Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Hildenbrand | 1674 | 50.51% | 9 | 8.82% |
Heiko Carstens | 674 | 20.34% | 39 | 38.24% |
Alexander Gordeev | 495 | 14.94% | 10 | 9.80% |
Martin Schwidefsky | 152 | 4.59% | 12 | 11.76% |
Sumanth Korikkar | 60 | 1.81% | 1 | 0.98% |
Anshuman Khandual | 50 | 1.51% | 1 | 0.98% |
Christoph Hellwig | 38 | 1.15% | 2 | 1.96% |
Linus Torvalds (pre-git) | 38 | 1.15% | 5 | 4.90% |
Gerald Schaefer | 32 | 0.97% | 2 | 1.96% |
Sven Schnelle | 24 | 0.72% | 3 | 2.94% |
Johannes Weiner | 14 | 0.42% | 1 | 0.98% |
Vasily Gorbik | 14 | 0.42% | 3 | 2.94% |
Michal Hocko | 9 | 0.27% | 1 | 0.98% |
Tang Chen | 9 | 0.27% | 1 | 0.98% |
Christian Bornträger | 7 | 0.21% | 1 | 0.98% |
Peter Xu | 6 | 0.18% | 2 | 1.96% |
Andrew Morton | 4 | 0.12% | 1 | 0.98% |
Linus Walleij | 4 | 0.12% | 1 | 0.98% |
Laura Abbott | 3 | 0.09% | 1 | 0.98% |
Philipp Hachtmann | 2 | 0.06% | 1 | 0.98% |
Paul Gortmaker | 1 | 0.03% | 1 | 0.98% |
Greg Kroah-Hartman | 1 | 0.03% | 1 | 0.98% |
Thomas Gleixner | 1 | 0.03% | 1 | 0.98% |
Mike Rapoport | 1 | 0.03% | 1 | 0.98% |
Linus Torvalds | 1 | 0.03% | 1 | 0.98% |
Total | 3314 | 102 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright IBM Corp. 2006 */ #include <linux/memory_hotplug.h> #include <linux/memblock.h> #include <linux/pfn.h> #include <linux/mm.h> #include <linux/init.h> #include <linux/list.h> #include <linux/hugetlb.h> #include <linux/slab.h> #include <linux/sort.h> #include <asm/page-states.h> #include <asm/abs_lowcore.h> #include <asm/cacheflush.h> #include <asm/maccess.h> #include <asm/nospec-branch.h> #include <asm/ctlreg.h> #include <asm/pgalloc.h> #include <asm/setup.h> #include <asm/tlbflush.h> #include <asm/sections.h> #include <asm/set_memory.h> #include <asm/physmem_info.h> static DEFINE_MUTEX(vmem_mutex); static void __ref *vmem_alloc_pages(unsigned int order) { unsigned long size = PAGE_SIZE << order; if (slab_is_available()) return (void *)__get_free_pages(GFP_KERNEL, order); return memblock_alloc(size, size); } static void vmem_free_pages(unsigned long addr, int order, struct vmem_altmap *altmap) { if (altmap) { vmem_altmap_free(altmap, 1 << order); return; } /* We don't expect boot memory to be removed ever. */ if (!slab_is_available() || WARN_ON_ONCE(PageReserved(virt_to_page((void *)addr)))) return; free_pages(addr, order); } void *vmem_crst_alloc(unsigned long val) { unsigned long *table; table = vmem_alloc_pages(CRST_ALLOC_ORDER); if (!table) return NULL; crst_table_init(table, val); __arch_set_page_dat(table, 1UL << CRST_ALLOC_ORDER); return table; } pte_t __ref *vmem_pte_alloc(void) { unsigned long size = PTRS_PER_PTE * sizeof(pte_t); pte_t *pte; if (slab_is_available()) pte = (pte_t *) page_table_alloc(&init_mm); else pte = (pte_t *) memblock_alloc(size, size); if (!pte) return NULL; memset64((u64 *)pte, _PAGE_INVALID, PTRS_PER_PTE); __arch_set_page_dat(pte, 1); return pte; } static void vmem_pte_free(unsigned long *table) { /* We don't expect boot memory to be removed ever. */ if (!slab_is_available() || WARN_ON_ONCE(PageReserved(virt_to_page(table)))) return; page_table_free(&init_mm, table); } #define PAGE_UNUSED 0xFD /* * The unused vmemmap range, which was not yet memset(PAGE_UNUSED) ranges * from unused_sub_pmd_start to next PMD_SIZE boundary. */ static unsigned long unused_sub_pmd_start; static void vmemmap_flush_unused_sub_pmd(void) { if (!unused_sub_pmd_start) return; memset((void *)unused_sub_pmd_start, PAGE_UNUSED, ALIGN(unused_sub_pmd_start, PMD_SIZE) - unused_sub_pmd_start); unused_sub_pmd_start = 0; } static void vmemmap_mark_sub_pmd_used(unsigned long start, unsigned long end) { /* * As we expect to add in the same granularity as we remove, it's * sufficient to mark only some piece used to block the memmap page from * getting removed (just in case the memmap never gets initialized, * e.g., because the memory block never gets onlined). */ memset((void *)start, 0, sizeof(struct page)); } static void vmemmap_use_sub_pmd(unsigned long start, unsigned long end) { /* * We only optimize if the new used range directly follows the * previously unused range (esp., when populating consecutive sections). */ if (unused_sub_pmd_start == start) { unused_sub_pmd_start = end; if (likely(IS_ALIGNED(unused_sub_pmd_start, PMD_SIZE))) unused_sub_pmd_start = 0; return; } vmemmap_flush_unused_sub_pmd(); vmemmap_mark_sub_pmd_used(start, end); } static void vmemmap_use_new_sub_pmd(unsigned long start, unsigned long end) { unsigned long page = ALIGN_DOWN(start, PMD_SIZE); vmemmap_flush_unused_sub_pmd(); /* Could be our memmap page is filled with PAGE_UNUSED already ... */ vmemmap_mark_sub_pmd_used(start, end); /* Mark the unused parts of the new memmap page PAGE_UNUSED. */ if (!IS_ALIGNED(start, PMD_SIZE)) memset((void *)page, PAGE_UNUSED, start - page); /* * We want to avoid memset(PAGE_UNUSED) when populating the vmemmap of * consecutive sections. Remember for the last added PMD the last * unused range in the populated PMD. */ if (!IS_ALIGNED(end, PMD_SIZE)) unused_sub_pmd_start = end; } /* Returns true if the PMD is completely unused and can be freed. */ static bool vmemmap_unuse_sub_pmd(unsigned long start, unsigned long end) { unsigned long page = ALIGN_DOWN(start, PMD_SIZE); vmemmap_flush_unused_sub_pmd(); memset((void *)start, PAGE_UNUSED, end - start); return !memchr_inv((void *)page, PAGE_UNUSED, PMD_SIZE); } /* __ref: we'll only call vmemmap_alloc_block() via vmemmap_populate() */ static int __ref modify_pte_table(pmd_t *pmd, unsigned long addr, unsigned long end, bool add, bool direct, struct vmem_altmap *altmap) { unsigned long prot, pages = 0; int ret = -ENOMEM; pte_t *pte; prot = pgprot_val(PAGE_KERNEL); if (!MACHINE_HAS_NX) prot &= ~_PAGE_NOEXEC; pte = pte_offset_kernel(pmd, addr); for (; addr < end; addr += PAGE_SIZE, pte++) { if (!add) { if (pte_none(*pte)) continue; if (!direct) vmem_free_pages((unsigned long)pfn_to_virt(pte_pfn(*pte)), get_order(PAGE_SIZE), altmap); pte_clear(&init_mm, addr, pte); } else if (pte_none(*pte)) { if (!direct) { void *new_page = vmemmap_alloc_block_buf(PAGE_SIZE, NUMA_NO_NODE, altmap); if (!new_page) goto out; set_pte(pte, __pte(__pa(new_page) | prot)); } else { set_pte(pte, __pte(__pa(addr) | prot)); } } else { continue; } pages++; } ret = 0; out: if (direct) update_page_count(PG_DIRECT_MAP_4K, add ? pages : -pages); return ret; } static void try_free_pte_table(pmd_t *pmd, unsigned long start) { pte_t *pte; int i; /* We can safely assume this is fully in 1:1 mapping & vmemmap area */ pte = pte_offset_kernel(pmd, start); for (i = 0; i < PTRS_PER_PTE; i++, pte++) { if (!pte_none(*pte)) return; } vmem_pte_free((unsigned long *) pmd_deref(*pmd)); pmd_clear(pmd); } /* __ref: we'll only call vmemmap_alloc_block() via vmemmap_populate() */ static int __ref modify_pmd_table(pud_t *pud, unsigned long addr, unsigned long end, bool add, bool direct, struct vmem_altmap *altmap) { unsigned long next, prot, pages = 0; int ret = -ENOMEM; pmd_t *pmd; pte_t *pte; prot = pgprot_val(SEGMENT_KERNEL); if (!MACHINE_HAS_NX) prot &= ~_SEGMENT_ENTRY_NOEXEC; pmd = pmd_offset(pud, addr); for (; addr < end; addr = next, pmd++) { next = pmd_addr_end(addr, end); if (!add) { if (pmd_none(*pmd)) continue; if (pmd_leaf(*pmd)) { if (IS_ALIGNED(addr, PMD_SIZE) && IS_ALIGNED(next, PMD_SIZE)) { if (!direct) vmem_free_pages(pmd_deref(*pmd), get_order(PMD_SIZE), altmap); pmd_clear(pmd); pages++; } else if (!direct && vmemmap_unuse_sub_pmd(addr, next)) { vmem_free_pages(pmd_deref(*pmd), get_order(PMD_SIZE), altmap); pmd_clear(pmd); } continue; } } else if (pmd_none(*pmd)) { if (IS_ALIGNED(addr, PMD_SIZE) && IS_ALIGNED(next, PMD_SIZE) && MACHINE_HAS_EDAT1 && direct && !debug_pagealloc_enabled()) { set_pmd(pmd, __pmd(__pa(addr) | prot)); pages++; continue; } else if (!direct && MACHINE_HAS_EDAT1) { void *new_page; /* * Use 1MB frames for vmemmap if available. We * always use large frames even if they are only * partially used. Otherwise we would have also * page tables since vmemmap_populate gets * called for each section separately. */ new_page = vmemmap_alloc_block_buf(PMD_SIZE, NUMA_NO_NODE, altmap); if (new_page) { set_pmd(pmd, __pmd(__pa(new_page) | prot)); if (!IS_ALIGNED(addr, PMD_SIZE) || !IS_ALIGNED(next, PMD_SIZE)) { vmemmap_use_new_sub_pmd(addr, next); } continue; } } pte = vmem_pte_alloc(); if (!pte) goto out; pmd_populate(&init_mm, pmd, pte); } else if (pmd_leaf(*pmd)) { if (!direct) vmemmap_use_sub_pmd(addr, next); continue; } ret = modify_pte_table(pmd, addr, next, add, direct, altmap); if (ret) goto out; if (!add) try_free_pte_table(pmd, addr & PMD_MASK); } ret = 0; out: if (direct) update_page_count(PG_DIRECT_MAP_1M, add ? pages : -pages); return ret; } static void try_free_pmd_table(pud_t *pud, unsigned long start) { pmd_t *pmd; int i; pmd = pmd_offset(pud, start); for (i = 0; i < PTRS_PER_PMD; i++, pmd++) if (!pmd_none(*pmd)) return; vmem_free_pages(pud_deref(*pud), CRST_ALLOC_ORDER, NULL); pud_clear(pud); } static int modify_pud_table(p4d_t *p4d, unsigned long addr, unsigned long end, bool add, bool direct, struct vmem_altmap *altmap) { unsigned long next, prot, pages = 0; int ret = -ENOMEM; pud_t *pud; pmd_t *pmd; prot = pgprot_val(REGION3_KERNEL); if (!MACHINE_HAS_NX) prot &= ~_REGION_ENTRY_NOEXEC; pud = pud_offset(p4d, addr); for (; addr < end; addr = next, pud++) { next = pud_addr_end(addr, end); if (!add) { if (pud_none(*pud)) continue; if (pud_leaf(*pud)) { if (IS_ALIGNED(addr, PUD_SIZE) && IS_ALIGNED(next, PUD_SIZE)) { pud_clear(pud); pages++; } continue; } } else if (pud_none(*pud)) { if (IS_ALIGNED(addr, PUD_SIZE) && IS_ALIGNED(next, PUD_SIZE) && MACHINE_HAS_EDAT2 && direct && !debug_pagealloc_enabled()) { set_pud(pud, __pud(__pa(addr) | prot)); pages++; continue; } pmd = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY); if (!pmd) goto out; pud_populate(&init_mm, pud, pmd); } else if (pud_leaf(*pud)) { continue; } ret = modify_pmd_table(pud, addr, next, add, direct, altmap); if (ret) goto out; if (!add) try_free_pmd_table(pud, addr & PUD_MASK); } ret = 0; out: if (direct) update_page_count(PG_DIRECT_MAP_2G, add ? pages : -pages); return ret; } static void try_free_pud_table(p4d_t *p4d, unsigned long start) { pud_t *pud; int i; pud = pud_offset(p4d, start); for (i = 0; i < PTRS_PER_PUD; i++, pud++) { if (!pud_none(*pud)) return; } vmem_free_pages(p4d_deref(*p4d), CRST_ALLOC_ORDER, NULL); p4d_clear(p4d); } static int modify_p4d_table(pgd_t *pgd, unsigned long addr, unsigned long end, bool add, bool direct, struct vmem_altmap *altmap) { unsigned long next; int ret = -ENOMEM; p4d_t *p4d; pud_t *pud; p4d = p4d_offset(pgd, addr); for (; addr < end; addr = next, p4d++) { next = p4d_addr_end(addr, end); if (!add) { if (p4d_none(*p4d)) continue; } else if (p4d_none(*p4d)) { pud = vmem_crst_alloc(_REGION3_ENTRY_EMPTY); if (!pud) goto out; p4d_populate(&init_mm, p4d, pud); } ret = modify_pud_table(p4d, addr, next, add, direct, altmap); if (ret) goto out; if (!add) try_free_pud_table(p4d, addr & P4D_MASK); } ret = 0; out: return ret; } static void try_free_p4d_table(pgd_t *pgd, unsigned long start) { p4d_t *p4d; int i; p4d = p4d_offset(pgd, start); for (i = 0; i < PTRS_PER_P4D; i++, p4d++) { if (!p4d_none(*p4d)) return; } vmem_free_pages(pgd_deref(*pgd), CRST_ALLOC_ORDER, NULL); pgd_clear(pgd); } static int modify_pagetable(unsigned long start, unsigned long end, bool add, bool direct, struct vmem_altmap *altmap) { unsigned long addr, next; int ret = -ENOMEM; pgd_t *pgd; p4d_t *p4d; if (WARN_ON_ONCE(!PAGE_ALIGNED(start | end))) return -EINVAL; /* Don't mess with any tables not fully in 1:1 mapping & vmemmap area */ if (WARN_ON_ONCE(end > __abs_lowcore)) return -EINVAL; for (addr = start; addr < end; addr = next) { next = pgd_addr_end(addr, end); pgd = pgd_offset_k(addr); if (!add) { if (pgd_none(*pgd)) continue; } else if (pgd_none(*pgd)) { p4d = vmem_crst_alloc(_REGION2_ENTRY_EMPTY); if (!p4d) goto out; pgd_populate(&init_mm, pgd, p4d); } ret = modify_p4d_table(pgd, addr, next, add, direct, altmap); if (ret) goto out; if (!add) try_free_p4d_table(pgd, addr & PGDIR_MASK); } ret = 0; out: if (!add) flush_tlb_kernel_range(start, end); return ret; } static int add_pagetable(unsigned long start, unsigned long end, bool direct, struct vmem_altmap *altmap) { return modify_pagetable(start, end, true, direct, altmap); } static int remove_pagetable(unsigned long start, unsigned long end, bool direct, struct vmem_altmap *altmap) { return modify_pagetable(start, end, false, direct, altmap); } /* * Add a physical memory range to the 1:1 mapping. */ static int vmem_add_range(unsigned long start, unsigned long size) { start = (unsigned long)__va(start); return add_pagetable(start, start + size, true, NULL); } /* * Remove a physical memory range from the 1:1 mapping. */ static void vmem_remove_range(unsigned long start, unsigned long size) { start = (unsigned long)__va(start); remove_pagetable(start, start + size, true, NULL); } /* * Add a backed mem_map array to the virtual mem_map array. */ int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node, struct vmem_altmap *altmap) { int ret; mutex_lock(&vmem_mutex); /* We don't care about the node, just use NUMA_NO_NODE on allocations */ ret = add_pagetable(start, end, false, altmap); if (ret) remove_pagetable(start, end, false, altmap); mutex_unlock(&vmem_mutex); return ret; } #ifdef CONFIG_MEMORY_HOTPLUG void vmemmap_free(unsigned long start, unsigned long end, struct vmem_altmap *altmap) { mutex_lock(&vmem_mutex); remove_pagetable(start, end, false, altmap); mutex_unlock(&vmem_mutex); } #endif void vmem_remove_mapping(unsigned long start, unsigned long size) { mutex_lock(&vmem_mutex); vmem_remove_range(start, size); mutex_unlock(&vmem_mutex); } struct range arch_get_mappable_range(void) { struct range mhp_range; mhp_range.start = 0; mhp_range.end = max_mappable - 1; return mhp_range; } int vmem_add_mapping(unsigned long start, unsigned long size) { struct range range = arch_get_mappable_range(); int ret; if (start < range.start || start + size > range.end + 1 || start + size < start) return -ERANGE; mutex_lock(&vmem_mutex); ret = vmem_add_range(start, size); if (ret) vmem_remove_range(start, size); mutex_unlock(&vmem_mutex); return ret; } /* * Allocate new or return existing page-table entry, but do not map it * to any physical address. If missing, allocate segment- and region- * table entries along. Meeting a large segment- or region-table entry * while traversing is an error, since the function is expected to be * called against virtual regions reserved for 4KB mappings only. */ pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc) { pte_t *ptep = NULL; pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *pte; pgd = pgd_offset_k(addr); if (pgd_none(*pgd)) { if (!alloc) goto out; p4d = vmem_crst_alloc(_REGION2_ENTRY_EMPTY); if (!p4d) goto out; pgd_populate(&init_mm, pgd, p4d); } p4d = p4d_offset(pgd, addr); if (p4d_none(*p4d)) { if (!alloc) goto out; pud = vmem_crst_alloc(_REGION3_ENTRY_EMPTY); if (!pud) goto out; p4d_populate(&init_mm, p4d, pud); } pud = pud_offset(p4d, addr); if (pud_none(*pud)) { if (!alloc) goto out; pmd = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY); if (!pmd) goto out; pud_populate(&init_mm, pud, pmd); } else if (WARN_ON_ONCE(pud_leaf(*pud))) { goto out; } pmd = pmd_offset(pud, addr); if (pmd_none(*pmd)) { if (!alloc) goto out; pte = vmem_pte_alloc(); if (!pte) goto out; pmd_populate(&init_mm, pmd, pte); } else if (WARN_ON_ONCE(pmd_leaf(*pmd))) { goto out; } ptep = pte_offset_kernel(pmd, addr); out: return ptep; } int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc) { pte_t *ptep, pte; if (!IS_ALIGNED(addr, PAGE_SIZE)) return -EINVAL; ptep = vmem_get_alloc_pte(addr, alloc); if (!ptep) return -ENOMEM; __ptep_ipte(addr, ptep, 0, 0, IPTE_GLOBAL); pte = mk_pte_phys(phys, prot); set_pte(ptep, pte); return 0; } int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot) { int rc; mutex_lock(&vmem_mutex); rc = __vmem_map_4k_page(addr, phys, prot, true); mutex_unlock(&vmem_mutex); return rc; } void vmem_unmap_4k_page(unsigned long addr) { pte_t *ptep; mutex_lock(&vmem_mutex); ptep = virt_to_kpte(addr); __ptep_ipte(addr, ptep, 0, 0, IPTE_GLOBAL); pte_clear(&init_mm, addr, ptep); mutex_unlock(&vmem_mutex); } void __init vmem_map_init(void) { __set_memory_rox(_stext, _etext); __set_memory_ro(_etext, __end_rodata); __set_memory_rox(__stext_amode31, __etext_amode31); /* * If the BEAR-enhancement facility is not installed the first * prefix page is used to return to the previous context with * an LPSWE instruction and therefore must be executable. */ if (!static_key_enabled(&cpu_has_bear)) set_memory_x(0, 1); if (debug_pagealloc_enabled()) __set_memory_4k(__va(0), __va(0) + ident_map_size); pr_info("Write protected kernel read-only data: %luk\n", (unsigned long)(__end_rodata - _stext) >> 10); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1