Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Martin Schwidefsky | 680 | 40.55% | 5 | 17.86% |
Harald Freudenberger | 406 | 24.21% | 7 | 25.00% |
Heiko Carstens | 226 | 13.48% | 1 | 3.57% |
Andrew Morton | 156 | 9.30% | 1 | 3.57% |
Patrick Steuer | 91 | 5.43% | 1 | 3.57% |
Joerg Schmidbauer | 32 | 1.91% | 1 | 3.57% |
David Hildenbrand | 29 | 1.73% | 1 | 3.57% |
Ilya Leoshkevich | 17 | 1.01% | 1 | 3.57% |
Jan Glauber | 9 | 0.54% | 1 | 3.57% |
Herbert Xu | 7 | 0.42% | 1 | 3.57% |
Gerald Schaefer | 6 | 0.36% | 1 | 3.57% |
Jason J. Herne | 5 | 0.30% | 1 | 3.57% |
Christian Bornträger | 5 | 0.30% | 1 | 3.57% |
David Howells | 3 | 0.18% | 1 | 3.57% |
Masahiro Yamada | 3 | 0.18% | 2 | 7.14% |
Jiri Kosina | 1 | 0.06% | 1 | 3.57% |
Greg Kroah-Hartman | 1 | 0.06% | 1 | 3.57% |
Total | 1677 | 28 |
/* SPDX-License-Identifier: GPL-2.0 */ /* * CP Assist for Cryptographic Functions (CPACF) * * Copyright IBM Corp. 2003, 2023 * Author(s): Thomas Spatzier * Jan Glauber * Harald Freudenberger (freude@de.ibm.com) * Martin Schwidefsky <schwidefsky@de.ibm.com> */ #ifndef _ASM_S390_CPACF_H #define _ASM_S390_CPACF_H #include <asm/facility.h> #include <linux/kmsan-checks.h> /* * Instruction opcodes for the CPACF instructions */ #define CPACF_KMAC 0xb91e /* MSA */ #define CPACF_KM 0xb92e /* MSA */ #define CPACF_KMC 0xb92f /* MSA */ #define CPACF_KIMD 0xb93e /* MSA */ #define CPACF_KLMD 0xb93f /* MSA */ #define CPACF_PCKMO 0xb928 /* MSA3 */ #define CPACF_KMF 0xb92a /* MSA4 */ #define CPACF_KMO 0xb92b /* MSA4 */ #define CPACF_PCC 0xb92c /* MSA4 */ #define CPACF_KMCTR 0xb92d /* MSA4 */ #define CPACF_PRNO 0xb93c /* MSA5 */ #define CPACF_KMA 0xb929 /* MSA8 */ #define CPACF_KDSA 0xb93a /* MSA9 */ /* * En/decryption modifier bits */ #define CPACF_ENCRYPT 0x00 #define CPACF_DECRYPT 0x80 /* * Function codes for the KM (CIPHER MESSAGE) instruction */ #define CPACF_KM_QUERY 0x00 #define CPACF_KM_DEA 0x01 #define CPACF_KM_TDEA_128 0x02 #define CPACF_KM_TDEA_192 0x03 #define CPACF_KM_AES_128 0x12 #define CPACF_KM_AES_192 0x13 #define CPACF_KM_AES_256 0x14 #define CPACF_KM_PAES_128 0x1a #define CPACF_KM_PAES_192 0x1b #define CPACF_KM_PAES_256 0x1c #define CPACF_KM_XTS_128 0x32 #define CPACF_KM_XTS_256 0x34 #define CPACF_KM_PXTS_128 0x3a #define CPACF_KM_PXTS_256 0x3c /* * Function codes for the KMC (CIPHER MESSAGE WITH CHAINING) * instruction */ #define CPACF_KMC_QUERY 0x00 #define CPACF_KMC_DEA 0x01 #define CPACF_KMC_TDEA_128 0x02 #define CPACF_KMC_TDEA_192 0x03 #define CPACF_KMC_AES_128 0x12 #define CPACF_KMC_AES_192 0x13 #define CPACF_KMC_AES_256 0x14 #define CPACF_KMC_PAES_128 0x1a #define CPACF_KMC_PAES_192 0x1b #define CPACF_KMC_PAES_256 0x1c #define CPACF_KMC_PRNG 0x43 /* * Function codes for the KMCTR (CIPHER MESSAGE WITH COUNTER) * instruction */ #define CPACF_KMCTR_QUERY 0x00 #define CPACF_KMCTR_DEA 0x01 #define CPACF_KMCTR_TDEA_128 0x02 #define CPACF_KMCTR_TDEA_192 0x03 #define CPACF_KMCTR_AES_128 0x12 #define CPACF_KMCTR_AES_192 0x13 #define CPACF_KMCTR_AES_256 0x14 #define CPACF_KMCTR_PAES_128 0x1a #define CPACF_KMCTR_PAES_192 0x1b #define CPACF_KMCTR_PAES_256 0x1c /* * Function codes for the KIMD (COMPUTE INTERMEDIATE MESSAGE DIGEST) * instruction */ #define CPACF_KIMD_QUERY 0x00 #define CPACF_KIMD_SHA_1 0x01 #define CPACF_KIMD_SHA_256 0x02 #define CPACF_KIMD_SHA_512 0x03 #define CPACF_KIMD_SHA3_224 0x20 #define CPACF_KIMD_SHA3_256 0x21 #define CPACF_KIMD_SHA3_384 0x22 #define CPACF_KIMD_SHA3_512 0x23 #define CPACF_KIMD_GHASH 0x41 /* * Function codes for the KLMD (COMPUTE LAST MESSAGE DIGEST) * instruction */ #define CPACF_KLMD_QUERY 0x00 #define CPACF_KLMD_SHA_1 0x01 #define CPACF_KLMD_SHA_256 0x02 #define CPACF_KLMD_SHA_512 0x03 #define CPACF_KLMD_SHA3_224 0x20 #define CPACF_KLMD_SHA3_256 0x21 #define CPACF_KLMD_SHA3_384 0x22 #define CPACF_KLMD_SHA3_512 0x23 /* * function codes for the KMAC (COMPUTE MESSAGE AUTHENTICATION CODE) * instruction */ #define CPACF_KMAC_QUERY 0x00 #define CPACF_KMAC_DEA 0x01 #define CPACF_KMAC_TDEA_128 0x02 #define CPACF_KMAC_TDEA_192 0x03 /* * Function codes for the PCKMO (PERFORM CRYPTOGRAPHIC KEY MANAGEMENT) * instruction */ #define CPACF_PCKMO_QUERY 0x00 #define CPACF_PCKMO_ENC_DES_KEY 0x01 #define CPACF_PCKMO_ENC_TDES_128_KEY 0x02 #define CPACF_PCKMO_ENC_TDES_192_KEY 0x03 #define CPACF_PCKMO_ENC_AES_128_KEY 0x12 #define CPACF_PCKMO_ENC_AES_192_KEY 0x13 #define CPACF_PCKMO_ENC_AES_256_KEY 0x14 #define CPACF_PCKMO_ENC_ECC_P256_KEY 0x20 #define CPACF_PCKMO_ENC_ECC_P384_KEY 0x21 #define CPACF_PCKMO_ENC_ECC_P521_KEY 0x22 #define CPACF_PCKMO_ENC_ECC_ED25519_KEY 0x28 #define CPACF_PCKMO_ENC_ECC_ED448_KEY 0x29 /* * Function codes for the PRNO (PERFORM RANDOM NUMBER OPERATION) * instruction */ #define CPACF_PRNO_QUERY 0x00 #define CPACF_PRNO_SHA512_DRNG_GEN 0x03 #define CPACF_PRNO_SHA512_DRNG_SEED 0x83 #define CPACF_PRNO_TRNG_Q_R2C_RATIO 0x70 #define CPACF_PRNO_TRNG 0x72 /* * Function codes for the KMA (CIPHER MESSAGE WITH AUTHENTICATION) * instruction */ #define CPACF_KMA_QUERY 0x00 #define CPACF_KMA_GCM_AES_128 0x12 #define CPACF_KMA_GCM_AES_192 0x13 #define CPACF_KMA_GCM_AES_256 0x14 /* * Flags for the KMA (CIPHER MESSAGE WITH AUTHENTICATION) instruction */ #define CPACF_KMA_LPC 0x100 /* Last-Plaintext/Ciphertext */ #define CPACF_KMA_LAAD 0x200 /* Last-AAD */ #define CPACF_KMA_HS 0x400 /* Hash-subkey Supplied */ typedef struct { unsigned char bytes[16]; } cpacf_mask_t; /* * Prototype for a not existing function to produce a link * error if __cpacf_query() or __cpacf_check_opcode() is used * with an invalid compile time const opcode. */ void __cpacf_bad_opcode(void); static __always_inline void __cpacf_query_rre(u32 opc, u8 r1, u8 r2, cpacf_mask_t *mask) { asm volatile( " la %%r1,%[mask]\n" " xgr %%r0,%%r0\n" " .insn rre,%[opc] << 16,%[r1],%[r2]\n" : [mask] "=R" (*mask) : [opc] "i" (opc), [r1] "i" (r1), [r2] "i" (r2) : "cc", "r0", "r1"); } static __always_inline void __cpacf_query_rrf(u32 opc, u8 r1, u8 r2, u8 r3, u8 m4, cpacf_mask_t *mask) { asm volatile( " la %%r1,%[mask]\n" " xgr %%r0,%%r0\n" " .insn rrf,%[opc] << 16,%[r1],%[r2],%[r3],%[m4]\n" : [mask] "=R" (*mask) : [opc] "i" (opc), [r1] "i" (r1), [r2] "i" (r2), [r3] "i" (r3), [m4] "i" (m4) : "cc", "r0", "r1"); } static __always_inline void __cpacf_query(unsigned int opcode, cpacf_mask_t *mask) { switch (opcode) { case CPACF_KDSA: __cpacf_query_rre(CPACF_KDSA, 0, 2, mask); break; case CPACF_KIMD: __cpacf_query_rre(CPACF_KIMD, 0, 2, mask); break; case CPACF_KLMD: __cpacf_query_rre(CPACF_KLMD, 0, 2, mask); break; case CPACF_KM: __cpacf_query_rre(CPACF_KM, 2, 4, mask); break; case CPACF_KMA: __cpacf_query_rrf(CPACF_KMA, 2, 4, 6, 0, mask); break; case CPACF_KMAC: __cpacf_query_rre(CPACF_KMAC, 0, 2, mask); break; case CPACF_KMC: __cpacf_query_rre(CPACF_KMC, 2, 4, mask); break; case CPACF_KMCTR: __cpacf_query_rrf(CPACF_KMCTR, 2, 4, 6, 0, mask); break; case CPACF_KMF: __cpacf_query_rre(CPACF_KMF, 2, 4, mask); break; case CPACF_KMO: __cpacf_query_rre(CPACF_KMO, 2, 4, mask); break; case CPACF_PCC: __cpacf_query_rre(CPACF_PCC, 0, 0, mask); break; case CPACF_PCKMO: __cpacf_query_rre(CPACF_PCKMO, 0, 0, mask); break; case CPACF_PRNO: __cpacf_query_rre(CPACF_PRNO, 2, 4, mask); break; default: __cpacf_bad_opcode(); } } static __always_inline int __cpacf_check_opcode(unsigned int opcode) { switch (opcode) { case CPACF_KMAC: case CPACF_KM: case CPACF_KMC: case CPACF_KIMD: case CPACF_KLMD: return test_facility(17); /* check for MSA */ case CPACF_PCKMO: return test_facility(76); /* check for MSA3 */ case CPACF_KMF: case CPACF_KMO: case CPACF_PCC: case CPACF_KMCTR: return test_facility(77); /* check for MSA4 */ case CPACF_PRNO: return test_facility(57); /* check for MSA5 */ case CPACF_KMA: return test_facility(146); /* check for MSA8 */ default: __cpacf_bad_opcode(); return 0; } } /** * cpacf_query() - check if a specific CPACF function is available * @opcode: the opcode of the crypto instruction * @func: the function code to test for * * Executes the query function for the given crypto instruction @opcode * and checks if @func is available * * Returns 1 if @func is available for @opcode, 0 otherwise */ static __always_inline int cpacf_query(unsigned int opcode, cpacf_mask_t *mask) { if (__cpacf_check_opcode(opcode)) { __cpacf_query(opcode, mask); return 1; } memset(mask, 0, sizeof(*mask)); return 0; } static inline int cpacf_test_func(cpacf_mask_t *mask, unsigned int func) { return (mask->bytes[func >> 3] & (0x80 >> (func & 7))) != 0; } static __always_inline int cpacf_query_func(unsigned int opcode, unsigned int func) { cpacf_mask_t mask; if (cpacf_query(opcode, &mask)) return cpacf_test_func(&mask, func); return 0; } /** * cpacf_km() - executes the KM (CIPHER MESSAGE) instruction * @func: the function code passed to KM; see CPACF_KM_xxx defines * @param: address of parameter block; see POP for details on each func * @dest: address of destination memory area * @src: address of source memory area * @src_len: length of src operand in bytes * * Returns 0 for the query func, number of processed bytes for * encryption/decryption funcs */ static inline int cpacf_km(unsigned long func, void *param, u8 *dest, const u8 *src, long src_len) { union register_pair d, s; d.even = (unsigned long)dest; s.even = (unsigned long)src; s.odd = (unsigned long)src_len; asm volatile( " lgr 0,%[fc]\n" " lgr 1,%[pba]\n" "0: .insn rre,%[opc] << 16,%[dst],%[src]\n" " brc 1,0b\n" /* handle partial completion */ : [src] "+&d" (s.pair), [dst] "+&d" (d.pair) : [fc] "d" (func), [pba] "d" ((unsigned long)param), [opc] "i" (CPACF_KM) : "cc", "memory", "0", "1"); return src_len - s.odd; } /** * cpacf_kmc() - executes the KMC (CIPHER MESSAGE WITH CHAINING) instruction * @func: the function code passed to KM; see CPACF_KMC_xxx defines * @param: address of parameter block; see POP for details on each func * @dest: address of destination memory area * @src: address of source memory area * @src_len: length of src operand in bytes * * Returns 0 for the query func, number of processed bytes for * encryption/decryption funcs */ static inline int cpacf_kmc(unsigned long func, void *param, u8 *dest, const u8 *src, long src_len) { union register_pair d, s; d.even = (unsigned long)dest; s.even = (unsigned long)src; s.odd = (unsigned long)src_len; asm volatile( " lgr 0,%[fc]\n" " lgr 1,%[pba]\n" "0: .insn rre,%[opc] << 16,%[dst],%[src]\n" " brc 1,0b\n" /* handle partial completion */ : [src] "+&d" (s.pair), [dst] "+&d" (d.pair) : [fc] "d" (func), [pba] "d" ((unsigned long)param), [opc] "i" (CPACF_KMC) : "cc", "memory", "0", "1"); return src_len - s.odd; } /** * cpacf_kimd() - executes the KIMD (COMPUTE INTERMEDIATE MESSAGE DIGEST) * instruction * @func: the function code passed to KM; see CPACF_KIMD_xxx defines * @param: address of parameter block; see POP for details on each func * @src: address of source memory area * @src_len: length of src operand in bytes */ static inline void cpacf_kimd(unsigned long func, void *param, const u8 *src, long src_len) { union register_pair s; s.even = (unsigned long)src; s.odd = (unsigned long)src_len; asm volatile( " lgr 0,%[fc]\n" " lgr 1,%[pba]\n" "0: .insn rre,%[opc] << 16,0,%[src]\n" " brc 1,0b\n" /* handle partial completion */ : [src] "+&d" (s.pair) : [fc] "d" (func), [pba] "d" ((unsigned long)(param)), [opc] "i" (CPACF_KIMD) : "cc", "memory", "0", "1"); } /** * cpacf_klmd() - executes the KLMD (COMPUTE LAST MESSAGE DIGEST) instruction * @func: the function code passed to KM; see CPACF_KLMD_xxx defines * @param: address of parameter block; see POP for details on each func * @src: address of source memory area * @src_len: length of src operand in bytes */ static inline void cpacf_klmd(unsigned long func, void *param, const u8 *src, long src_len) { union register_pair s; s.even = (unsigned long)src; s.odd = (unsigned long)src_len; asm volatile( " lgr 0,%[fc]\n" " lgr 1,%[pba]\n" "0: .insn rre,%[opc] << 16,0,%[src]\n" " brc 1,0b\n" /* handle partial completion */ : [src] "+&d" (s.pair) : [fc] "d" (func), [pba] "d" ((unsigned long)param), [opc] "i" (CPACF_KLMD) : "cc", "memory", "0", "1"); } /** * cpacf_kmac() - executes the KMAC (COMPUTE MESSAGE AUTHENTICATION CODE) * instruction * @func: the function code passed to KM; see CPACF_KMAC_xxx defines * @param: address of parameter block; see POP for details on each func * @src: address of source memory area * @src_len: length of src operand in bytes * * Returns 0 for the query func, number of processed bytes for digest funcs */ static inline int cpacf_kmac(unsigned long func, void *param, const u8 *src, long src_len) { union register_pair s; s.even = (unsigned long)src; s.odd = (unsigned long)src_len; asm volatile( " lgr 0,%[fc]\n" " lgr 1,%[pba]\n" "0: .insn rre,%[opc] << 16,0,%[src]\n" " brc 1,0b\n" /* handle partial completion */ : [src] "+&d" (s.pair) : [fc] "d" (func), [pba] "d" ((unsigned long)param), [opc] "i" (CPACF_KMAC) : "cc", "memory", "0", "1"); return src_len - s.odd; } /** * cpacf_kmctr() - executes the KMCTR (CIPHER MESSAGE WITH COUNTER) instruction * @func: the function code passed to KMCTR; see CPACF_KMCTR_xxx defines * @param: address of parameter block; see POP for details on each func * @dest: address of destination memory area * @src: address of source memory area * @src_len: length of src operand in bytes * @counter: address of counter value * * Returns 0 for the query func, number of processed bytes for * encryption/decryption funcs */ static inline int cpacf_kmctr(unsigned long func, void *param, u8 *dest, const u8 *src, long src_len, u8 *counter) { union register_pair d, s, c; d.even = (unsigned long)dest; s.even = (unsigned long)src; s.odd = (unsigned long)src_len; c.even = (unsigned long)counter; asm volatile( " lgr 0,%[fc]\n" " lgr 1,%[pba]\n" "0: .insn rrf,%[opc] << 16,%[dst],%[src],%[ctr],0\n" " brc 1,0b\n" /* handle partial completion */ : [src] "+&d" (s.pair), [dst] "+&d" (d.pair), [ctr] "+&d" (c.pair) : [fc] "d" (func), [pba] "d" ((unsigned long)param), [opc] "i" (CPACF_KMCTR) : "cc", "memory", "0", "1"); return src_len - s.odd; } /** * cpacf_prno() - executes the PRNO (PERFORM RANDOM NUMBER OPERATION) * instruction * @func: the function code passed to PRNO; see CPACF_PRNO_xxx defines * @param: address of parameter block; see POP for details on each func * @dest: address of destination memory area * @dest_len: size of destination memory area in bytes * @seed: address of seed data * @seed_len: size of seed data in bytes */ static inline void cpacf_prno(unsigned long func, void *param, u8 *dest, unsigned long dest_len, const u8 *seed, unsigned long seed_len) { union register_pair d, s; d.even = (unsigned long)dest; d.odd = (unsigned long)dest_len; s.even = (unsigned long)seed; s.odd = (unsigned long)seed_len; asm volatile ( " lgr 0,%[fc]\n" " lgr 1,%[pba]\n" "0: .insn rre,%[opc] << 16,%[dst],%[seed]\n" " brc 1,0b\n" /* handle partial completion */ : [dst] "+&d" (d.pair) : [fc] "d" (func), [pba] "d" ((unsigned long)param), [seed] "d" (s.pair), [opc] "i" (CPACF_PRNO) : "cc", "memory", "0", "1"); } /** * cpacf_trng() - executes the TRNG subfunction of the PRNO instruction * @ucbuf: buffer for unconditioned data * @ucbuf_len: amount of unconditioned data to fetch in bytes * @cbuf: buffer for conditioned data * @cbuf_len: amount of conditioned data to fetch in bytes */ static inline void cpacf_trng(u8 *ucbuf, unsigned long ucbuf_len, u8 *cbuf, unsigned long cbuf_len) { union register_pair u, c; u.even = (unsigned long)ucbuf; u.odd = (unsigned long)ucbuf_len; c.even = (unsigned long)cbuf; c.odd = (unsigned long)cbuf_len; asm volatile ( " lghi 0,%[fc]\n" "0: .insn rre,%[opc] << 16,%[ucbuf],%[cbuf]\n" " brc 1,0b\n" /* handle partial completion */ : [ucbuf] "+&d" (u.pair), [cbuf] "+&d" (c.pair) : [fc] "K" (CPACF_PRNO_TRNG), [opc] "i" (CPACF_PRNO) : "cc", "memory", "0"); kmsan_unpoison_memory(ucbuf, ucbuf_len); kmsan_unpoison_memory(cbuf, cbuf_len); } /** * cpacf_pcc() - executes the PCC (PERFORM CRYPTOGRAPHIC COMPUTATION) * instruction * @func: the function code passed to PCC; see CPACF_KM_xxx defines * @param: address of parameter block; see POP for details on each func */ static inline void cpacf_pcc(unsigned long func, void *param) { asm volatile( " lgr 0,%[fc]\n" " lgr 1,%[pba]\n" "0: .insn rre,%[opc] << 16,0,0\n" /* PCC opcode */ " brc 1,0b\n" /* handle partial completion */ : : [fc] "d" (func), [pba] "d" ((unsigned long)param), [opc] "i" (CPACF_PCC) : "cc", "memory", "0", "1"); } /** * cpacf_pckmo() - executes the PCKMO (PERFORM CRYPTOGRAPHIC KEY * MANAGEMENT) instruction * @func: the function code passed to PCKMO; see CPACF_PCKMO_xxx defines * @param: address of parameter block; see POP for details on each func * * Returns 0. */ static inline void cpacf_pckmo(long func, void *param) { asm volatile( " lgr 0,%[fc]\n" " lgr 1,%[pba]\n" " .insn rre,%[opc] << 16,0,0\n" /* PCKMO opcode */ : : [fc] "d" (func), [pba] "d" ((unsigned long)param), [opc] "i" (CPACF_PCKMO) : "cc", "memory", "0", "1"); } /** * cpacf_kma() - executes the KMA (CIPHER MESSAGE WITH AUTHENTICATION) * instruction * @func: the function code passed to KMA; see CPACF_KMA_xxx defines * @param: address of parameter block; see POP for details on each func * @dest: address of destination memory area * @src: address of source memory area * @src_len: length of src operand in bytes * @aad: address of additional authenticated data memory area * @aad_len: length of aad operand in bytes */ static inline void cpacf_kma(unsigned long func, void *param, u8 *dest, const u8 *src, unsigned long src_len, const u8 *aad, unsigned long aad_len) { union register_pair d, s, a; d.even = (unsigned long)dest; s.even = (unsigned long)src; s.odd = (unsigned long)src_len; a.even = (unsigned long)aad; a.odd = (unsigned long)aad_len; asm volatile( " lgr 0,%[fc]\n" " lgr 1,%[pba]\n" "0: .insn rrf,%[opc] << 16,%[dst],%[src],%[aad],0\n" " brc 1,0b\n" /* handle partial completion */ : [dst] "+&d" (d.pair), [src] "+&d" (s.pair), [aad] "+&d" (a.pair) : [fc] "d" (func), [pba] "d" ((unsigned long)param), [opc] "i" (CPACF_KMA) : "cc", "memory", "0", "1"); } #endif /* _ASM_S390_CPACF_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1