390_aead_alg = &gcm_aes_aead; } return 0; out_err: aes_s390_fini(); return ret; } module_cpu_feature_match(S390_CPU_FEATURE_MSA, aes_s390_init); module_exit(aes_s390_fini); MODULE_ALIAS_CRYPTO("aes-all"); MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm"); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS(CRYPTO_INTERNAL);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1