/* SPDX-License-Identifier: GPL-2.0 */ /* * definition for kernel virtual machines on s390 * * Copyright IBM Corp. 2008, 2018 * * Author(s): Carsten Otte <cotte@de.ibm.com> */ #ifndef ASM_KVM_HOST_H #define ASM_KVM_HOST_H #include <linux/types.h> #include <linux/hrtimer.h> #include <linux/interrupt.h> #include <linux/kvm_types.h> #include <linux/kvm.h> #include <linux/seqlock.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/mmu_notifier.h> #include <asm/debug.h> #include <asm/cpu.h> #include <asm/fpu.h> #include <asm/isc.h> #include <asm/guarded_storage.h> #define KVM_S390_BSCA_CPU_SLOTS 64 #define KVM_S390_ESCA_CPU_SLOTS 248 #define KVM_MAX_VCPUS 255 /* * These seem to be used for allocating ->chip in the routing table, which we * don't use. 1 is as small as we can get to reduce the needed memory. If we * need to look at ->chip later on, we'll need to revisit this. */ #define KVM_NR_IRQCHIPS 1 #define KVM_IRQCHIP_NUM_PINS 1 #define KVM_HALT_POLL_NS_DEFAULT 50000 /* s390-specific vcpu->requests bit members */ #define KVM_REQ_ENABLE_IBS KVM_ARCH_REQ(0) #define KVM_REQ_DISABLE_IBS KVM_ARCH_REQ(1) #define KVM_REQ_ICPT_OPEREXC KVM_ARCH_REQ(2) #define KVM_REQ_START_MIGRATION KVM_ARCH_REQ(3) #define KVM_REQ_STOP_MIGRATION KVM_ARCH_REQ(4) #define KVM_REQ_VSIE_RESTART KVM_ARCH_REQ(5) #define KVM_REQ_REFRESH_GUEST_PREFIX \ KVM_ARCH_REQ_FLAGS(6, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) #define SIGP_CTRL_C 0x80 #define SIGP_CTRL_SCN_MASK 0x3f union bsca_sigp_ctrl { __u8 value; struct { __u8 c : 1; __u8 r : 1; __u8 scn : 6; }; }; union esca_sigp_ctrl { __u16 value; struct { __u8 c : 1; __u8 reserved: 7; __u8 scn; }; }; struct esca_entry { union esca_sigp_ctrl sigp_ctrl; __u16 reserved1[3]; __u64 sda; __u64 reserved2[6]; }; struct bsca_entry { __u8 reserved0; union bsca_sigp_ctrl sigp_ctrl; __u16 reserved[3]; __u64 sda; __u64 reserved2[2]; }; union ipte_control { unsigned long val; struct { unsigned long k : 1; unsigned long kh : 31; unsigned long kg : 32; }; }; union sca_utility { __u16 val; struct { __u16 mtcr : 1; __u16 reserved : 15; }; }; struct bsca_block { union ipte_control ipte_control; __u64 reserved[5]; __u64 mcn; union sca_utility utility; __u8 reserved2[6]; struct bsca_entry cpu[KVM_S390_BSCA_CPU_SLOTS]; }; struct esca_block { union ipte_control ipte_control; __u64 reserved1[6]; union sca_utility utility; __u8 reserved2[6]; __u64 mcn[4]; __u64 reserved3[20]; struct esca_entry cpu[KVM_S390_ESCA_CPU_SLOTS]; }; /* * This struct is used to store some machine check info from lowcore * for machine checks that happen while the guest is running. * This info in host's lowcore might be overwritten by a second machine * check from host when host is in the machine check's high-level handling. * The size is 24 bytes. */ struct mcck_volatile_info { __u64 mcic; __u64 failing_storage_address; __u32 ext_damage_code; __u32 reserved; }; #define CR0_INITIAL_MASK (CR0_UNUSED_56 | CR0_INTERRUPT_KEY_SUBMASK | \ CR0_MEASUREMENT_ALERT_SUBMASK) #define CR14_INITIAL_MASK (CR14_UNUSED_32 | CR14_UNUSED_33 | \ CR14_EXTERNAL_DAMAGE_SUBMASK) #define SIDAD_SIZE_MASK 0xff #define sida_addr(sie_block) phys_to_virt((sie_block)->sidad & PAGE_MASK) #define sida_size(sie_block) \ ((((sie_block)->sidad & SIDAD_SIZE_MASK) + 1) * PAGE_SIZE) #define CPUSTAT_STOPPED 0x80000000 #define CPUSTAT_WAIT 0x10000000 #define CPUSTAT_ECALL_PEND 0x08000000 #define CPUSTAT_STOP_INT 0x04000000 #define CPUSTAT_IO_INT 0x02000000 #define CPUSTAT_EXT_INT 0x01000000 #define CPUSTAT_RUNNING 0x00800000 #define CPUSTAT_RETAINED 0x00400000 #define CPUSTAT_TIMING_SUB 0x00020000 #define CPUSTAT_SIE_SUB 0x00010000 #define CPUSTAT_RRF 0x00008000 #define CPUSTAT_SLSV 0x00004000 #define CPUSTAT_SLSR 0x00002000 #define CPUSTAT_ZARCH 0x00000800 #define CPUSTAT_MCDS 0x00000100 #define CPUSTAT_KSS 0x00000200 #define CPUSTAT_SM 0x00000080 #define CPUSTAT_IBS 0x00000040 #define CPUSTAT_GED2 0x00000010 #define CPUSTAT_G 0x00000008 #define CPUSTAT_GED 0x00000004 #define CPUSTAT_J 0x00000002 #define CPUSTAT_P 0x00000001 struct kvm_s390_sie_block { atomic_t cpuflags; /* 0x0000 */ __u32 : 1; /* 0x0004 */ __u32 prefix : 18; __u32 : 1; __u32 ibc : 12; __u8 reserved08[4]; /* 0x0008 */ #define PROG_IN_SIE (1<<0) __u32 prog0c; /* 0x000c */ union { __u8 reserved10[16]; /* 0x0010 */ struct { __u64 pv_handle_cpu; __u64 pv_handle_config; }; }; #define PROG_BLOCK_SIE (1<<0) #define PROG_REQUEST (1<<1) atomic_t prog20; /* 0x0020 */ __u8 reserved24[4]; /* 0x0024 */ __u64 cputm; /* 0x0028 */ __u64 ckc; /* 0x0030 */ __u64 epoch; /* 0x0038 */ __u32 svcc; /* 0x0040 */ #define LCTL_CR0 0x8000 #define LCTL_CR6 0x0200 #define LCTL_CR9 0x0040 #define LCTL_CR10 0x0020 #define LCTL_CR11 0x0010 #define LCTL_CR14 0x0002 __u16 lctl; /* 0x0044 */ __s16 icpua; /* 0x0046 */ #define ICTL_OPEREXC 0x80000000 #define ICTL_PINT 0x20000000 #define ICTL_LPSW 0x00400000 #define ICTL_STCTL 0x00040000 #define ICTL_ISKE 0x00004000 #define ICTL_SSKE 0x00002000 #define ICTL_RRBE 0x00001000 #define ICTL_TPROT 0x00000200 __u32 ictl; /* 0x0048 */ #define ECA_CEI 0x80000000 #define ECA_IB 0x40000000 #define ECA_SIGPI 0x10000000 #define ECA_MVPGI 0x01000000 #define ECA_AIV 0x00200000 #define ECA_VX 0x00020000 #define ECA_PROTEXCI 0x00002000 #define ECA_APIE 0x00000008 #define ECA_SII 0x00000001 __u32 eca; /* 0x004c */ #define ICPT_INST 0x04 #define ICPT_PROGI 0x08 #define ICPT_INSTPROGI 0x0C #define ICPT_EXTREQ 0x10 #define ICPT_EXTINT 0x14 #define ICPT_IOREQ 0x18 #define ICPT_WAIT 0x1c #define ICPT_VALIDITY 0x20 #define ICPT_STOP 0x28 #define ICPT_OPEREXC 0x2C #define ICPT_PARTEXEC 0x38 #define ICPT_IOINST 0x40 #define ICPT_KSS 0x5c #define ICPT_MCHKREQ 0x60 #define ICPT_INT_ENABLE 0x64 #define ICPT_PV_INSTR 0x68 #define ICPT_PV_NOTIFY 0x6c #define ICPT_PV_PREF 0x70 __u8 icptcode; /* 0x0050 */ __u8 icptstatus; /* 0x0051 */ __u16 ihcpu; /* 0x0052 */ __u8 reserved54; /* 0x0054 */ #define IICTL_CODE_NONE 0x00 #define IICTL_CODE_MCHK 0x01 #define IICTL_CODE_EXT 0x02 #define IICTL_CODE_IO 0x03 #define IICTL_CODE_RESTART 0x04 #define IICTL_CODE_SPECIFICATION 0x10 #define IICTL_CODE_OPERAND 0x11 __u8 iictl; /* 0x0055 */ __u16 ipa; /* 0x0056 */ __u32 ipb; /* 0x0058 */ __u32 scaoh; /* 0x005c */ #define FPF_BPBC 0x20 __u8 fpf; /* 0x0060 */ #define ECB_GS 0x40 #define ECB_TE 0x10 #define ECB_SPECI 0x08 #define ECB_SRSI 0x04 #define ECB_HOSTPROTINT 0x02 #define ECB_PTF 0x01 __u8 ecb; /* 0x0061 */ #define ECB2_CMMA 0x80 #define ECB2_IEP 0x20 #define ECB2_PFMFI 0x08 #define ECB2_ESCA 0x04 #define ECB2_ZPCI_LSI 0x02 __u8 ecb2; /* 0x0062 */ #define ECB3_AISI 0x20 #define ECB3_AISII 0x10 #define ECB3_DEA 0x08 #define ECB3_AES 0x04 #define ECB3_RI 0x01 __u8 ecb3; /* 0x0063 */ #define ESCA_SCAOL_MASK ~0x3fU __u32 scaol; /* 0x0064 */ __u8 sdf; /* 0x0068 */ __u8 epdx; /* 0x0069 */ __u8 cpnc; /* 0x006a */ __u8 reserved6b; /* 0x006b */ __u32 todpr; /* 0x006c */ #define GISA_FORMAT1 0x00000001 __u32 gd; /* 0x0070 */ __u8 reserved74[12]; /* 0x0074 */ __u64 mso; /* 0x0080 */ __u64 msl; /* 0x0088 */ psw_t gpsw; /* 0x0090 */ __u64 gg14; /* 0x00a0 */ __u64 gg15; /* 0x00a8 */ __u8 reservedb0[8]; /* 0x00b0 */ #define HPID_KVM 0x4 #define HPID_VSIE 0x5 __u8 hpid; /* 0x00b8 */ __u8 reservedb9[7]; /* 0x00b9 */ union { struct { __u32 eiparams; /* 0x00c0 */ __u16 extcpuaddr; /* 0x00c4 */ __u16 eic; /* 0x00c6 */ }; __u64 mcic; /* 0x00c0 */ } __packed; __u32 reservedc8; /* 0x00c8 */ union { struct { __u16 pgmilc; /* 0x00cc */ __u16 iprcc; /* 0x00ce */ }; __u32 edc; /* 0x00cc */ } __packed; union { struct { __u32 dxc; /* 0x00d0 */ __u16 mcn; /* 0x00d4 */ __u8 perc; /* 0x00d6 */ __u8 peratmid; /* 0x00d7 */ }; __u64 faddr; /* 0x00d0 */ } __packed; __u64 peraddr; /* 0x00d8 */ __u8 eai; /* 0x00e0 */ __u8 peraid; /* 0x00e1 */ __u8 oai; /* 0x00e2 */ __u8 armid; /* 0x00e3 */ __u8 reservede4[4]; /* 0x00e4 */ union { __u64 tecmc; /* 0x00e8 */ struct { __u16 subchannel_id; /* 0x00e8 */ __u16 subchannel_nr; /* 0x00ea */ __u32 io_int_parm; /* 0x00ec */ __u32 io_int_word; /* 0x00f0 */ }; } __packed; __u8 reservedf4[8]; /* 0x00f4 */ #define CRYCB_FORMAT_MASK 0x00000003 #define CRYCB_FORMAT0 0x00000000 #define CRYCB_FORMAT1 0x00000001 #define CRYCB_FORMAT2 0x00000003 __u32 crycbd; /* 0x00fc */ __u64 gcr[16]; /* 0x0100 */ union { __u64 gbea; /* 0x0180 */ __u64 sidad; }; __u8 reserved188[8]; /* 0x0188 */ __u64 sdnxo; /* 0x0190 */ __u8 reserved198[8]; /* 0x0198 */ __u32 fac; /* 0x01a0 */ __u8 reserved1a4[20]; /* 0x01a4 */ __u64 cbrlo; /* 0x01b8 */ __u8 reserved1c0[8]; /* 0x01c0 */ #define ECD_HOSTREGMGMT 0x20000000 #define ECD_MEF 0x08000000 #define ECD_ETOKENF 0x02000000 #define ECD_ECC 0x00200000 __u32 ecd; /* 0x01c8 */ __u8 reserved1cc[18]; /* 0x01cc */ __u64 pp; /* 0x01de */ __u8 reserved1e6[2]; /* 0x01e6 */ __u64 itdba; /* 0x01e8 */ __u64 riccbd; /* 0x01f0 */ __u64 gvrd; /* 0x01f8 */ } __packed __aligned(512); struct kvm_s390_itdb { __u8 data[256]; }; struct sie_page { struct kvm_s390_sie_block sie_block; struct mcck_volatile_info mcck_info; /* 0x0200 */ __u8 reserved218[360]; /* 0x0218 */ __u64 pv_grregs[16]; /* 0x0380 */ __u8 reserved400[512]; /* 0x0400 */ struct kvm_s390_itdb itdb; /* 0x0600 */ __u8 reserved700[2304]; /* 0x0700 */ }; struct kvm_vcpu_stat { struct kvm_vcpu_stat_generic generic; u64 exit_userspace; u64 exit_null; u64 exit_external_request; u64 exit_io_request; u64 exit_external_interrupt; u64 exit_stop_request; u64 exit_validity; u64 exit_instruction; u64 exit_pei; u64 halt_no_poll_steal; u64 instruction_lctl; u64 instruction_lctlg; u64 instruction_stctl; u64 instruction_stctg; u64 exit_program_interruption; u64 exit_instr_and_program; u64 exit_operation_exception; u64 deliver_ckc; u64 deliver_cputm; u64 deliver_external_call; u64 deliver_emergency_signal; u64 deliver_service_signal; u64 deliver_virtio; u64 deliver_stop_signal; u64 deliver_prefix_signal; u64 deliver_restart_signal; u64 deliver_program; u64 deliver_io; u64 deliver_machine_check; u64 exit_wait_state; u64 inject_ckc; u64 inject_cputm; u64 inject_external_call; u64 inject_emergency_signal; u64 inject_mchk; u64 inject_pfault_init; u64 inject_program; u64 inject_restart; u64 inject_set_prefix; u64 inject_stop_signal; u64 instruction_epsw; u64 instruction_gs; u64 instruction_io_other; u64 instruction_lpsw; u64 instruction_lpswe; u64 instruction_lpswey; u64 instruction_pfmf; u64 instruction_ptff; u64 instruction_sck; u64 instruction_sckpf; u64 instruction_stidp; u64 instruction_spx; u64 instruction_stpx; u64 instruction_stap; u64 instruction_iske; u64 instruction_ri; u64 instruction_rrbe; u64 instruction_sske; u64 instruction_ipte_interlock; u64 instruction_stsi; u64 instruction_stfl; u64 instruction_tb; u64 instruction_tpi; u64 instruction_tprot; u64 instruction_tsch; u64 instruction_sie; u64 instruction_essa; u64 instruction_sthyi; u64 instruction_sigp_sense; u64 instruction_sigp_sense_running; u64 instruction_sigp_external_call; u64 instruction_sigp_emergency; u64 instruction_sigp_cond_emergency; u64 instruction_sigp_start; u64 instruction_sigp_stop; u64 instruction_sigp_stop_store_status; u64 instruction_sigp_store_status; u64 instruction_sigp_store_adtl_status; u64 instruction_sigp_arch; u64 instruction_sigp_prefix; u64 instruction_sigp_restart; u64 instruction_sigp_init_cpu_reset; u64 instruction_sigp_cpu_reset; u64 instruction_sigp_unknown; u64 instruction_diagnose_10; u64 instruction_diagnose_44; u64 instruction_diagnose_9c; u64 diag_9c_ignored; u64 diag_9c_forward; u64 instruction_diagnose_258; u64 instruction_diagnose_308; u64 instruction_diagnose_500; u64 instruction_diagnose_other; u64 pfault_sync; }; #define PGM_OPERATION 0x01 #define PGM_PRIVILEGED_OP 0x02 #define PGM_EXECUTE 0x03 #define PGM_PROTECTION 0x04 #define PGM_ADDRESSING 0x05 #define PGM_SPECIFICATION 0x06 #define PGM_DATA 0x07 #define PGM_FIXED_POINT_OVERFLOW 0x08 #define PGM_FIXED_POINT_DIVIDE 0x09 #define PGM_DECIMAL_OVERFLOW 0x0a #define PGM_DECIMAL_DIVIDE 0x0b #define PGM_HFP_EXPONENT_OVERFLOW 0x0c #define PGM_HFP_EXPONENT_UNDERFLOW 0x0d #define PGM_HFP_SIGNIFICANCE 0x0e #define PGM_HFP_DIVIDE 0x0f #define PGM_SEGMENT_TRANSLATION 0x10 #define PGM_PAGE_TRANSLATION 0x11 #define PGM_TRANSLATION_SPEC 0x12 #define PGM_SPECIAL_OPERATION 0x13 #define PGM_OPERAND 0x15 #define PGM_TRACE_TABEL 0x16 #define PGM_VECTOR_PROCESSING 0x1b #define PGM_SPACE_SWITCH 0x1c #define PGM_HFP_SQUARE_ROOT 0x1d #define PGM_PC_TRANSLATION_SPEC 0x1f #define PGM_AFX_TRANSLATION 0x20 #define PGM_ASX_TRANSLATION 0x21 #define PGM_LX_TRANSLATION 0x22 #define PGM_EX_TRANSLATION 0x23 #define PGM_PRIMARY_AUTHORITY 0x24 #define PGM_SECONDARY_AUTHORITY 0x25 #define PGM_LFX_TRANSLATION 0x26 #define PGM_LSX_TRANSLATION 0x27 #define PGM_ALET_SPECIFICATION 0x28 #define PGM_ALEN_TRANSLATION 0x29 #define PGM_ALE_SEQUENCE 0x2a #define PGM_ASTE_VALIDITY 0x2b #define PGM_ASTE_SEQUENCE 0x2c #define PGM_EXTENDED_AUTHORITY 0x2d #define PGM_LSTE_SEQUENCE 0x2e #define PGM_ASTE_INSTANCE 0x2f #define PGM_STACK_FULL 0x30 #define PGM_STACK_EMPTY 0x31 #define PGM_STACK_SPECIFICATION 0x32 #define PGM_STACK_TYPE 0x33 #define PGM_STACK_OPERATION 0x34 #define PGM_ASCE_TYPE 0x38 #define PGM_REGION_FIRST_TRANS 0x39 #define PGM_REGION_SECOND_TRANS 0x3a #define PGM_REGION_THIRD_TRANS 0x3b #define PGM_MONITOR 0x40 #define PGM_PER 0x80 #define PGM_CRYPTO_OPERATION 0x119 /* irq types in ascend order of priorities */ enum irq_types { IRQ_PEND_SET_PREFIX = 0, IRQ_PEND_RESTART, IRQ_PEND_SIGP_STOP, IRQ_PEND_IO_ISC_7, IRQ_PEND_IO_ISC_6, IRQ_PEND_IO_ISC_5, IRQ_PEND_IO_ISC_4, IRQ_PEND_IO_ISC_3, IRQ_PEND_IO_ISC_2, IRQ_PEND_IO_ISC_1, IRQ_PEND_IO_ISC_0, IRQ_PEND_VIRTIO, IRQ_PEND_PFAULT_DONE, IRQ_PEND_PFAULT_INIT, IRQ_PEND_EXT_HOST, IRQ_PEND_EXT_SERVICE, IRQ_PEND_EXT_SERVICE_EV, IRQ_PEND_EXT_TIMING, IRQ_PEND_EXT_CPU_TIMER, IRQ_PEND_EXT_CLOCK_COMP, IRQ_PEND_EXT_EXTERNAL, IRQ_PEND_EXT_EMERGENCY, IRQ_PEND_EXT_MALFUNC, IRQ_PEND_EXT_IRQ_KEY, IRQ_PEND_MCHK_REP, IRQ_PEND_PROG, IRQ_PEND_SVC, IRQ_PEND_MCHK_EX, IRQ_PEND_COUNT }; /* We have 2M for virtio device descriptor pages. Smallest amount of * memory per page is 24 bytes (1 queue), so (2048*1024) / 24 = 87381 */ #define KVM_S390_MAX_VIRTIO_IRQS 87381 /* * Repressible (non-floating) machine check interrupts * subclass bits in MCIC */ #define MCHK_EXTD_BIT 58 #define MCHK_DEGR_BIT 56 #define MCHK_WARN_BIT 55 #define MCHK_REP_MASK ((1UL << MCHK_DEGR_BIT) | \ (1UL << MCHK_EXTD_BIT) | \ (1UL << MCHK_WARN_BIT)) /* Exigent machine check interrupts subclass bits in MCIC */ #define MCHK_SD_BIT 63 #define MCHK_PD_BIT 62 #define MCHK_EX_MASK ((1UL << MCHK_SD_BIT) | (1UL << MCHK_PD_BIT)) #define IRQ_PEND_EXT_MASK ((1UL << IRQ_PEND_EXT_IRQ_KEY) | \ (1UL << IRQ_PEND_EXT_CLOCK_COMP) | \ (1UL << IRQ_PEND_EXT_CPU_TIMER) | \ (1UL << IRQ_PEND_EXT_MALFUNC) | \ (1UL << IRQ_PEND_EXT_EMERGENCY) | \ (1UL << IRQ_PEND_EXT_EXTERNAL) | \ (1UL << IRQ_PEND_EXT_TIMING) | \ (1UL << IRQ_PEND_EXT_HOST) | \ (1UL << IRQ_PEND_EXT_SERVICE) | \ (1UL << IRQ_PEND_EXT_SERVICE_EV) | \ (1UL << IRQ_PEND_VIRTIO) | \ (1UL << IRQ_PEND_PFAULT_INIT) | \ (1UL << IRQ_PEND_PFAULT_DONE)) #define IRQ_PEND_IO_MASK ((1UL << IRQ_PEND_IO_ISC_0) | \ (1UL << IRQ_PEND_IO_ISC_1) | \ (1UL << IRQ_PEND_IO_ISC_2) | \ (1UL << IRQ_PEND_IO_ISC_3) | \ (1UL << IRQ_PEND_IO_ISC_4) | \ (1UL << IRQ_PEND_IO_ISC_5) | \ (1UL << IRQ_PEND_IO_ISC_6) | \ (1UL << IRQ_PEND_IO_ISC_7)) #define IRQ_PEND_MCHK_MASK ((1UL << IRQ_PEND_MCHK_REP) | \ (1UL << IRQ_PEND_MCHK_EX)) #define IRQ_PEND_EXT_II_MASK ((1UL << IRQ_PEND_EXT_CPU_TIMER) | \ (1UL << IRQ_PEND_EXT_CLOCK_COMP) | \ (1UL << IRQ_PEND_EXT_EMERGENCY) | \ (1UL << IRQ_PEND_EXT_EXTERNAL) | \ (1UL << IRQ_PEND_EXT_SERVICE) | \ (1UL << IRQ_PEND_EXT_SERVICE_EV)) struct kvm_s390_interrupt_info { struct list_head list; u64 type; union { struct kvm_s390_io_info io; struct kvm_s390_ext_info ext; struct kvm_s390_pgm_info pgm; struct kvm_s390_emerg_info emerg; struct kvm_s390_extcall_info extcall; struct kvm_s390_prefix_info prefix; struct kvm_s390_stop_info stop; struct kvm_s390_mchk_info mchk; }; }; struct kvm_s390_irq_payload { struct kvm_s390_io_info io; struct kvm_s390_ext_info ext; struct kvm_s390_pgm_info pgm; struct kvm_s390_emerg_info emerg; struct kvm_s390_extcall_info extcall; struct kvm_s390_prefix_info prefix; struct kvm_s390_stop_info stop; struct kvm_s390_mchk_info mchk; }; struct kvm_s390_local_interrupt { spinlock_t lock; DECLARE_BITMAP(sigp_emerg_pending, KVM_MAX_VCPUS); struct kvm_s390_irq_payload irq; unsigned long pending_irqs; }; #define FIRQ_LIST_IO_ISC_0 0 #define FIRQ_LIST_IO_ISC_1 1 #define FIRQ_LIST_IO_ISC_2 2 #define FIRQ_LIST_IO_ISC_3 3 #define FIRQ_LIST_IO_ISC_4 4 #define FIRQ_LIST_IO_ISC_5 5 #define FIRQ_LIST_IO_ISC_6 6 #define FIRQ_LIST_IO_ISC_7 7 #define FIRQ_LIST_PFAULT 8 #define FIRQ_LIST_VIRTIO 9 #define FIRQ_LIST_COUNT 10 #define FIRQ_CNTR_IO 0 #define FIRQ_CNTR_SERVICE 1 #define FIRQ_CNTR_VIRTIO 2 #define FIRQ_CNTR_PFAULT 3 #define FIRQ_MAX_COUNT 4 /* mask the AIS mode for a given ISC */ #define AIS_MODE_MASK(isc) (0x80 >> isc) #define KVM_S390_AIS_MODE_ALL 0 #define KVM_S390_AIS_MODE_SINGLE 1 struct kvm_s390_float_interrupt { unsigned long pending_irqs; unsigned long masked_irqs; spinlock_t lock; struct list_head lists[FIRQ_LIST_COUNT]; int counters[FIRQ_MAX_COUNT]; struct kvm_s390_mchk_info mchk; struct kvm_s390_ext_info srv_signal; int next_rr_cpu; struct mutex ais_lock; u8 simm; u8 nimm; }; struct kvm_hw_wp_info_arch { unsigned long addr; unsigned long phys_addr; int len; char *old_data; }; struct kvm_hw_bp_info_arch { unsigned long addr; int len; }; /* * Only the upper 16 bits of kvm_guest_debug->control are arch specific. * Further KVM_GUESTDBG flags which an be used from userspace can be found in * arch/s390/include/uapi/asm/kvm.h */ #define KVM_GUESTDBG_EXIT_PENDING 0x10000000 #define guestdbg_enabled(vcpu) \ (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) #define guestdbg_sstep_enabled(vcpu) \ (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) #define guestdbg_hw_bp_enabled(vcpu) \ (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) #define guestdbg_exit_pending(vcpu) (guestdbg_enabled(vcpu) && \ (vcpu->guest_debug & KVM_GUESTDBG_EXIT_PENDING)) #define KVM_GUESTDBG_VALID_MASK \ (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP |\ KVM_GUESTDBG_USE_HW_BP | KVM_GUESTDBG_EXIT_PENDING) struct kvm_guestdbg_info_arch { unsigned long cr0; unsigned long cr9; unsigned long cr10; unsigned long cr11; struct kvm_hw_bp_info_arch *hw_bp_info; struct kvm_hw_wp_info_arch *hw_wp_info; int nr_hw_bp; int nr_hw_wp; unsigned long last_bp; }; struct kvm_s390_pv_vcpu { u64 handle; unsigned long stor_base; }; struct kvm_vcpu_arch { struct kvm_s390_sie_block *sie_block; /* if vsie is active, currently executed shadow sie control block */ struct kvm_s390_sie_block *vsie_block; unsigned int host_acrs[NUM_ACRS]; struct gs_cb *host_gscb; struct kvm_s390_local_interrupt local_int; struct hrtimer ckc_timer; struct kvm_s390_pgm_info pgm; struct gmap *gmap; /* backup location for the currently enabled gmap when scheduled out */ struct gmap *enabled_gmap; struct kvm_guestdbg_info_arch guestdbg; unsigned long pfault_token; unsigned long pfault_select; unsigned long pfault_compare; bool cputm_enabled; /* * The seqcount protects updates to cputm_start and sie_block.cputm, * this way we can have non-blocking reads with consistent values. * Only the owning VCPU thread (vcpu->cpu) is allowed to change these * values and to start/stop/enable/disable cpu timer accounting. */ seqcount_t cputm_seqcount; __u64 cputm_start; bool gs_enabled; bool skey_enabled; /* Indicator if the access registers have been loaded from guest */ bool acrs_loaded; struct kvm_s390_pv_vcpu pv; union diag318_info diag318_info; }; struct kvm_vm_stat { struct kvm_vm_stat_generic generic; u64 inject_io; u64 inject_float_mchk; u64 inject_pfault_done; u64 inject_service_signal; u64 inject_virtio; u64 aen_forward; u64 gmap_shadow_create; u64 gmap_shadow_reuse; u64 gmap_shadow_r1_entry; u64 gmap_shadow_r2_entry; u64 gmap_shadow_r3_entry; u64 gmap_shadow_sg_entry; u64 gmap_shadow_pg_entry; }; struct kvm_arch_memory_slot { }; struct s390_map_info { struct list_head list; __u64 guest_addr; __u64 addr; struct page *page; }; struct s390_io_adapter { unsigned int id; int isc; bool maskable; bool masked; bool swap; bool suppressible; }; #define MAX_S390_IO_ADAPTERS ((MAX_ISC + 1) * 8) #define MAX_S390_ADAPTER_MAPS 256 /* maximum size of facilities and facility mask is 2k bytes */ #define S390_ARCH_FAC_LIST_SIZE_BYTE (1<<11) #define S390_ARCH_FAC_LIST_SIZE_U64 \ (S390_ARCH_FAC_LIST_SIZE_BYTE / sizeof(u64)) #define S390_ARCH_FAC_MASK_SIZE_BYTE S390_ARCH_FAC_LIST_SIZE_BYTE #define S390_ARCH_FAC_MASK_SIZE_U64 \ (S390_ARCH_FAC_MASK_SIZE_BYTE / sizeof(u64)) struct kvm_s390_cpu_model { /* facility mask supported by kvm & hosting machine */ __u64 fac_mask[S390_ARCH_FAC_MASK_SIZE_U64]; struct kvm_s390_vm_cpu_subfunc subfuncs; /* facility list requested by guest (in dma page) */ __u64 *fac_list; u64 cpuid; unsigned short ibc; /* subset of available UV-features for pv-guests enabled by user space */ struct kvm_s390_vm_cpu_uv_feat uv_feat_guest; }; typedef int (*crypto_hook)(struct kvm_vcpu *vcpu); struct kvm_s390_crypto { struct kvm_s390_crypto_cb *crycb; struct rw_semaphore pqap_hook_rwsem; crypto_hook *pqap_hook; __u32 crycbd; __u8 aes_kw; __u8 dea_kw; __u8 apie; }; #define APCB0_MASK_SIZE 1 struct kvm_s390_apcb0 { __u64 apm[APCB0_MASK_SIZE]; /* 0x0000 */ __u64 aqm[APCB0_MASK_SIZE]; /* 0x0008 */ __u64 adm[APCB0_MASK_SIZE]; /* 0x0010 */ __u64 reserved18; /* 0x0018 */ }; #define APCB1_MASK_SIZE 4 struct kvm_s390_apcb1 { __u64 apm[APCB1_MASK_SIZE]; /* 0x0000 */ __u64 aqm[APCB1_MASK_SIZE]; /* 0x0020 */ __u64 adm[APCB1_MASK_SIZE]; /* 0x0040 */ __u64 reserved60[4]; /* 0x0060 */ }; struct kvm_s390_crypto_cb { struct kvm_s390_apcb0 apcb0; /* 0x0000 */ __u8 reserved20[0x0048 - 0x0020]; /* 0x0020 */ __u8 dea_wrapping_key_mask[24]; /* 0x0048 */ __u8 aes_wrapping_key_mask[32]; /* 0x0060 */ struct kvm_s390_apcb1 apcb1; /* 0x0080 */ }; struct kvm_s390_gisa { union { struct { /* common to all formats */ u32 next_alert; u8 ipm; u8 reserved01[2]; u8 iam; }; struct { /* format 0 */ u32 next_alert; u8 ipm; u8 reserved01; u8 : 6; u8 g : 1; u8 c : 1; u8 iam; u8 reserved02[4]; u32 airq_count; } g0; struct { /* format 1 */ u32 next_alert; u8 ipm; u8 simm; u8 nimm; u8 iam; u8 aism[8]; u8 : 6; u8 g : 1; u8 c : 1; u8 reserved03[11]; u32 airq_count; } g1; struct { u64 word[4]; } u64; }; }; struct kvm_s390_gib { u32 alert_list_origin; u32 reserved01; u8:5; u8 nisc:3; u8 reserved03[3]; u32 reserved04[5]; }; /* * sie_page2 has to be allocated as DMA because fac_list, crycb and * gisa need 31bit addresses in the sie control block. */ struct sie_page2 { __u64 fac_list[S390_ARCH_FAC_LIST_SIZE_U64]; /* 0x0000 */ struct kvm_s390_crypto_cb crycb; /* 0x0800 */ struct kvm_s390_gisa gisa; /* 0x0900 */ struct kvm *kvm; /* 0x0920 */ u8 reserved928[0x1000 - 0x928]; /* 0x0928 */ }; struct kvm_s390_vsie { struct mutex mutex; struct radix_tree_root addr_to_page; int page_count; int next; struct page *pages[KVM_MAX_VCPUS]; }; struct kvm_s390_gisa_iam { u8 mask; spinlock_t ref_lock; u32 ref_count[MAX_ISC + 1]; }; struct kvm_s390_gisa_interrupt { struct kvm_s390_gisa *origin; struct kvm_s390_gisa_iam alert; struct hrtimer timer; u64 expires; DECLARE_BITMAP(kicked_mask, KVM_MAX_VCPUS); }; struct kvm_s390_pv { u64 handle; u64 guest_len; unsigned long stor_base; void *stor_var; bool dumping; void *set_aside; struct list_head need_cleanup; struct mmu_notifier mmu_notifier; }; struct kvm_arch{ void *sca; int use_esca; rwlock_t sca_lock; debug_info_t *dbf; struct kvm_s390_float_interrupt float_int; struct kvm_device *flic; struct gmap *gmap; unsigned long mem_limit; int css_support; int use_irqchip; int use_cmma; int use_pfmfi; int use_skf; int use_zpci_interp; int user_cpu_state_ctrl; int user_sigp; int user_stsi; int user_instr0; struct s390_io_adapter *adapters[MAX_S390_IO_ADAPTERS]; wait_queue_head_t ipte_wq; int ipte_lock_count; struct mutex ipte_mutex; spinlock_t start_stop_lock; struct sie_page2 *sie_page2; struct kvm_s390_cpu_model model; struct kvm_s390_crypto crypto; struct kvm_s390_vsie vsie; u8 epdx; u64 epoch; int migration_mode; atomic64_t cmma_dirty_pages; /* subset of available cpu features enabled by user space */ DECLARE_BITMAP(cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); /* indexed by vcpu_idx */ DECLARE_BITMAP(idle_mask, KVM_MAX_VCPUS); struct kvm_s390_gisa_interrupt gisa_int; struct kvm_s390_pv pv; struct list_head kzdev_list; spinlock_t kzdev_list_lock; }; #define KVM_HVA_ERR_BAD (-1UL) #define KVM_HVA_ERR_RO_BAD (-2UL) static inline bool kvm_is_error_hva(unsigned long addr) { return IS_ERR_VALUE(addr); } #define ASYNC_PF_PER_VCPU 64 struct kvm_arch_async_pf { unsigned long pfault_token; }; bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu); void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work); bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, struct kvm_async_pf *work); void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, struct kvm_async_pf *work); static inline void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) {} void kvm_arch_crypto_clear_masks(struct kvm *kvm); void kvm_arch_crypto_set_masks(struct kvm *kvm, unsigned long *apm, unsigned long *aqm, unsigned long *adm); int __sie64a(phys_addr_t sie_block_phys, struct kvm_s390_sie_block *sie_block, u64 *rsa, unsigned long gasce); static inline int sie64a(struct kvm_s390_sie_block *sie_block, u64 *rsa, unsigned long gasce) { return __sie64a(virt_to_phys(sie_block), sie_block, rsa, gasce); } extern char sie_exit; bool kvm_s390_pv_is_protected(struct kvm *kvm); bool kvm_s390_pv_cpu_is_protected(struct kvm_vcpu *vcpu); extern int kvm_s390_gisc_register(struct kvm *kvm, u32 gisc); extern int kvm_s390_gisc_unregister(struct kvm *kvm, u32 gisc); static inline void kvm_arch_sync_events(struct kvm *kvm) {} static inline void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) {} static inline void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) {} static inline void kvm_arch_flush_shadow_all(struct kvm *kvm) {} static inline void kvm_arch_flush_shadow_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) {} static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) {} static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) {} #define __KVM_HAVE_ARCH_VM_FREE void kvm_arch_free_vm(struct kvm *kvm); struct zpci_kvm_hook { int (*kvm_register)(void *opaque, struct kvm *kvm); void (*kvm_unregister)(void *opaque); }; extern struct zpci_kvm_hook zpci_kvm_hook; #endif