Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Hildenbrand | 662 | 32.10% | 19 | 30.16% |
Christian Bornträger | 597 | 28.95% | 5 | 7.94% |
Thomas Huth | 260 | 12.61% | 8 | 12.70% |
Heiko Carstens | 164 | 7.95% | 7 | 11.11% |
Jens Freimann | 141 | 6.84% | 5 | 7.94% |
Cornelia Huck | 106 | 5.14% | 5 | 7.94% |
Christian Ehrhardt | 42 | 2.04% | 2 | 3.17% |
Eric Farman | 34 | 1.65% | 2 | 3.17% |
Carsten Otte | 24 | 1.16% | 2 | 3.17% |
Jason J. Herne | 14 | 0.68% | 1 | 1.59% |
Nico Boehr | 7 | 0.34% | 1 | 1.59% |
Alexander Yarygin | 4 | 0.19% | 1 | 1.59% |
Linus Torvalds (pre-git) | 2 | 0.10% | 1 | 1.59% |
Greg Kroah-Hartman | 2 | 0.10% | 2 | 3.17% |
Sean Christopherson | 2 | 0.10% | 1 | 1.59% |
Linus Torvalds | 1 | 0.05% | 1 | 1.59% |
Total | 2062 | 63 |
// SPDX-License-Identifier: GPL-2.0 /* * handling interprocessor communication * * Copyright IBM Corp. 2008, 2013 * * Author(s): Carsten Otte <cotte@de.ibm.com> * Christian Borntraeger <borntraeger@de.ibm.com> * Christian Ehrhardt <ehrhardt@de.ibm.com> */ #include <linux/kvm.h> #include <linux/kvm_host.h> #include <linux/slab.h> #include <asm/sigp.h> #include "gaccess.h" #include "kvm-s390.h" #include "trace.h" static int __sigp_sense(struct kvm_vcpu *vcpu, struct kvm_vcpu *dst_vcpu, u64 *reg) { const bool stopped = kvm_s390_test_cpuflags(dst_vcpu, CPUSTAT_STOPPED); int rc; int ext_call_pending; ext_call_pending = kvm_s390_ext_call_pending(dst_vcpu); if (!stopped && !ext_call_pending) rc = SIGP_CC_ORDER_CODE_ACCEPTED; else { *reg &= 0xffffffff00000000UL; if (ext_call_pending) *reg |= SIGP_STATUS_EXT_CALL_PENDING; if (stopped) *reg |= SIGP_STATUS_STOPPED; rc = SIGP_CC_STATUS_STORED; } VCPU_EVENT(vcpu, 4, "sensed status of cpu %x rc %x", dst_vcpu->vcpu_id, rc); return rc; } static int __inject_sigp_emergency(struct kvm_vcpu *vcpu, struct kvm_vcpu *dst_vcpu) { struct kvm_s390_irq irq = { .type = KVM_S390_INT_EMERGENCY, .u.emerg.code = vcpu->vcpu_id, }; int rc = 0; rc = kvm_s390_inject_vcpu(dst_vcpu, &irq); if (!rc) VCPU_EVENT(vcpu, 4, "sent sigp emerg to cpu %x", dst_vcpu->vcpu_id); return rc ? rc : SIGP_CC_ORDER_CODE_ACCEPTED; } static int __sigp_emergency(struct kvm_vcpu *vcpu, struct kvm_vcpu *dst_vcpu) { return __inject_sigp_emergency(vcpu, dst_vcpu); } static int __sigp_conditional_emergency(struct kvm_vcpu *vcpu, struct kvm_vcpu *dst_vcpu, u16 asn, u64 *reg) { const u64 psw_int_mask = PSW_MASK_IO | PSW_MASK_EXT; u16 p_asn, s_asn; psw_t *psw; bool idle; idle = is_vcpu_idle(vcpu); psw = &dst_vcpu->arch.sie_block->gpsw; p_asn = dst_vcpu->arch.sie_block->gcr[4] & 0xffff; /* Primary ASN */ s_asn = dst_vcpu->arch.sie_block->gcr[3] & 0xffff; /* Secondary ASN */ /* Inject the emergency signal? */ if (!is_vcpu_stopped(vcpu) || (psw->mask & psw_int_mask) != psw_int_mask || (idle && psw->addr != 0) || (!idle && (asn == p_asn || asn == s_asn))) { return __inject_sigp_emergency(vcpu, dst_vcpu); } else { *reg &= 0xffffffff00000000UL; *reg |= SIGP_STATUS_INCORRECT_STATE; return SIGP_CC_STATUS_STORED; } } static int __sigp_external_call(struct kvm_vcpu *vcpu, struct kvm_vcpu *dst_vcpu, u64 *reg) { struct kvm_s390_irq irq = { .type = KVM_S390_INT_EXTERNAL_CALL, .u.extcall.code = vcpu->vcpu_id, }; int rc; rc = kvm_s390_inject_vcpu(dst_vcpu, &irq); if (rc == -EBUSY) { *reg &= 0xffffffff00000000UL; *reg |= SIGP_STATUS_EXT_CALL_PENDING; return SIGP_CC_STATUS_STORED; } else if (rc == 0) { VCPU_EVENT(vcpu, 4, "sent sigp ext call to cpu %x", dst_vcpu->vcpu_id); } return rc ? rc : SIGP_CC_ORDER_CODE_ACCEPTED; } static int __sigp_stop(struct kvm_vcpu *vcpu, struct kvm_vcpu *dst_vcpu) { struct kvm_s390_irq irq = { .type = KVM_S390_SIGP_STOP, }; int rc; rc = kvm_s390_inject_vcpu(dst_vcpu, &irq); if (rc == -EBUSY) rc = SIGP_CC_BUSY; else if (rc == 0) VCPU_EVENT(vcpu, 4, "sent sigp stop to cpu %x", dst_vcpu->vcpu_id); return rc; } static int __sigp_stop_and_store_status(struct kvm_vcpu *vcpu, struct kvm_vcpu *dst_vcpu, u64 *reg) { struct kvm_s390_irq irq = { .type = KVM_S390_SIGP_STOP, .u.stop.flags = KVM_S390_STOP_FLAG_STORE_STATUS, }; int rc; rc = kvm_s390_inject_vcpu(dst_vcpu, &irq); if (rc == -EBUSY) rc = SIGP_CC_BUSY; else if (rc == 0) VCPU_EVENT(vcpu, 4, "sent sigp stop and store status to cpu %x", dst_vcpu->vcpu_id); return rc; } static int __sigp_set_arch(struct kvm_vcpu *vcpu, u32 parameter, u64 *status_reg) { *status_reg &= 0xffffffff00000000UL; /* Reject set arch order, with czam we're always in z/Arch mode. */ *status_reg |= SIGP_STATUS_INVALID_PARAMETER; return SIGP_CC_STATUS_STORED; } static int __sigp_set_prefix(struct kvm_vcpu *vcpu, struct kvm_vcpu *dst_vcpu, u32 address, u64 *reg) { struct kvm_s390_irq irq = { .type = KVM_S390_SIGP_SET_PREFIX, .u.prefix.address = address & 0x7fffe000u, }; int rc; /* * Make sure the new value is valid memory. We only need to check the * first page, since address is 8k aligned and memory pieces are always * at least 1MB aligned and have at least a size of 1MB. */ if (!kvm_is_gpa_in_memslot(vcpu->kvm, irq.u.prefix.address)) { *reg &= 0xffffffff00000000UL; *reg |= SIGP_STATUS_INVALID_PARAMETER; return SIGP_CC_STATUS_STORED; } rc = kvm_s390_inject_vcpu(dst_vcpu, &irq); if (rc == -EBUSY) { *reg &= 0xffffffff00000000UL; *reg |= SIGP_STATUS_INCORRECT_STATE; return SIGP_CC_STATUS_STORED; } return rc; } static int __sigp_store_status_at_addr(struct kvm_vcpu *vcpu, struct kvm_vcpu *dst_vcpu, u32 addr, u64 *reg) { int rc; if (!kvm_s390_test_cpuflags(dst_vcpu, CPUSTAT_STOPPED)) { *reg &= 0xffffffff00000000UL; *reg |= SIGP_STATUS_INCORRECT_STATE; return SIGP_CC_STATUS_STORED; } addr &= 0x7ffffe00; rc = kvm_s390_store_status_unloaded(dst_vcpu, addr); if (rc == -EFAULT) { *reg &= 0xffffffff00000000UL; *reg |= SIGP_STATUS_INVALID_PARAMETER; rc = SIGP_CC_STATUS_STORED; } return rc; } static int __sigp_sense_running(struct kvm_vcpu *vcpu, struct kvm_vcpu *dst_vcpu, u64 *reg) { int rc; if (!test_kvm_facility(vcpu->kvm, 9)) { *reg &= 0xffffffff00000000UL; *reg |= SIGP_STATUS_INVALID_ORDER; return SIGP_CC_STATUS_STORED; } if (kvm_s390_test_cpuflags(dst_vcpu, CPUSTAT_RUNNING)) { /* running */ rc = SIGP_CC_ORDER_CODE_ACCEPTED; } else { /* not running */ *reg &= 0xffffffff00000000UL; *reg |= SIGP_STATUS_NOT_RUNNING; rc = SIGP_CC_STATUS_STORED; } VCPU_EVENT(vcpu, 4, "sensed running status of cpu %x rc %x", dst_vcpu->vcpu_id, rc); return rc; } static int __prepare_sigp_re_start(struct kvm_vcpu *vcpu, struct kvm_vcpu *dst_vcpu, u8 order_code) { struct kvm_s390_local_interrupt *li = &dst_vcpu->arch.local_int; /* handle (RE)START in user space */ int rc = -EOPNOTSUPP; /* make sure we don't race with STOP irq injection */ spin_lock(&li->lock); if (kvm_s390_is_stop_irq_pending(dst_vcpu)) rc = SIGP_CC_BUSY; spin_unlock(&li->lock); return rc; } static int __prepare_sigp_cpu_reset(struct kvm_vcpu *vcpu, struct kvm_vcpu *dst_vcpu, u8 order_code) { /* handle (INITIAL) CPU RESET in user space */ return -EOPNOTSUPP; } static int __prepare_sigp_unknown(struct kvm_vcpu *vcpu, struct kvm_vcpu *dst_vcpu) { /* handle unknown orders in user space */ return -EOPNOTSUPP; } static int handle_sigp_dst(struct kvm_vcpu *vcpu, u8 order_code, u16 cpu_addr, u32 parameter, u64 *status_reg) { int rc; struct kvm_vcpu *dst_vcpu = kvm_get_vcpu_by_id(vcpu->kvm, cpu_addr); if (!dst_vcpu) return SIGP_CC_NOT_OPERATIONAL; /* * SIGP RESTART, SIGP STOP, and SIGP STOP AND STORE STATUS orders * are processed asynchronously. Until the affected VCPU finishes * its work and calls back into KVM to clear the (RESTART or STOP) * interrupt, we need to return any new non-reset orders "busy". * * This is important because a single VCPU could issue: * 1) SIGP STOP $DESTINATION * 2) SIGP SENSE $DESTINATION * * If the SIGP SENSE would not be rejected as "busy", it could * return an incorrect answer as to whether the VCPU is STOPPED * or OPERATING. */ if (order_code != SIGP_INITIAL_CPU_RESET && order_code != SIGP_CPU_RESET) { /* * Lockless check. Both SIGP STOP and SIGP (RE)START * properly synchronize everything while processing * their orders, while the guest cannot observe a * difference when issuing other orders from two * different VCPUs. */ if (kvm_s390_is_stop_irq_pending(dst_vcpu) || kvm_s390_is_restart_irq_pending(dst_vcpu)) return SIGP_CC_BUSY; } switch (order_code) { case SIGP_SENSE: vcpu->stat.instruction_sigp_sense++; rc = __sigp_sense(vcpu, dst_vcpu, status_reg); break; case SIGP_EXTERNAL_CALL: vcpu->stat.instruction_sigp_external_call++; rc = __sigp_external_call(vcpu, dst_vcpu, status_reg); break; case SIGP_EMERGENCY_SIGNAL: vcpu->stat.instruction_sigp_emergency++; rc = __sigp_emergency(vcpu, dst_vcpu); break; case SIGP_STOP: vcpu->stat.instruction_sigp_stop++; rc = __sigp_stop(vcpu, dst_vcpu); break; case SIGP_STOP_AND_STORE_STATUS: vcpu->stat.instruction_sigp_stop_store_status++; rc = __sigp_stop_and_store_status(vcpu, dst_vcpu, status_reg); break; case SIGP_STORE_STATUS_AT_ADDRESS: vcpu->stat.instruction_sigp_store_status++; rc = __sigp_store_status_at_addr(vcpu, dst_vcpu, parameter, status_reg); break; case SIGP_SET_PREFIX: vcpu->stat.instruction_sigp_prefix++; rc = __sigp_set_prefix(vcpu, dst_vcpu, parameter, status_reg); break; case SIGP_COND_EMERGENCY_SIGNAL: vcpu->stat.instruction_sigp_cond_emergency++; rc = __sigp_conditional_emergency(vcpu, dst_vcpu, parameter, status_reg); break; case SIGP_SENSE_RUNNING: vcpu->stat.instruction_sigp_sense_running++; rc = __sigp_sense_running(vcpu, dst_vcpu, status_reg); break; case SIGP_START: vcpu->stat.instruction_sigp_start++; rc = __prepare_sigp_re_start(vcpu, dst_vcpu, order_code); break; case SIGP_RESTART: vcpu->stat.instruction_sigp_restart++; rc = __prepare_sigp_re_start(vcpu, dst_vcpu, order_code); break; case SIGP_INITIAL_CPU_RESET: vcpu->stat.instruction_sigp_init_cpu_reset++; rc = __prepare_sigp_cpu_reset(vcpu, dst_vcpu, order_code); break; case SIGP_CPU_RESET: vcpu->stat.instruction_sigp_cpu_reset++; rc = __prepare_sigp_cpu_reset(vcpu, dst_vcpu, order_code); break; default: vcpu->stat.instruction_sigp_unknown++; rc = __prepare_sigp_unknown(vcpu, dst_vcpu); } if (rc == -EOPNOTSUPP) VCPU_EVENT(vcpu, 4, "sigp order %u -> cpu %x: handled in user space", order_code, dst_vcpu->vcpu_id); return rc; } static int handle_sigp_order_in_user_space(struct kvm_vcpu *vcpu, u8 order_code, u16 cpu_addr) { if (!vcpu->kvm->arch.user_sigp) return 0; switch (order_code) { case SIGP_SENSE: case SIGP_EXTERNAL_CALL: case SIGP_EMERGENCY_SIGNAL: case SIGP_COND_EMERGENCY_SIGNAL: case SIGP_SENSE_RUNNING: return 0; /* update counters as we're directly dropping to user space */ case SIGP_STOP: vcpu->stat.instruction_sigp_stop++; break; case SIGP_STOP_AND_STORE_STATUS: vcpu->stat.instruction_sigp_stop_store_status++; break; case SIGP_STORE_STATUS_AT_ADDRESS: vcpu->stat.instruction_sigp_store_status++; break; case SIGP_STORE_ADDITIONAL_STATUS: vcpu->stat.instruction_sigp_store_adtl_status++; break; case SIGP_SET_PREFIX: vcpu->stat.instruction_sigp_prefix++; break; case SIGP_START: vcpu->stat.instruction_sigp_start++; break; case SIGP_RESTART: vcpu->stat.instruction_sigp_restart++; break; case SIGP_INITIAL_CPU_RESET: vcpu->stat.instruction_sigp_init_cpu_reset++; break; case SIGP_CPU_RESET: vcpu->stat.instruction_sigp_cpu_reset++; break; default: vcpu->stat.instruction_sigp_unknown++; } VCPU_EVENT(vcpu, 3, "SIGP: order %u for CPU %d handled in userspace", order_code, cpu_addr); return 1; } int kvm_s390_handle_sigp(struct kvm_vcpu *vcpu) { int r1 = (vcpu->arch.sie_block->ipa & 0x00f0) >> 4; int r3 = vcpu->arch.sie_block->ipa & 0x000f; u32 parameter; u16 cpu_addr = vcpu->run->s.regs.gprs[r3]; u8 order_code; int rc; /* sigp in userspace can exit */ if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); order_code = kvm_s390_get_base_disp_rs(vcpu, NULL); if (handle_sigp_order_in_user_space(vcpu, order_code, cpu_addr)) return -EOPNOTSUPP; if (r1 % 2) parameter = vcpu->run->s.regs.gprs[r1]; else parameter = vcpu->run->s.regs.gprs[r1 + 1]; trace_kvm_s390_handle_sigp(vcpu, order_code, cpu_addr, parameter); switch (order_code) { case SIGP_SET_ARCHITECTURE: vcpu->stat.instruction_sigp_arch++; rc = __sigp_set_arch(vcpu, parameter, &vcpu->run->s.regs.gprs[r1]); break; default: rc = handle_sigp_dst(vcpu, order_code, cpu_addr, parameter, &vcpu->run->s.regs.gprs[r1]); } if (rc < 0) return rc; kvm_s390_set_psw_cc(vcpu, rc); return 0; } /* * Handle SIGP partial execution interception. * * This interception will occur at the source cpu when a source cpu sends an * external call to a target cpu and the target cpu has the WAIT bit set in * its cpuflags. Interception will occur after the interrupt indicator bits at * the target cpu have been set. All error cases will lead to instruction * interception, therefore nothing is to be checked or prepared. */ int kvm_s390_handle_sigp_pei(struct kvm_vcpu *vcpu) { int r3 = vcpu->arch.sie_block->ipa & 0x000f; u16 cpu_addr = vcpu->run->s.regs.gprs[r3]; struct kvm_vcpu *dest_vcpu; u8 order_code = kvm_s390_get_base_disp_rs(vcpu, NULL); if (order_code == SIGP_EXTERNAL_CALL) { trace_kvm_s390_handle_sigp_pei(vcpu, order_code, cpu_addr); dest_vcpu = kvm_get_vcpu_by_id(vcpu->kvm, cpu_addr); BUG_ON(dest_vcpu == NULL); kvm_s390_vcpu_wakeup(dest_vcpu); kvm_s390_set_psw_cc(vcpu, SIGP_CC_ORDER_CODE_ACCEPTED); return 0; } return -EOPNOTSUPP; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1