Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Thomas Richter | 3986 | 98.13% | 19 | 48.72% |
Heiko Carstens | 31 | 0.76% | 7 | 17.95% |
Linus Torvalds (pre-git) | 15 | 0.37% | 2 | 5.13% |
Sven Schnelle | 9 | 0.22% | 2 | 5.13% |
Martin Schwidefsky | 8 | 0.20% | 2 | 5.13% |
Namhyung Kim | 6 | 0.15% | 2 | 5.13% |
Serge E. Hallyn | 2 | 0.05% | 1 | 2.56% |
Peter Zijlstra | 2 | 0.05% | 1 | 2.56% |
Greg Kroah-Hartman | 1 | 0.02% | 1 | 2.56% |
Paul Gortmaker | 1 | 0.02% | 1 | 2.56% |
Linus Torvalds | 1 | 0.02% | 1 | 2.56% |
Total | 4062 | 39 |
// SPDX-License-Identifier: GPL-2.0 /* * Performance event support - Processor Activity Instrumentation Facility * * Copyright IBM Corp. 2022 * Author(s): Thomas Richter <tmricht@linux.ibm.com> */ #define KMSG_COMPONENT "pai_crypto" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/kernel.h> #include <linux/kernel_stat.h> #include <linux/percpu.h> #include <linux/notifier.h> #include <linux/init.h> #include <linux/export.h> #include <linux/io.h> #include <linux/perf_event.h> #include <asm/ctlreg.h> #include <asm/pai.h> #include <asm/debug.h> static debug_info_t *cfm_dbg; static unsigned int paicrypt_cnt; /* Size of the mapped counter sets */ /* extracted with QPACI instruction */ DEFINE_STATIC_KEY_FALSE(pai_key); struct pai_userdata { u16 num; u64 value; } __packed; struct paicrypt_map { unsigned long *page; /* Page for CPU to store counters */ struct pai_userdata *save; /* Page to store no-zero counters */ unsigned int active_events; /* # of PAI crypto users */ refcount_t refcnt; /* Reference count mapped buffers */ struct perf_event *event; /* Perf event for sampling */ struct list_head syswide_list; /* List system-wide sampling events */ }; struct paicrypt_mapptr { struct paicrypt_map *mapptr; }; static struct paicrypt_root { /* Anchor to per CPU data */ refcount_t refcnt; /* Overall active events */ struct paicrypt_mapptr __percpu *mapptr; } paicrypt_root; /* Free per CPU data when the last event is removed. */ static void paicrypt_root_free(void) { if (refcount_dec_and_test(&paicrypt_root.refcnt)) { free_percpu(paicrypt_root.mapptr); paicrypt_root.mapptr = NULL; } debug_sprintf_event(cfm_dbg, 5, "%s root.refcount %d\n", __func__, refcount_read(&paicrypt_root.refcnt)); } /* * On initialization of first event also allocate per CPU data dynamically. * Start with an array of pointers, the array size is the maximum number of * CPUs possible, which might be larger than the number of CPUs currently * online. */ static int paicrypt_root_alloc(void) { if (!refcount_inc_not_zero(&paicrypt_root.refcnt)) { /* The memory is already zeroed. */ paicrypt_root.mapptr = alloc_percpu(struct paicrypt_mapptr); if (!paicrypt_root.mapptr) return -ENOMEM; refcount_set(&paicrypt_root.refcnt, 1); } return 0; } /* Release the PMU if event is the last perf event */ static DEFINE_MUTEX(pai_reserve_mutex); /* Adjust usage counters and remove allocated memory when all users are * gone. */ static void paicrypt_event_destroy_cpu(struct perf_event *event, int cpu) { struct paicrypt_mapptr *mp = per_cpu_ptr(paicrypt_root.mapptr, cpu); struct paicrypt_map *cpump = mp->mapptr; mutex_lock(&pai_reserve_mutex); debug_sprintf_event(cfm_dbg, 5, "%s event %#llx cpu %d users %d " "refcnt %u\n", __func__, event->attr.config, event->cpu, cpump->active_events, refcount_read(&cpump->refcnt)); if (refcount_dec_and_test(&cpump->refcnt)) { debug_sprintf_event(cfm_dbg, 4, "%s page %#lx save %p\n", __func__, (unsigned long)cpump->page, cpump->save); free_page((unsigned long)cpump->page); kvfree(cpump->save); kfree(cpump); mp->mapptr = NULL; } paicrypt_root_free(); mutex_unlock(&pai_reserve_mutex); } static void paicrypt_event_destroy(struct perf_event *event) { int cpu; static_branch_dec(&pai_key); free_page(PAI_SAVE_AREA(event)); if (event->cpu == -1) { struct cpumask *mask = PAI_CPU_MASK(event); for_each_cpu(cpu, mask) paicrypt_event_destroy_cpu(event, cpu); kfree(mask); } else { paicrypt_event_destroy_cpu(event, event->cpu); } } static u64 paicrypt_getctr(unsigned long *page, int nr, bool kernel) { if (kernel) nr += PAI_CRYPTO_MAXCTR; return page[nr]; } /* Read the counter values. Return value from location in CMP. For event * CRYPTO_ALL sum up all events. */ static u64 paicrypt_getdata(struct perf_event *event, bool kernel) { struct paicrypt_mapptr *mp = this_cpu_ptr(paicrypt_root.mapptr); struct paicrypt_map *cpump = mp->mapptr; u64 sum = 0; int i; if (event->attr.config != PAI_CRYPTO_BASE) { return paicrypt_getctr(cpump->page, event->attr.config - PAI_CRYPTO_BASE, kernel); } for (i = 1; i <= paicrypt_cnt; i++) { u64 val = paicrypt_getctr(cpump->page, i, kernel); if (!val) continue; sum += val; } return sum; } static u64 paicrypt_getall(struct perf_event *event) { u64 sum = 0; if (!event->attr.exclude_kernel) sum += paicrypt_getdata(event, true); if (!event->attr.exclude_user) sum += paicrypt_getdata(event, false); return sum; } /* Check concurrent access of counting and sampling for crypto events. * This function is called in process context and it is save to block. * When the event initialization functions fails, no other call back will * be invoked. * * Allocate the memory for the event. */ static struct paicrypt_map *paicrypt_busy(struct perf_event *event, int cpu) { struct paicrypt_map *cpump = NULL; struct paicrypt_mapptr *mp; int rc; mutex_lock(&pai_reserve_mutex); /* Allocate root node */ rc = paicrypt_root_alloc(); if (rc) goto unlock; /* Allocate node for this event */ mp = per_cpu_ptr(paicrypt_root.mapptr, cpu); cpump = mp->mapptr; if (!cpump) { /* Paicrypt_map allocated? */ cpump = kzalloc(sizeof(*cpump), GFP_KERNEL); if (!cpump) { rc = -ENOMEM; goto free_root; } INIT_LIST_HEAD(&cpump->syswide_list); } /* Allocate memory for counter page and counter extraction. * Only the first counting event has to allocate a page. */ if (cpump->page) { refcount_inc(&cpump->refcnt); goto unlock; } rc = -ENOMEM; cpump->page = (unsigned long *)get_zeroed_page(GFP_KERNEL); if (!cpump->page) goto free_paicrypt_map; cpump->save = kvmalloc_array(paicrypt_cnt + 1, sizeof(struct pai_userdata), GFP_KERNEL); if (!cpump->save) { free_page((unsigned long)cpump->page); cpump->page = NULL; goto free_paicrypt_map; } /* Set mode and reference count */ rc = 0; refcount_set(&cpump->refcnt, 1); mp->mapptr = cpump; debug_sprintf_event(cfm_dbg, 5, "%s users %d refcnt %u page %#lx " "save %p rc %d\n", __func__, cpump->active_events, refcount_read(&cpump->refcnt), (unsigned long)cpump->page, cpump->save, rc); goto unlock; free_paicrypt_map: /* Undo memory allocation */ kfree(cpump); mp->mapptr = NULL; free_root: paicrypt_root_free(); unlock: mutex_unlock(&pai_reserve_mutex); return rc ? ERR_PTR(rc) : cpump; } static int paicrypt_event_init_all(struct perf_event *event) { struct paicrypt_map *cpump; struct cpumask *maskptr; int cpu, rc = -ENOMEM; maskptr = kzalloc(sizeof(*maskptr), GFP_KERNEL); if (!maskptr) goto out; for_each_online_cpu(cpu) { cpump = paicrypt_busy(event, cpu); if (IS_ERR(cpump)) { for_each_cpu(cpu, maskptr) paicrypt_event_destroy_cpu(event, cpu); kfree(maskptr); rc = PTR_ERR(cpump); goto out; } cpumask_set_cpu(cpu, maskptr); } /* * On error all cpumask are freed and all events have been destroyed. * Save of which CPUs data structures have been allocated for. * Release them in paicrypt_event_destroy call back function * for this event. */ PAI_CPU_MASK(event) = maskptr; rc = 0; out: return rc; } /* Might be called on different CPU than the one the event is intended for. */ static int paicrypt_event_init(struct perf_event *event) { struct perf_event_attr *a = &event->attr; struct paicrypt_map *cpump; int rc = 0; /* PAI crypto PMU registered as PERF_TYPE_RAW, check event type */ if (a->type != PERF_TYPE_RAW && event->pmu->type != a->type) return -ENOENT; /* PAI crypto event must be in valid range */ if (a->config < PAI_CRYPTO_BASE || a->config > PAI_CRYPTO_BASE + paicrypt_cnt) return -EINVAL; /* Allow only CRYPTO_ALL for sampling */ if (a->sample_period && a->config != PAI_CRYPTO_BASE) return -EINVAL; /* Get a page to store last counter values for sampling */ if (a->sample_period) { PAI_SAVE_AREA(event) = get_zeroed_page(GFP_KERNEL); if (!PAI_SAVE_AREA(event)) { rc = -ENOMEM; goto out; } } if (event->cpu >= 0) { cpump = paicrypt_busy(event, event->cpu); if (IS_ERR(cpump)) rc = PTR_ERR(cpump); } else { rc = paicrypt_event_init_all(event); } if (rc) { free_page(PAI_SAVE_AREA(event)); goto out; } event->destroy = paicrypt_event_destroy; if (a->sample_period) { a->sample_period = 1; a->freq = 0; /* Register for paicrypt_sched_task() to be called */ event->attach_state |= PERF_ATTACH_SCHED_CB; /* Add raw data which contain the memory mapped counters */ a->sample_type |= PERF_SAMPLE_RAW; /* Turn off inheritance */ a->inherit = 0; } static_branch_inc(&pai_key); out: return rc; } static void paicrypt_read(struct perf_event *event) { u64 prev, new, delta; prev = local64_read(&event->hw.prev_count); new = paicrypt_getall(event); local64_set(&event->hw.prev_count, new); delta = (prev <= new) ? new - prev : (-1ULL - prev) + new + 1; /* overflow */ local64_add(delta, &event->count); } static void paicrypt_start(struct perf_event *event, int flags) { struct paicrypt_mapptr *mp = this_cpu_ptr(paicrypt_root.mapptr); struct paicrypt_map *cpump = mp->mapptr; u64 sum; if (!event->attr.sample_period) { /* Counting */ sum = paicrypt_getall(event); /* Get current value */ local64_set(&event->hw.prev_count, sum); } else { /* Sampling */ memcpy((void *)PAI_SAVE_AREA(event), cpump->page, PAGE_SIZE); /* Enable context switch callback for system-wide sampling */ if (!(event->attach_state & PERF_ATTACH_TASK)) { list_add_tail(PAI_SWLIST(event), &cpump->syswide_list); perf_sched_cb_inc(event->pmu); } else { cpump->event = event; } } } static int paicrypt_add(struct perf_event *event, int flags) { struct paicrypt_mapptr *mp = this_cpu_ptr(paicrypt_root.mapptr); struct paicrypt_map *cpump = mp->mapptr; unsigned long ccd; if (++cpump->active_events == 1) { ccd = virt_to_phys(cpump->page) | PAI_CRYPTO_KERNEL_OFFSET; WRITE_ONCE(get_lowcore()->ccd, ccd); local_ctl_set_bit(0, CR0_CRYPTOGRAPHY_COUNTER_BIT); } if (flags & PERF_EF_START) paicrypt_start(event, PERF_EF_RELOAD); event->hw.state = 0; return 0; } static void paicrypt_have_sample(struct perf_event *, struct paicrypt_map *); static void paicrypt_stop(struct perf_event *event, int flags) { struct paicrypt_mapptr *mp = this_cpu_ptr(paicrypt_root.mapptr); struct paicrypt_map *cpump = mp->mapptr; if (!event->attr.sample_period) { /* Counting */ paicrypt_read(event); } else { /* Sampling */ if (!(event->attach_state & PERF_ATTACH_TASK)) { perf_sched_cb_dec(event->pmu); list_del(PAI_SWLIST(event)); } else { paicrypt_have_sample(event, cpump); cpump->event = NULL; } } event->hw.state = PERF_HES_STOPPED; } static void paicrypt_del(struct perf_event *event, int flags) { struct paicrypt_mapptr *mp = this_cpu_ptr(paicrypt_root.mapptr); struct paicrypt_map *cpump = mp->mapptr; paicrypt_stop(event, PERF_EF_UPDATE); if (--cpump->active_events == 0) { local_ctl_clear_bit(0, CR0_CRYPTOGRAPHY_COUNTER_BIT); WRITE_ONCE(get_lowcore()->ccd, 0); } } /* Create raw data and save it in buffer. Calculate the delta for each * counter between this invocation and the last invocation. * Returns number of bytes copied. * Saves only entries with positive counter difference of the form * 2 bytes: Number of counter * 8 bytes: Value of counter */ static size_t paicrypt_copy(struct pai_userdata *userdata, unsigned long *page, unsigned long *page_old, bool exclude_user, bool exclude_kernel) { int i, outidx = 0; for (i = 1; i <= paicrypt_cnt; i++) { u64 val = 0, val_old = 0; if (!exclude_kernel) { val += paicrypt_getctr(page, i, true); val_old += paicrypt_getctr(page_old, i, true); } if (!exclude_user) { val += paicrypt_getctr(page, i, false); val_old += paicrypt_getctr(page_old, i, false); } if (val >= val_old) val -= val_old; else val = (~0ULL - val_old) + val + 1; if (val) { userdata[outidx].num = i; userdata[outidx].value = val; outidx++; } } return outidx * sizeof(struct pai_userdata); } static int paicrypt_push_sample(size_t rawsize, struct paicrypt_map *cpump, struct perf_event *event) { struct perf_sample_data data; struct perf_raw_record raw; struct pt_regs regs; int overflow; /* Setup perf sample */ memset(®s, 0, sizeof(regs)); memset(&raw, 0, sizeof(raw)); memset(&data, 0, sizeof(data)); perf_sample_data_init(&data, 0, event->hw.last_period); if (event->attr.sample_type & PERF_SAMPLE_TID) { data.tid_entry.pid = task_tgid_nr(current); data.tid_entry.tid = task_pid_nr(current); } if (event->attr.sample_type & PERF_SAMPLE_TIME) data.time = event->clock(); if (event->attr.sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) data.id = event->id; if (event->attr.sample_type & PERF_SAMPLE_CPU) { data.cpu_entry.cpu = smp_processor_id(); data.cpu_entry.reserved = 0; } if (event->attr.sample_type & PERF_SAMPLE_RAW) { raw.frag.size = rawsize; raw.frag.data = cpump->save; perf_sample_save_raw_data(&data, &raw); } overflow = perf_event_overflow(event, &data, ®s); perf_event_update_userpage(event); /* Save crypto counter lowcore page after reading event data. */ memcpy((void *)PAI_SAVE_AREA(event), cpump->page, PAGE_SIZE); return overflow; } /* Check if there is data to be saved on schedule out of a task. */ static void paicrypt_have_sample(struct perf_event *event, struct paicrypt_map *cpump) { size_t rawsize; if (!event) /* No event active */ return; rawsize = paicrypt_copy(cpump->save, cpump->page, (unsigned long *)PAI_SAVE_AREA(event), event->attr.exclude_user, event->attr.exclude_kernel); if (rawsize) /* No incremented counters */ paicrypt_push_sample(rawsize, cpump, event); } /* Check if there is data to be saved on schedule out of a task. */ static void paicrypt_have_samples(void) { struct paicrypt_mapptr *mp = this_cpu_ptr(paicrypt_root.mapptr); struct paicrypt_map *cpump = mp->mapptr; struct perf_event *event; list_for_each_entry(event, &cpump->syswide_list, hw.tp_list) paicrypt_have_sample(event, cpump); } /* Called on schedule-in and schedule-out. No access to event structure, * but for sampling only event CRYPTO_ALL is allowed. */ static void paicrypt_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in) { /* We started with a clean page on event installation. So read out * results on schedule_out and if page was dirty, save old values. */ if (!sched_in) paicrypt_have_samples(); } /* Attribute definitions for paicrypt interface. As with other CPU * Measurement Facilities, there is one attribute per mapped counter. * The number of mapped counters may vary per machine generation. Use * the QUERY PROCESSOR ACTIVITY COUNTER INFORMATION (QPACI) instruction * to determine the number of mapped counters. The instructions returns * a positive number, which is the highest number of supported counters. * All counters less than this number are also supported, there are no * holes. A returned number of zero means no support for mapped counters. * * The identification of the counter is a unique number. The chosen range * is 0x1000 + offset in mapped kernel page. * All CPU Measurement Facility counters identifiers must be unique and * the numbers from 0 to 496 are already used for the CPU Measurement * Counter facility. Numbers 0xb0000, 0xbc000 and 0xbd000 are already * used for the CPU Measurement Sampling facility. */ PMU_FORMAT_ATTR(event, "config:0-63"); static struct attribute *paicrypt_format_attr[] = { &format_attr_event.attr, NULL, }; static struct attribute_group paicrypt_events_group = { .name = "events", .attrs = NULL /* Filled in attr_event_init() */ }; static struct attribute_group paicrypt_format_group = { .name = "format", .attrs = paicrypt_format_attr, }; static const struct attribute_group *paicrypt_attr_groups[] = { &paicrypt_events_group, &paicrypt_format_group, NULL, }; /* Performance monitoring unit for mapped counters */ static struct pmu paicrypt = { .task_ctx_nr = perf_hw_context, .event_init = paicrypt_event_init, .add = paicrypt_add, .del = paicrypt_del, .start = paicrypt_start, .stop = paicrypt_stop, .read = paicrypt_read, .sched_task = paicrypt_sched_task, .attr_groups = paicrypt_attr_groups }; /* List of symbolic PAI counter names. */ static const char * const paicrypt_ctrnames[] = { [0] = "CRYPTO_ALL", [1] = "KM_DEA", [2] = "KM_TDEA_128", [3] = "KM_TDEA_192", [4] = "KM_ENCRYPTED_DEA", [5] = "KM_ENCRYPTED_TDEA_128", [6] = "KM_ENCRYPTED_TDEA_192", [7] = "KM_AES_128", [8] = "KM_AES_192", [9] = "KM_AES_256", [10] = "KM_ENCRYPTED_AES_128", [11] = "KM_ENCRYPTED_AES_192", [12] = "KM_ENCRYPTED_AES_256", [13] = "KM_XTS_AES_128", [14] = "KM_XTS_AES_256", [15] = "KM_XTS_ENCRYPTED_AES_128", [16] = "KM_XTS_ENCRYPTED_AES_256", [17] = "KMC_DEA", [18] = "KMC_TDEA_128", [19] = "KMC_TDEA_192", [20] = "KMC_ENCRYPTED_DEA", [21] = "KMC_ENCRYPTED_TDEA_128", [22] = "KMC_ENCRYPTED_TDEA_192", [23] = "KMC_AES_128", [24] = "KMC_AES_192", [25] = "KMC_AES_256", [26] = "KMC_ENCRYPTED_AES_128", [27] = "KMC_ENCRYPTED_AES_192", [28] = "KMC_ENCRYPTED_AES_256", [29] = "KMC_PRNG", [30] = "KMA_GCM_AES_128", [31] = "KMA_GCM_AES_192", [32] = "KMA_GCM_AES_256", [33] = "KMA_GCM_ENCRYPTED_AES_128", [34] = "KMA_GCM_ENCRYPTED_AES_192", [35] = "KMA_GCM_ENCRYPTED_AES_256", [36] = "KMF_DEA", [37] = "KMF_TDEA_128", [38] = "KMF_TDEA_192", [39] = "KMF_ENCRYPTED_DEA", [40] = "KMF_ENCRYPTED_TDEA_128", [41] = "KMF_ENCRYPTED_TDEA_192", [42] = "KMF_AES_128", [43] = "KMF_AES_192", [44] = "KMF_AES_256", [45] = "KMF_ENCRYPTED_AES_128", [46] = "KMF_ENCRYPTED_AES_192", [47] = "KMF_ENCRYPTED_AES_256", [48] = "KMCTR_DEA", [49] = "KMCTR_TDEA_128", [50] = "KMCTR_TDEA_192", [51] = "KMCTR_ENCRYPTED_DEA", [52] = "KMCTR_ENCRYPTED_TDEA_128", [53] = "KMCTR_ENCRYPTED_TDEA_192", [54] = "KMCTR_AES_128", [55] = "KMCTR_AES_192", [56] = "KMCTR_AES_256", [57] = "KMCTR_ENCRYPTED_AES_128", [58] = "KMCTR_ENCRYPTED_AES_192", [59] = "KMCTR_ENCRYPTED_AES_256", [60] = "KMO_DEA", [61] = "KMO_TDEA_128", [62] = "KMO_TDEA_192", [63] = "KMO_ENCRYPTED_DEA", [64] = "KMO_ENCRYPTED_TDEA_128", [65] = "KMO_ENCRYPTED_TDEA_192", [66] = "KMO_AES_128", [67] = "KMO_AES_192", [68] = "KMO_AES_256", [69] = "KMO_ENCRYPTED_AES_128", [70] = "KMO_ENCRYPTED_AES_192", [71] = "KMO_ENCRYPTED_AES_256", [72] = "KIMD_SHA_1", [73] = "KIMD_SHA_256", [74] = "KIMD_SHA_512", [75] = "KIMD_SHA3_224", [76] = "KIMD_SHA3_256", [77] = "KIMD_SHA3_384", [78] = "KIMD_SHA3_512", [79] = "KIMD_SHAKE_128", [80] = "KIMD_SHAKE_256", [81] = "KIMD_GHASH", [82] = "KLMD_SHA_1", [83] = "KLMD_SHA_256", [84] = "KLMD_SHA_512", [85] = "KLMD_SHA3_224", [86] = "KLMD_SHA3_256", [87] = "KLMD_SHA3_384", [88] = "KLMD_SHA3_512", [89] = "KLMD_SHAKE_128", [90] = "KLMD_SHAKE_256", [91] = "KMAC_DEA", [92] = "KMAC_TDEA_128", [93] = "KMAC_TDEA_192", [94] = "KMAC_ENCRYPTED_DEA", [95] = "KMAC_ENCRYPTED_TDEA_128", [96] = "KMAC_ENCRYPTED_TDEA_192", [97] = "KMAC_AES_128", [98] = "KMAC_AES_192", [99] = "KMAC_AES_256", [100] = "KMAC_ENCRYPTED_AES_128", [101] = "KMAC_ENCRYPTED_AES_192", [102] = "KMAC_ENCRYPTED_AES_256", [103] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_DEA", [104] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_TDEA_128", [105] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_TDEA_192", [106] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_ENCRYPTED_DEA", [107] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_ENCRYPTED_TDEA_128", [108] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_ENCRYPTED_TDEA_192", [109] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_AES_128", [110] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_AES_192", [111] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_AES_256", [112] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_ENCRYPTED_AES_128", [113] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_ENCRYPTED_AES_192", [114] = "PCC_COMPUTE_LAST_BLOCK_CMAC_USING_ENCRYPTED_AES_256A", [115] = "PCC_COMPUTE_XTS_PARAMETER_USING_AES_128", [116] = "PCC_COMPUTE_XTS_PARAMETER_USING_AES_256", [117] = "PCC_COMPUTE_XTS_PARAMETER_USING_ENCRYPTED_AES_128", [118] = "PCC_COMPUTE_XTS_PARAMETER_USING_ENCRYPTED_AES_256", [119] = "PCC_SCALAR_MULTIPLY_P256", [120] = "PCC_SCALAR_MULTIPLY_P384", [121] = "PCC_SCALAR_MULTIPLY_P521", [122] = "PCC_SCALAR_MULTIPLY_ED25519", [123] = "PCC_SCALAR_MULTIPLY_ED448", [124] = "PCC_SCALAR_MULTIPLY_X25519", [125] = "PCC_SCALAR_MULTIPLY_X448", [126] = "PRNO_SHA_512_DRNG", [127] = "PRNO_TRNG_QUERY_RAW_TO_CONDITIONED_RATIO", [128] = "PRNO_TRNG", [129] = "KDSA_ECDSA_VERIFY_P256", [130] = "KDSA_ECDSA_VERIFY_P384", [131] = "KDSA_ECDSA_VERIFY_P521", [132] = "KDSA_ECDSA_SIGN_P256", [133] = "KDSA_ECDSA_SIGN_P384", [134] = "KDSA_ECDSA_SIGN_P521", [135] = "KDSA_ENCRYPTED_ECDSA_SIGN_P256", [136] = "KDSA_ENCRYPTED_ECDSA_SIGN_P384", [137] = "KDSA_ENCRYPTED_ECDSA_SIGN_P521", [138] = "KDSA_EDDSA_VERIFY_ED25519", [139] = "KDSA_EDDSA_VERIFY_ED448", [140] = "KDSA_EDDSA_SIGN_ED25519", [141] = "KDSA_EDDSA_SIGN_ED448", [142] = "KDSA_ENCRYPTED_EDDSA_SIGN_ED25519", [143] = "KDSA_ENCRYPTED_EDDSA_SIGN_ED448", [144] = "PCKMO_ENCRYPT_DEA_KEY", [145] = "PCKMO_ENCRYPT_TDEA_128_KEY", [146] = "PCKMO_ENCRYPT_TDEA_192_KEY", [147] = "PCKMO_ENCRYPT_AES_128_KEY", [148] = "PCKMO_ENCRYPT_AES_192_KEY", [149] = "PCKMO_ENCRYPT_AES_256_KEY", [150] = "PCKMO_ENCRYPT_ECC_P256_KEY", [151] = "PCKMO_ENCRYPT_ECC_P384_KEY", [152] = "PCKMO_ENCRYPT_ECC_P521_KEY", [153] = "PCKMO_ENCRYPT_ECC_ED25519_KEY", [154] = "PCKMO_ENCRYPT_ECC_ED448_KEY", [155] = "IBM_RESERVED_155", [156] = "IBM_RESERVED_156", }; static void __init attr_event_free(struct attribute **attrs, int num) { struct perf_pmu_events_attr *pa; int i; for (i = 0; i < num; i++) { struct device_attribute *dap; dap = container_of(attrs[i], struct device_attribute, attr); pa = container_of(dap, struct perf_pmu_events_attr, attr); kfree(pa); } kfree(attrs); } static int __init attr_event_init_one(struct attribute **attrs, int num) { struct perf_pmu_events_attr *pa; /* Index larger than array_size, no counter name available */ if (num >= ARRAY_SIZE(paicrypt_ctrnames)) { attrs[num] = NULL; return 0; } pa = kzalloc(sizeof(*pa), GFP_KERNEL); if (!pa) return -ENOMEM; sysfs_attr_init(&pa->attr.attr); pa->id = PAI_CRYPTO_BASE + num; pa->attr.attr.name = paicrypt_ctrnames[num]; pa->attr.attr.mode = 0444; pa->attr.show = cpumf_events_sysfs_show; pa->attr.store = NULL; attrs[num] = &pa->attr.attr; return 0; } /* Create PMU sysfs event attributes on the fly. */ static int __init attr_event_init(void) { struct attribute **attrs; int ret, i; attrs = kmalloc_array(paicrypt_cnt + 2, sizeof(*attrs), GFP_KERNEL); if (!attrs) return -ENOMEM; for (i = 0; i <= paicrypt_cnt; i++) { ret = attr_event_init_one(attrs, i); if (ret) { attr_event_free(attrs, i); return ret; } } attrs[i] = NULL; paicrypt_events_group.attrs = attrs; return 0; } static int __init paicrypt_init(void) { struct qpaci_info_block ib; int rc; if (!test_facility(196)) return 0; qpaci(&ib); paicrypt_cnt = ib.num_cc; if (paicrypt_cnt == 0) return 0; if (paicrypt_cnt >= PAI_CRYPTO_MAXCTR) { pr_err("Too many PMU pai_crypto counters %d\n", paicrypt_cnt); return -E2BIG; } rc = attr_event_init(); /* Export known PAI crypto events */ if (rc) { pr_err("Creation of PMU pai_crypto /sysfs failed\n"); return rc; } /* Setup s390dbf facility */ cfm_dbg = debug_register(KMSG_COMPONENT, 2, 256, 128); if (!cfm_dbg) { pr_err("Registration of s390dbf pai_crypto failed\n"); return -ENOMEM; } debug_register_view(cfm_dbg, &debug_sprintf_view); rc = perf_pmu_register(&paicrypt, "pai_crypto", -1); if (rc) { pr_err("Registering the pai_crypto PMU failed with rc=%i\n", rc); debug_unregister_view(cfm_dbg, &debug_sprintf_view); debug_unregister(cfm_dbg); return rc; } return 0; } device_initcall(paicrypt_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1