Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sebastian Ott | 1749 | 68.24% | 17 | 32.69% |
Jan Glauber | 218 | 8.51% | 3 | 5.77% |
Gerd Bayer | 167 | 6.52% | 2 | 3.85% |
Martin Schwidefsky | 146 | 5.70% | 5 | 9.62% |
Niklas Schnelle | 112 | 4.37% | 6 | 11.54% |
Matthew Rosato | 87 | 3.39% | 4 | 7.69% |
Alexander Gordeev | 46 | 1.79% | 1 | 1.92% |
Thomas Gleixner | 15 | 0.59% | 4 | 7.69% |
Linus Torvalds (pre-git) | 8 | 0.31% | 5 | 9.62% |
Peter Zijlstra | 6 | 0.23% | 1 | 1.92% |
Heiko Carstens | 5 | 0.20% | 2 | 3.85% |
Gerald Schaefer | 3 | 0.12% | 1 | 1.92% |
Greg Kroah-Hartman | 1 | 0.04% | 1 | 1.92% |
Total | 2563 | 52 |
// SPDX-License-Identifier: GPL-2.0 #define KMSG_COMPONENT "zpci" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/kernel.h> #include <linux/irq.h> #include <linux/kernel_stat.h> #include <linux/pci.h> #include <linux/msi.h> #include <linux/smp.h> #include <asm/isc.h> #include <asm/airq.h> #include <asm/tpi.h> static enum {FLOATING, DIRECTED} irq_delivery; /* * summary bit vector * FLOATING - summary bit per function * DIRECTED - summary bit per cpu (only used in fallback path) */ static struct airq_iv *zpci_sbv; /* * interrupt bit vectors * FLOATING - interrupt bit vector per function * DIRECTED - interrupt bit vector per cpu */ static struct airq_iv **zpci_ibv; /* Modify PCI: Register floating adapter interruptions */ static int zpci_set_airq(struct zpci_dev *zdev) { u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT); struct zpci_fib fib = {0}; u8 status; fib.fmt0.isc = PCI_ISC; fib.fmt0.sum = 1; /* enable summary notifications */ fib.fmt0.noi = airq_iv_end(zdev->aibv); fib.fmt0.aibv = virt_to_phys(zdev->aibv->vector); fib.fmt0.aibvo = 0; /* each zdev has its own interrupt vector */ fib.fmt0.aisb = virt_to_phys(zpci_sbv->vector) + (zdev->aisb / 64) * 8; fib.fmt0.aisbo = zdev->aisb & 63; fib.gd = zdev->gisa; return zpci_mod_fc(req, &fib, &status) ? -EIO : 0; } /* Modify PCI: Unregister floating adapter interruptions */ static int zpci_clear_airq(struct zpci_dev *zdev) { u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT); struct zpci_fib fib = {0}; u8 cc, status; fib.gd = zdev->gisa; cc = zpci_mod_fc(req, &fib, &status); if (cc == 3 || (cc == 1 && status == 24)) /* Function already gone or IRQs already deregistered. */ cc = 0; return cc ? -EIO : 0; } /* Modify PCI: Register CPU directed interruptions */ static int zpci_set_directed_irq(struct zpci_dev *zdev) { u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT_D); struct zpci_fib fib = {0}; u8 status; fib.fmt = 1; fib.fmt1.noi = zdev->msi_nr_irqs; fib.fmt1.dibvo = zdev->msi_first_bit; fib.gd = zdev->gisa; return zpci_mod_fc(req, &fib, &status) ? -EIO : 0; } /* Modify PCI: Unregister CPU directed interruptions */ static int zpci_clear_directed_irq(struct zpci_dev *zdev) { u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT_D); struct zpci_fib fib = {0}; u8 cc, status; fib.fmt = 1; fib.gd = zdev->gisa; cc = zpci_mod_fc(req, &fib, &status); if (cc == 3 || (cc == 1 && status == 24)) /* Function already gone or IRQs already deregistered. */ cc = 0; return cc ? -EIO : 0; } /* Register adapter interruptions */ static int zpci_set_irq(struct zpci_dev *zdev) { int rc; if (irq_delivery == DIRECTED) rc = zpci_set_directed_irq(zdev); else rc = zpci_set_airq(zdev); if (!rc) zdev->irqs_registered = 1; return rc; } /* Clear adapter interruptions */ static int zpci_clear_irq(struct zpci_dev *zdev) { int rc; if (irq_delivery == DIRECTED) rc = zpci_clear_directed_irq(zdev); else rc = zpci_clear_airq(zdev); if (!rc) zdev->irqs_registered = 0; return rc; } static int zpci_set_irq_affinity(struct irq_data *data, const struct cpumask *dest, bool force) { struct msi_desc *entry = irq_data_get_msi_desc(data); struct msi_msg msg = entry->msg; int cpu_addr = smp_cpu_get_cpu_address(cpumask_first(dest)); msg.address_lo &= 0xff0000ff; msg.address_lo |= (cpu_addr << 8); pci_write_msi_msg(data->irq, &msg); return IRQ_SET_MASK_OK; } static struct irq_chip zpci_irq_chip = { .name = "PCI-MSI", .irq_unmask = pci_msi_unmask_irq, .irq_mask = pci_msi_mask_irq, }; static void zpci_handle_cpu_local_irq(bool rescan) { struct airq_iv *dibv = zpci_ibv[smp_processor_id()]; union zpci_sic_iib iib = {{0}}; unsigned long bit; int irqs_on = 0; for (bit = 0;;) { /* Scan the directed IRQ bit vector */ bit = airq_iv_scan(dibv, bit, airq_iv_end(dibv)); if (bit == -1UL) { if (!rescan || irqs_on++) /* End of second scan with interrupts on. */ break; /* First scan complete, re-enable interrupts. */ if (zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC, &iib)) break; bit = 0; continue; } inc_irq_stat(IRQIO_MSI); generic_handle_irq(airq_iv_get_data(dibv, bit)); } } struct cpu_irq_data { call_single_data_t csd; atomic_t scheduled; }; static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_irq_data, irq_data); static void zpci_handle_remote_irq(void *data) { atomic_t *scheduled = data; do { zpci_handle_cpu_local_irq(false); } while (atomic_dec_return(scheduled)); } static void zpci_handle_fallback_irq(void) { struct cpu_irq_data *cpu_data; union zpci_sic_iib iib = {{0}}; unsigned long cpu; int irqs_on = 0; for (cpu = 0;;) { cpu = airq_iv_scan(zpci_sbv, cpu, airq_iv_end(zpci_sbv)); if (cpu == -1UL) { if (irqs_on++) /* End of second scan with interrupts on. */ break; /* First scan complete, re-enable interrupts. */ if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC, &iib)) break; cpu = 0; continue; } cpu_data = &per_cpu(irq_data, cpu); if (atomic_inc_return(&cpu_data->scheduled) > 1) continue; INIT_CSD(&cpu_data->csd, zpci_handle_remote_irq, &cpu_data->scheduled); smp_call_function_single_async(cpu, &cpu_data->csd); } } static void zpci_directed_irq_handler(struct airq_struct *airq, struct tpi_info *tpi_info) { bool floating = !tpi_info->directed_irq; if (floating) { inc_irq_stat(IRQIO_PCF); zpci_handle_fallback_irq(); } else { inc_irq_stat(IRQIO_PCD); zpci_handle_cpu_local_irq(true); } } static void zpci_floating_irq_handler(struct airq_struct *airq, struct tpi_info *tpi_info) { union zpci_sic_iib iib = {{0}}; unsigned long si, ai; struct airq_iv *aibv; int irqs_on = 0; inc_irq_stat(IRQIO_PCF); for (si = 0;;) { /* Scan adapter summary indicator bit vector */ si = airq_iv_scan(zpci_sbv, si, airq_iv_end(zpci_sbv)); if (si == -1UL) { if (irqs_on++) /* End of second scan with interrupts on. */ break; /* First scan complete, re-enable interrupts. */ if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC, &iib)) break; si = 0; continue; } /* Scan the adapter interrupt vector for this device. */ aibv = zpci_ibv[si]; for (ai = 0;;) { ai = airq_iv_scan(aibv, ai, airq_iv_end(aibv)); if (ai == -1UL) break; inc_irq_stat(IRQIO_MSI); airq_iv_lock(aibv, ai); generic_handle_irq(airq_iv_get_data(aibv, ai)); airq_iv_unlock(aibv, ai); } } } static int __alloc_airq(struct zpci_dev *zdev, int msi_vecs, unsigned long *bit) { if (irq_delivery == DIRECTED) { /* Allocate cpu vector bits */ *bit = airq_iv_alloc(zpci_ibv[0], msi_vecs); if (*bit == -1UL) return -EIO; } else { /* Allocate adapter summary indicator bit */ *bit = airq_iv_alloc_bit(zpci_sbv); if (*bit == -1UL) return -EIO; zdev->aisb = *bit; /* Create adapter interrupt vector */ zdev->aibv = airq_iv_create(msi_vecs, AIRQ_IV_DATA | AIRQ_IV_BITLOCK, NULL); if (!zdev->aibv) return -ENOMEM; /* Wire up shortcut pointer */ zpci_ibv[*bit] = zdev->aibv; /* Each function has its own interrupt vector */ *bit = 0; } return 0; } int arch_setup_msi_irqs(struct pci_dev *pdev, int nvec, int type) { unsigned int hwirq, msi_vecs, irqs_per_msi, i, cpu; struct zpci_dev *zdev = to_zpci(pdev); struct msi_desc *msi; struct msi_msg msg; unsigned long bit; int cpu_addr; int rc, irq; zdev->aisb = -1UL; zdev->msi_first_bit = -1U; msi_vecs = min_t(unsigned int, nvec, zdev->max_msi); if (msi_vecs < nvec) { pr_info("%s requested %d irqs, allocate system limit of %d", pci_name(pdev), nvec, zdev->max_msi); } rc = __alloc_airq(zdev, msi_vecs, &bit); if (rc < 0) return rc; /* * Request MSI interrupts: * When using MSI, nvec_used interrupt sources and their irq * descriptors are controlled through one msi descriptor. * Thus the outer loop over msi descriptors shall run only once, * while two inner loops iterate over the interrupt vectors. * When using MSI-X, each interrupt vector/irq descriptor * is bound to exactly one msi descriptor (nvec_used is one). * So the inner loops are executed once, while the outer iterates * over the MSI-X descriptors. */ hwirq = bit; msi_for_each_desc(msi, &pdev->dev, MSI_DESC_NOTASSOCIATED) { if (hwirq - bit >= msi_vecs) break; irqs_per_msi = min_t(unsigned int, msi_vecs, msi->nvec_used); irq = __irq_alloc_descs(-1, 0, irqs_per_msi, 0, THIS_MODULE, (irq_delivery == DIRECTED) ? msi->affinity : NULL); if (irq < 0) return -ENOMEM; for (i = 0; i < irqs_per_msi; i++) { rc = irq_set_msi_desc_off(irq, i, msi); if (rc) return rc; irq_set_chip_and_handler(irq + i, &zpci_irq_chip, handle_percpu_irq); } msg.data = hwirq - bit; if (irq_delivery == DIRECTED) { if (msi->affinity) cpu = cpumask_first(&msi->affinity->mask); else cpu = 0; cpu_addr = smp_cpu_get_cpu_address(cpu); msg.address_lo = zdev->msi_addr & 0xff0000ff; msg.address_lo |= (cpu_addr << 8); for_each_possible_cpu(cpu) { for (i = 0; i < irqs_per_msi; i++) airq_iv_set_data(zpci_ibv[cpu], hwirq + i, irq + i); } } else { msg.address_lo = zdev->msi_addr & 0xffffffff; for (i = 0; i < irqs_per_msi; i++) airq_iv_set_data(zdev->aibv, hwirq + i, irq + i); } msg.address_hi = zdev->msi_addr >> 32; pci_write_msi_msg(irq, &msg); hwirq += irqs_per_msi; } zdev->msi_first_bit = bit; zdev->msi_nr_irqs = hwirq - bit; rc = zpci_set_irq(zdev); if (rc) return rc; return (zdev->msi_nr_irqs == nvec) ? 0 : zdev->msi_nr_irqs; } void arch_teardown_msi_irqs(struct pci_dev *pdev) { struct zpci_dev *zdev = to_zpci(pdev); struct msi_desc *msi; unsigned int i; int rc; /* Disable interrupts */ rc = zpci_clear_irq(zdev); if (rc) return; /* Release MSI interrupts */ msi_for_each_desc(msi, &pdev->dev, MSI_DESC_ASSOCIATED) { for (i = 0; i < msi->nvec_used; i++) { irq_set_msi_desc(msi->irq + i, NULL); irq_free_desc(msi->irq + i); } msi->msg.address_lo = 0; msi->msg.address_hi = 0; msi->msg.data = 0; msi->irq = 0; } if (zdev->aisb != -1UL) { zpci_ibv[zdev->aisb] = NULL; airq_iv_free_bit(zpci_sbv, zdev->aisb); zdev->aisb = -1UL; } if (zdev->aibv) { airq_iv_release(zdev->aibv); zdev->aibv = NULL; } if ((irq_delivery == DIRECTED) && zdev->msi_first_bit != -1U) airq_iv_free(zpci_ibv[0], zdev->msi_first_bit, zdev->msi_nr_irqs); } bool arch_restore_msi_irqs(struct pci_dev *pdev) { struct zpci_dev *zdev = to_zpci(pdev); if (!zdev->irqs_registered) zpci_set_irq(zdev); return true; } static struct airq_struct zpci_airq = { .handler = zpci_floating_irq_handler, .isc = PCI_ISC, }; static void __init cpu_enable_directed_irq(void *unused) { union zpci_sic_iib iib = {{0}}; union zpci_sic_iib ziib = {{0}}; iib.cdiib.dibv_addr = virt_to_phys(zpci_ibv[smp_processor_id()]->vector); zpci_set_irq_ctrl(SIC_IRQ_MODE_SET_CPU, 0, &iib); zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC, &ziib); } static int __init zpci_directed_irq_init(void) { union zpci_sic_iib iib = {{0}}; unsigned int cpu; zpci_sbv = airq_iv_create(num_possible_cpus(), 0, NULL); if (!zpci_sbv) return -ENOMEM; iib.diib.isc = PCI_ISC; iib.diib.nr_cpus = num_possible_cpus(); iib.diib.disb_addr = virt_to_phys(zpci_sbv->vector); zpci_set_irq_ctrl(SIC_IRQ_MODE_DIRECT, 0, &iib); zpci_ibv = kcalloc(num_possible_cpus(), sizeof(*zpci_ibv), GFP_KERNEL); if (!zpci_ibv) return -ENOMEM; for_each_possible_cpu(cpu) { /* * Per CPU IRQ vectors look the same but bit-allocation * is only done on the first vector. */ zpci_ibv[cpu] = airq_iv_create(cache_line_size() * BITS_PER_BYTE, AIRQ_IV_DATA | AIRQ_IV_CACHELINE | (!cpu ? AIRQ_IV_ALLOC : 0), NULL); if (!zpci_ibv[cpu]) return -ENOMEM; } on_each_cpu(cpu_enable_directed_irq, NULL, 1); zpci_irq_chip.irq_set_affinity = zpci_set_irq_affinity; return 0; } static int __init zpci_floating_irq_init(void) { zpci_ibv = kcalloc(ZPCI_NR_DEVICES, sizeof(*zpci_ibv), GFP_KERNEL); if (!zpci_ibv) return -ENOMEM; zpci_sbv = airq_iv_create(ZPCI_NR_DEVICES, AIRQ_IV_ALLOC, NULL); if (!zpci_sbv) goto out_free; return 0; out_free: kfree(zpci_ibv); return -ENOMEM; } int __init zpci_irq_init(void) { union zpci_sic_iib iib = {{0}}; int rc; irq_delivery = sclp.has_dirq ? DIRECTED : FLOATING; if (s390_pci_force_floating) irq_delivery = FLOATING; if (irq_delivery == DIRECTED) zpci_airq.handler = zpci_directed_irq_handler; rc = register_adapter_interrupt(&zpci_airq); if (rc) goto out; /* Set summary to 1 to be called every time for the ISC. */ *zpci_airq.lsi_ptr = 1; switch (irq_delivery) { case FLOATING: rc = zpci_floating_irq_init(); break; case DIRECTED: rc = zpci_directed_irq_init(); break; } if (rc) goto out_airq; /* * Enable floating IRQs (with suppression after one IRQ). When using * directed IRQs this enables the fallback path. */ zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC, &iib); return 0; out_airq: unregister_adapter_interrupt(&zpci_airq); out: return rc; } void __init zpci_irq_exit(void) { unsigned int cpu; if (irq_delivery == DIRECTED) { for_each_possible_cpu(cpu) { airq_iv_release(zpci_ibv[cpu]); } } kfree(zpci_ibv); if (zpci_sbv) airq_iv_release(zpci_sbv); unregister_adapter_interrupt(&zpci_airq); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1