Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Heiko Carstens | 580 | 93.55% | 3 | 75.00% |
Hendrik Brueckner | 40 | 6.45% | 1 | 25.00% |
Total | 620 | 4 |
/* SPDX-License-Identifier: GPL-2.0 */ /* * Hardware-accelerated CRC-32 variants for Linux on z Systems * * Use the z/Architecture Vector Extension Facility to accelerate the * computing of bitreflected CRC-32 checksums for IEEE 802.3 Ethernet * and Castagnoli. * * This CRC-32 implementation algorithm is bitreflected and processes * the least-significant bit first (Little-Endian). * * Copyright IBM Corp. 2015 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com> */ #include <linux/types.h> #include <asm/fpu.h> #include "crc32-vx.h" /* Vector register range containing CRC-32 constants */ #define CONST_PERM_LE2BE 9 #define CONST_R2R1 10 #define CONST_R4R3 11 #define CONST_R5 12 #define CONST_RU_POLY 13 #define CONST_CRC_POLY 14 /* * The CRC-32 constant block contains reduction constants to fold and * process particular chunks of the input data stream in parallel. * * For the CRC-32 variants, the constants are precomputed according to * these definitions: * * R1 = [(x4*128+32 mod P'(x) << 32)]' << 1 * R2 = [(x4*128-32 mod P'(x) << 32)]' << 1 * R3 = [(x128+32 mod P'(x) << 32)]' << 1 * R4 = [(x128-32 mod P'(x) << 32)]' << 1 * R5 = [(x64 mod P'(x) << 32)]' << 1 * R6 = [(x32 mod P'(x) << 32)]' << 1 * * The bitreflected Barret reduction constant, u', is defined as * the bit reversal of floor(x**64 / P(x)). * * where P(x) is the polynomial in the normal domain and the P'(x) is the * polynomial in the reversed (bitreflected) domain. * * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials: * * P(x) = 0x04C11DB7 * P'(x) = 0xEDB88320 * * CRC-32C (Castagnoli) polynomials: * * P(x) = 0x1EDC6F41 * P'(x) = 0x82F63B78 */ static unsigned long constants_CRC_32_LE[] = { 0x0f0e0d0c0b0a0908, 0x0706050403020100, /* BE->LE mask */ 0x1c6e41596, 0x154442bd4, /* R2, R1 */ 0x0ccaa009e, 0x1751997d0, /* R4, R3 */ 0x0, 0x163cd6124, /* R5 */ 0x0, 0x1f7011641, /* u' */ 0x0, 0x1db710641 /* P'(x) << 1 */ }; static unsigned long constants_CRC_32C_LE[] = { 0x0f0e0d0c0b0a0908, 0x0706050403020100, /* BE->LE mask */ 0x09e4addf8, 0x740eef02, /* R2, R1 */ 0x14cd00bd6, 0xf20c0dfe, /* R4, R3 */ 0x0, 0x0dd45aab8, /* R5 */ 0x0, 0x0dea713f1, /* u' */ 0x0, 0x105ec76f0 /* P'(x) << 1 */ }; /** * crc32_le_vgfm_generic - Compute CRC-32 (LE variant) with vector registers * @crc: Initial CRC value, typically ~0. * @buf: Input buffer pointer, performance might be improved if the * buffer is on a doubleword boundary. * @size: Size of the buffer, must be 64 bytes or greater. * @constants: CRC-32 constant pool base pointer. * * Register usage: * V0: Initial CRC value and intermediate constants and results. * V1..V4: Data for CRC computation. * V5..V8: Next data chunks that are fetched from the input buffer. * V9: Constant for BE->LE conversion and shift operations * V10..V14: CRC-32 constants. */ static u32 crc32_le_vgfm_generic(u32 crc, unsigned char const *buf, size_t size, unsigned long *constants) { /* Load CRC-32 constants */ fpu_vlm(CONST_PERM_LE2BE, CONST_CRC_POLY, constants); /* * Load the initial CRC value. * * The CRC value is loaded into the rightmost word of the * vector register and is later XORed with the LSB portion * of the loaded input data. */ fpu_vzero(0); /* Clear V0 */ fpu_vlvgf(0, crc, 3); /* Load CRC into rightmost word */ /* Load a 64-byte data chunk and XOR with CRC */ fpu_vlm(1, 4, buf); fpu_vperm(1, 1, 1, CONST_PERM_LE2BE); fpu_vperm(2, 2, 2, CONST_PERM_LE2BE); fpu_vperm(3, 3, 3, CONST_PERM_LE2BE); fpu_vperm(4, 4, 4, CONST_PERM_LE2BE); fpu_vx(1, 0, 1); /* V1 ^= CRC */ buf += 64; size -= 64; while (size >= 64) { fpu_vlm(5, 8, buf); fpu_vperm(5, 5, 5, CONST_PERM_LE2BE); fpu_vperm(6, 6, 6, CONST_PERM_LE2BE); fpu_vperm(7, 7, 7, CONST_PERM_LE2BE); fpu_vperm(8, 8, 8, CONST_PERM_LE2BE); /* * Perform a GF(2) multiplication of the doublewords in V1 with * the R1 and R2 reduction constants in V0. The intermediate * result is then folded (accumulated) with the next data chunk * in V5 and stored in V1. Repeat this step for the register * contents in V2, V3, and V4 respectively. */ fpu_vgfmag(1, CONST_R2R1, 1, 5); fpu_vgfmag(2, CONST_R2R1, 2, 6); fpu_vgfmag(3, CONST_R2R1, 3, 7); fpu_vgfmag(4, CONST_R2R1, 4, 8); buf += 64; size -= 64; } /* * Fold V1 to V4 into a single 128-bit value in V1. Multiply V1 with R3 * and R4 and accumulating the next 128-bit chunk until a single 128-bit * value remains. */ fpu_vgfmag(1, CONST_R4R3, 1, 2); fpu_vgfmag(1, CONST_R4R3, 1, 3); fpu_vgfmag(1, CONST_R4R3, 1, 4); while (size >= 16) { fpu_vl(2, buf); fpu_vperm(2, 2, 2, CONST_PERM_LE2BE); fpu_vgfmag(1, CONST_R4R3, 1, 2); buf += 16; size -= 16; } /* * Set up a vector register for byte shifts. The shift value must * be loaded in bits 1-4 in byte element 7 of a vector register. * Shift by 8 bytes: 0x40 * Shift by 4 bytes: 0x20 */ fpu_vleib(9, 0x40, 7); /* * Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes * to move R4 into the rightmost doubleword and set the leftmost * doubleword to 0x1. */ fpu_vsrlb(0, CONST_R4R3, 9); fpu_vleig(0, 1, 0); /* * Compute GF(2) product of V1 and V0. The rightmost doubleword * of V1 is multiplied with R4. The leftmost doubleword of V1 is * multiplied by 0x1 and is then XORed with rightmost product. * Implicitly, the intermediate leftmost product becomes padded */ fpu_vgfmg(1, 0, 1); /* * Now do the final 32-bit fold by multiplying the rightmost word * in V1 with R5 and XOR the result with the remaining bits in V1. * * To achieve this by a single VGFMAG, right shift V1 by a word * and store the result in V2 which is then accumulated. Use the * vector unpack instruction to load the rightmost half of the * doubleword into the rightmost doubleword element of V1; the other * half is loaded in the leftmost doubleword. * The vector register with CONST_R5 contains the R5 constant in the * rightmost doubleword and the leftmost doubleword is zero to ignore * the leftmost product of V1. */ fpu_vleib(9, 0x20, 7); /* Shift by words */ fpu_vsrlb(2, 1, 9); /* Store remaining bits in V2 */ fpu_vupllf(1, 1); /* Split rightmost doubleword */ fpu_vgfmag(1, CONST_R5, 1, 2); /* V1 = (V1 * R5) XOR V2 */ /* * Apply a Barret reduction to compute the final 32-bit CRC value. * * The input values to the Barret reduction are the degree-63 polynomial * in V1 (R(x)), degree-32 generator polynomial, and the reduction * constant u. The Barret reduction result is the CRC value of R(x) mod * P(x). * * The Barret reduction algorithm is defined as: * * 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u * 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x) * 3. C(x) = R(x) XOR T2(x) mod x^32 * * Note: The leftmost doubleword of vector register containing * CONST_RU_POLY is zero and, thus, the intermediate GF(2) product * is zero and does not contribute to the final result. */ /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */ fpu_vupllf(2, 1); fpu_vgfmg(2, CONST_RU_POLY, 2); /* * Compute the GF(2) product of the CRC polynomial with T1(x) in * V2 and XOR the intermediate result, T2(x), with the value in V1. * The final result is stored in word element 2 of V2. */ fpu_vupllf(2, 2); fpu_vgfmag(2, CONST_CRC_POLY, 2, 1); return fpu_vlgvf(2, 2); } u32 crc32_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size) { return crc32_le_vgfm_generic(crc, buf, size, &constants_CRC_32_LE[0]); } u32 crc32c_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size) { return crc32_le_vgfm_generic(crc, buf, size, &constants_CRC_32C_LE[0]); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1