Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Heiko Carstens | 338 | 95.75% | 1 | 50.00% |
Hendrik Brueckner | 15 | 4.25% | 1 | 50.00% |
Total | 353 | 2 |
/* SPDX-License-Identifier: GPL-2.0 */ /* * Hardware-accelerated CRC-32 variants for Linux on z Systems * * Use the z/Architecture Vector Extension Facility to accelerate the * computing of CRC-32 checksums. * * This CRC-32 implementation algorithm processes the most-significant * bit first (BE). * * Copyright IBM Corp. 2015 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com> */ #include <linux/types.h> #include <asm/fpu.h> #include "crc32-vx.h" /* Vector register range containing CRC-32 constants */ #define CONST_R1R2 9 #define CONST_R3R4 10 #define CONST_R5 11 #define CONST_R6 12 #define CONST_RU_POLY 13 #define CONST_CRC_POLY 14 /* * The CRC-32 constant block contains reduction constants to fold and * process particular chunks of the input data stream in parallel. * * For the CRC-32 variants, the constants are precomputed according to * these definitions: * * R1 = x4*128+64 mod P(x) * R2 = x4*128 mod P(x) * R3 = x128+64 mod P(x) * R4 = x128 mod P(x) * R5 = x96 mod P(x) * R6 = x64 mod P(x) * * Barret reduction constant, u, is defined as floor(x**64 / P(x)). * * where P(x) is the polynomial in the normal domain and the P'(x) is the * polynomial in the reversed (bitreflected) domain. * * Note that the constant definitions below are extended in order to compute * intermediate results with a single VECTOR GALOIS FIELD MULTIPLY instruction. * The rightmost doubleword can be 0 to prevent contribution to the result or * can be multiplied by 1 to perform an XOR without the need for a separate * VECTOR EXCLUSIVE OR instruction. * * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials: * * P(x) = 0x04C11DB7 * P'(x) = 0xEDB88320 */ static unsigned long constants_CRC_32_BE[] = { 0x08833794c, 0x0e6228b11, /* R1, R2 */ 0x0c5b9cd4c, 0x0e8a45605, /* R3, R4 */ 0x0f200aa66, 1UL << 32, /* R5, x32 */ 0x0490d678d, 1, /* R6, 1 */ 0x104d101df, 0, /* u */ 0x104C11DB7, 0, /* P(x) */ }; /** * crc32_be_vgfm_16 - Compute CRC-32 (BE variant) with vector registers * @crc: Initial CRC value, typically ~0. * @buf: Input buffer pointer, performance might be improved if the * buffer is on a doubleword boundary. * @size: Size of the buffer, must be 64 bytes or greater. * * Register usage: * V0: Initial CRC value and intermediate constants and results. * V1..V4: Data for CRC computation. * V5..V8: Next data chunks that are fetched from the input buffer. * V9..V14: CRC-32 constants. */ u32 crc32_be_vgfm_16(u32 crc, unsigned char const *buf, size_t size) { /* Load CRC-32 constants */ fpu_vlm(CONST_R1R2, CONST_CRC_POLY, &constants_CRC_32_BE); fpu_vzero(0); /* Load the initial CRC value into the leftmost word of V0. */ fpu_vlvgf(0, crc, 0); /* Load a 64-byte data chunk and XOR with CRC */ fpu_vlm(1, 4, buf); fpu_vx(1, 0, 1); buf += 64; size -= 64; while (size >= 64) { /* Load the next 64-byte data chunk into V5 to V8 */ fpu_vlm(5, 8, buf); /* * Perform a GF(2) multiplication of the doublewords in V1 with * the reduction constants in V0. The intermediate result is * then folded (accumulated) with the next data chunk in V5 and * stored in V1. Repeat this step for the register contents * in V2, V3, and V4 respectively. */ fpu_vgfmag(1, CONST_R1R2, 1, 5); fpu_vgfmag(2, CONST_R1R2, 2, 6); fpu_vgfmag(3, CONST_R1R2, 3, 7); fpu_vgfmag(4, CONST_R1R2, 4, 8); buf += 64; size -= 64; } /* Fold V1 to V4 into a single 128-bit value in V1 */ fpu_vgfmag(1, CONST_R3R4, 1, 2); fpu_vgfmag(1, CONST_R3R4, 1, 3); fpu_vgfmag(1, CONST_R3R4, 1, 4); while (size >= 16) { fpu_vl(2, buf); fpu_vgfmag(1, CONST_R3R4, 1, 2); buf += 16; size -= 16; } /* * The R5 constant is used to fold a 128-bit value into an 96-bit value * that is XORed with the next 96-bit input data chunk. To use a single * VGFMG instruction, multiply the rightmost 64-bit with x^32 (1<<32) to * form an intermediate 96-bit value (with appended zeros) which is then * XORed with the intermediate reduction result. */ fpu_vgfmg(1, CONST_R5, 1); /* * Further reduce the remaining 96-bit value to a 64-bit value using a * single VGFMG, the rightmost doubleword is multiplied with 0x1. The * intermediate result is then XORed with the product of the leftmost * doubleword with R6. The result is a 64-bit value and is subject to * the Barret reduction. */ fpu_vgfmg(1, CONST_R6, 1); /* * The input values to the Barret reduction are the degree-63 polynomial * in V1 (R(x)), degree-32 generator polynomial, and the reduction * constant u. The Barret reduction result is the CRC value of R(x) mod * P(x). * * The Barret reduction algorithm is defined as: * * 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u * 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x) * 3. C(x) = R(x) XOR T2(x) mod x^32 * * Note: To compensate the division by x^32, use the vector unpack * instruction to move the leftmost word into the leftmost doubleword * of the vector register. The rightmost doubleword is multiplied * with zero to not contribute to the intermediate results. */ /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */ fpu_vupllf(2, 1); fpu_vgfmg(2, CONST_RU_POLY, 2); /* * Compute the GF(2) product of the CRC polynomial in VO with T1(x) in * V2 and XOR the intermediate result, T2(x), with the value in V1. * The final result is in the rightmost word of V2. */ fpu_vupllf(2, 2); fpu_vgfmag(2, CONST_CRC_POLY, 2, 1); return fpu_vlgvf(2, 3); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1