Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David S. Miller | 2286 | 54.06% | 74 | 49.01% |
Bob Picco | 1065 | 25.18% | 1 | 0.66% |
Linus Torvalds (pre-git) | 362 | 8.56% | 34 | 22.52% |
Sam Ravnborg | 171 | 4.04% | 5 | 3.31% |
Linus Torvalds | 100 | 2.36% | 7 | 4.64% |
Thomas Gleixner | 60 | 1.42% | 7 | 4.64% |
Jane Chu | 45 | 1.06% | 1 | 0.66% |
Jiang Liu | 42 | 0.99% | 2 | 1.32% |
Al Viro | 17 | 0.40% | 1 | 0.66% |
Rusty Russell | 16 | 0.38% | 1 | 0.66% |
Yinghai Lu | 12 | 0.28% | 1 | 0.66% |
Hong H. Pham | 10 | 0.24% | 1 | 0.66% |
Dawei Li | 10 | 0.24% | 1 | 0.66% |
Benjamin Collins | 7 | 0.17% | 1 | 0.66% |
Sebastian Andrzej Siewior | 5 | 0.12% | 2 | 1.32% |
Motohiro Kosaki | 3 | 0.07% | 1 | 0.66% |
Mike Travis | 3 | 0.07% | 1 | 0.66% |
Frédéric Weisbecker | 3 | 0.07% | 1 | 0.66% |
Sven Hartge | 3 | 0.07% | 1 | 0.66% |
Liam R. Howlett | 2 | 0.05% | 1 | 0.66% |
Eddie C. Dost | 1 | 0.02% | 1 | 0.66% |
Rob Herring | 1 | 0.02% | 1 | 0.66% |
Stephen Rothwell | 1 | 0.02% | 1 | 0.66% |
Eric Sesterhenn / Snakebyte | 1 | 0.02% | 1 | 0.66% |
Björn Helgaas | 1 | 0.02% | 1 | 0.66% |
Greg Kroah-Hartman | 1 | 0.02% | 1 | 0.66% |
Arun Sharma | 1 | 0.02% | 1 | 0.66% |
Total | 4229 | 151 |
// SPDX-License-Identifier: GPL-2.0 /* irq.c: UltraSparc IRQ handling/init/registry. * * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net) * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be) * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz) */ #include <linux/sched.h> #include <linux/linkage.h> #include <linux/ptrace.h> #include <linux/errno.h> #include <linux/kernel_stat.h> #include <linux/signal.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/slab.h> #include <linux/random.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/ftrace.h> #include <linux/irq.h> #include <asm/ptrace.h> #include <asm/processor.h> #include <linux/atomic.h> #include <asm/irq.h> #include <asm/io.h> #include <asm/iommu.h> #include <asm/upa.h> #include <asm/oplib.h> #include <asm/prom.h> #include <asm/timer.h> #include <asm/smp.h> #include <asm/starfire.h> #include <linux/uaccess.h> #include <asm/cache.h> #include <asm/cpudata.h> #include <asm/auxio.h> #include <asm/head.h> #include <asm/hypervisor.h> #include <asm/cacheflush.h> #include <asm/softirq_stack.h> #include "entry.h" #include "cpumap.h" #include "kstack.h" struct ino_bucket *ivector_table; unsigned long ivector_table_pa; /* On several sun4u processors, it is illegal to mix bypass and * non-bypass accesses. Therefore we access all INO buckets * using bypass accesses only. */ static unsigned long bucket_get_chain_pa(unsigned long bucket_pa) { unsigned long ret; __asm__ __volatile__("ldxa [%1] %2, %0" : "=&r" (ret) : "r" (bucket_pa + offsetof(struct ino_bucket, __irq_chain_pa)), "i" (ASI_PHYS_USE_EC)); return ret; } static void bucket_clear_chain_pa(unsigned long bucket_pa) { __asm__ __volatile__("stxa %%g0, [%0] %1" : /* no outputs */ : "r" (bucket_pa + offsetof(struct ino_bucket, __irq_chain_pa)), "i" (ASI_PHYS_USE_EC)); } static unsigned int bucket_get_irq(unsigned long bucket_pa) { unsigned int ret; __asm__ __volatile__("lduwa [%1] %2, %0" : "=&r" (ret) : "r" (bucket_pa + offsetof(struct ino_bucket, __irq)), "i" (ASI_PHYS_USE_EC)); return ret; } static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq) { __asm__ __volatile__("stwa %0, [%1] %2" : /* no outputs */ : "r" (irq), "r" (bucket_pa + offsetof(struct ino_bucket, __irq)), "i" (ASI_PHYS_USE_EC)); } #define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa) static unsigned long hvirq_major __initdata; static int __init early_hvirq_major(char *p) { int rc = kstrtoul(p, 10, &hvirq_major); return rc; } early_param("hvirq", early_hvirq_major); static int hv_irq_version; /* Major version 2.0 of HV_GRP_INTR added support for the VIRQ cookie * based interfaces, but: * * 1) Several OSs, Solaris and Linux included, use them even when only * negotiating version 1.0 (or failing to negotiate at all). So the * hypervisor has a workaround that provides the VIRQ interfaces even * when only verion 1.0 of the API is in use. * * 2) Second, and more importantly, with major version 2.0 these VIRQ * interfaces only were actually hooked up for LDC interrupts, even * though the Hypervisor specification clearly stated: * * The new interrupt API functions will be available to a guest * when it negotiates version 2.0 in the interrupt API group 0x2. When * a guest negotiates version 2.0, all interrupt sources will only * support using the cookie interface, and any attempt to use the * version 1.0 interrupt APIs numbered 0xa0 to 0xa6 will result in the * ENOTSUPPORTED error being returned. * * with an emphasis on "all interrupt sources". * * To correct this, major version 3.0 was created which does actually * support VIRQs for all interrupt sources (not just LDC devices). So * if we want to move completely over the cookie based VIRQs we must * negotiate major version 3.0 or later of HV_GRP_INTR. */ static bool sun4v_cookie_only_virqs(void) { if (hv_irq_version >= 3) return true; return false; } static void __init irq_init_hv(void) { unsigned long hv_error, major, minor = 0; if (tlb_type != hypervisor) return; if (hvirq_major) major = hvirq_major; else major = 3; hv_error = sun4v_hvapi_register(HV_GRP_INTR, major, &minor); if (!hv_error) hv_irq_version = major; else hv_irq_version = 1; pr_info("SUN4V: Using IRQ API major %d, cookie only virqs %s\n", hv_irq_version, sun4v_cookie_only_virqs() ? "enabled" : "disabled"); } /* This function is for the timer interrupt.*/ int __init arch_probe_nr_irqs(void) { return 1; } #define DEFAULT_NUM_IVECS (0xfffU) static unsigned int nr_ivec = DEFAULT_NUM_IVECS; #define NUM_IVECS (nr_ivec) static unsigned int __init size_nr_ivec(void) { if (tlb_type == hypervisor) { switch (sun4v_chip_type) { /* Athena's devhandle|devino is large.*/ case SUN4V_CHIP_SPARC64X: nr_ivec = 0xffff; break; } } return nr_ivec; } struct irq_handler_data { union { struct { unsigned int dev_handle; unsigned int dev_ino; }; unsigned long sysino; }; struct ino_bucket bucket; unsigned long iclr; unsigned long imap; }; static inline unsigned int irq_data_to_handle(struct irq_data *data) { struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data); return ihd->dev_handle; } static inline unsigned int irq_data_to_ino(struct irq_data *data) { struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data); return ihd->dev_ino; } static inline unsigned long irq_data_to_sysino(struct irq_data *data) { struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data); return ihd->sysino; } void irq_free(unsigned int irq) { void *data = irq_get_handler_data(irq); kfree(data); irq_set_handler_data(irq, NULL); irq_free_descs(irq, 1); } unsigned int irq_alloc(unsigned int dev_handle, unsigned int dev_ino) { int irq; irq = __irq_alloc_descs(-1, 1, 1, numa_node_id(), NULL, NULL); if (irq <= 0) goto out; return irq; out: return 0; } static unsigned int cookie_exists(u32 devhandle, unsigned int devino) { unsigned long hv_err, cookie; struct ino_bucket *bucket; unsigned int irq = 0U; hv_err = sun4v_vintr_get_cookie(devhandle, devino, &cookie); if (hv_err) { pr_err("HV get cookie failed hv_err = %ld\n", hv_err); goto out; } if (cookie & ((1UL << 63UL))) { cookie = ~cookie; bucket = (struct ino_bucket *) __va(cookie); irq = bucket->__irq; } out: return irq; } static unsigned int sysino_exists(u32 devhandle, unsigned int devino) { unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino); struct ino_bucket *bucket; unsigned int irq; bucket = &ivector_table[sysino]; irq = bucket_get_irq(__pa(bucket)); return irq; } void ack_bad_irq(unsigned int irq) { pr_crit("BAD IRQ ack %d\n", irq); } void irq_install_pre_handler(int irq, void (*func)(unsigned int, void *, void *), void *arg1, void *arg2) { pr_warn("IRQ pre handler NOT supported.\n"); } /* * /proc/interrupts printing: */ int arch_show_interrupts(struct seq_file *p, int prec) { int j; seq_printf(p, "NMI: "); for_each_online_cpu(j) seq_printf(p, "%10u ", cpu_data(j).__nmi_count); seq_printf(p, " Non-maskable interrupts\n"); return 0; } static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid) { unsigned int tid; if (this_is_starfire) { tid = starfire_translate(imap, cpuid); tid <<= IMAP_TID_SHIFT; tid &= IMAP_TID_UPA; } else { if (tlb_type == cheetah || tlb_type == cheetah_plus) { unsigned long ver; __asm__ ("rdpr %%ver, %0" : "=r" (ver)); if ((ver >> 32UL) == __JALAPENO_ID || (ver >> 32UL) == __SERRANO_ID) { tid = cpuid << IMAP_TID_SHIFT; tid &= IMAP_TID_JBUS; } else { unsigned int a = cpuid & 0x1f; unsigned int n = (cpuid >> 5) & 0x1f; tid = ((a << IMAP_AID_SHIFT) | (n << IMAP_NID_SHIFT)); tid &= (IMAP_AID_SAFARI | IMAP_NID_SAFARI); } } else { tid = cpuid << IMAP_TID_SHIFT; tid &= IMAP_TID_UPA; } } return tid; } #ifdef CONFIG_SMP static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity) { int cpuid; if (cpumask_equal(affinity, cpu_online_mask)) { cpuid = map_to_cpu(irq); } else { cpuid = cpumask_first_and(affinity, cpu_online_mask); cpuid = cpuid < nr_cpu_ids ? cpuid : map_to_cpu(irq); } return cpuid; } #else #define irq_choose_cpu(irq, affinity) \ real_hard_smp_processor_id() #endif static void sun4u_irq_enable(struct irq_data *data) { struct irq_handler_data *handler_data; handler_data = irq_data_get_irq_handler_data(data); if (likely(handler_data)) { unsigned long cpuid, imap, val; unsigned int tid; cpuid = irq_choose_cpu(data->irq, irq_data_get_affinity_mask(data)); imap = handler_data->imap; tid = sun4u_compute_tid(imap, cpuid); val = upa_readq(imap); val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS | IMAP_AID_SAFARI | IMAP_NID_SAFARI); val |= tid | IMAP_VALID; upa_writeq(val, imap); upa_writeq(ICLR_IDLE, handler_data->iclr); } } static int sun4u_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force) { struct irq_handler_data *handler_data; handler_data = irq_data_get_irq_handler_data(data); if (likely(handler_data)) { unsigned long cpuid, imap, val; unsigned int tid; cpuid = irq_choose_cpu(data->irq, mask); imap = handler_data->imap; tid = sun4u_compute_tid(imap, cpuid); val = upa_readq(imap); val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS | IMAP_AID_SAFARI | IMAP_NID_SAFARI); val |= tid | IMAP_VALID; upa_writeq(val, imap); upa_writeq(ICLR_IDLE, handler_data->iclr); } return 0; } /* Don't do anything. The desc->status check for IRQ_DISABLED in * handler_irq() will skip the handler call and that will leave the * interrupt in the sent state. The next ->enable() call will hit the * ICLR register to reset the state machine. * * This scheme is necessary, instead of clearing the Valid bit in the * IMAP register, to handle the case of IMAP registers being shared by * multiple INOs (and thus ICLR registers). Since we use a different * virtual IRQ for each shared IMAP instance, the generic code thinks * there is only one user so it prematurely calls ->disable() on * free_irq(). * * We have to provide an explicit ->disable() method instead of using * NULL to get the default. The reason is that if the generic code * sees that, it also hooks up a default ->shutdown method which * invokes ->mask() which we do not want. See irq_chip_set_defaults(). */ static void sun4u_irq_disable(struct irq_data *data) { } static void sun4u_irq_eoi(struct irq_data *data) { struct irq_handler_data *handler_data; handler_data = irq_data_get_irq_handler_data(data); if (likely(handler_data)) upa_writeq(ICLR_IDLE, handler_data->iclr); } static void sun4v_irq_enable(struct irq_data *data) { unsigned long cpuid = irq_choose_cpu(data->irq, irq_data_get_affinity_mask(data)); unsigned int ino = irq_data_to_sysino(data); int err; err = sun4v_intr_settarget(ino, cpuid); if (err != HV_EOK) printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): " "err(%d)\n", ino, cpuid, err); err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE); if (err != HV_EOK) printk(KERN_ERR "sun4v_intr_setstate(%x): " "err(%d)\n", ino, err); err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED); if (err != HV_EOK) printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n", ino, err); } static int sun4v_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force) { unsigned long cpuid = irq_choose_cpu(data->irq, mask); unsigned int ino = irq_data_to_sysino(data); int err; err = sun4v_intr_settarget(ino, cpuid); if (err != HV_EOK) printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): " "err(%d)\n", ino, cpuid, err); return 0; } static void sun4v_irq_disable(struct irq_data *data) { unsigned int ino = irq_data_to_sysino(data); int err; err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED); if (err != HV_EOK) printk(KERN_ERR "sun4v_intr_setenabled(%x): " "err(%d)\n", ino, err); } static void sun4v_irq_eoi(struct irq_data *data) { unsigned int ino = irq_data_to_sysino(data); int err; err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE); if (err != HV_EOK) printk(KERN_ERR "sun4v_intr_setstate(%x): " "err(%d)\n", ino, err); } static void sun4v_virq_enable(struct irq_data *data) { unsigned long dev_handle = irq_data_to_handle(data); unsigned long dev_ino = irq_data_to_ino(data); unsigned long cpuid; int err; cpuid = irq_choose_cpu(data->irq, irq_data_get_affinity_mask(data)); err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid); if (err != HV_EOK) printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): " "err(%d)\n", dev_handle, dev_ino, cpuid, err); err = sun4v_vintr_set_state(dev_handle, dev_ino, HV_INTR_STATE_IDLE); if (err != HV_EOK) printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," "HV_INTR_STATE_IDLE): err(%d)\n", dev_handle, dev_ino, err); err = sun4v_vintr_set_valid(dev_handle, dev_ino, HV_INTR_ENABLED); if (err != HV_EOK) printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," "HV_INTR_ENABLED): err(%d)\n", dev_handle, dev_ino, err); } static int sun4v_virt_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force) { unsigned long dev_handle = irq_data_to_handle(data); unsigned long dev_ino = irq_data_to_ino(data); unsigned long cpuid; int err; cpuid = irq_choose_cpu(data->irq, mask); err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid); if (err != HV_EOK) printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): " "err(%d)\n", dev_handle, dev_ino, cpuid, err); return 0; } static void sun4v_virq_disable(struct irq_data *data) { unsigned long dev_handle = irq_data_to_handle(data); unsigned long dev_ino = irq_data_to_ino(data); int err; err = sun4v_vintr_set_valid(dev_handle, dev_ino, HV_INTR_DISABLED); if (err != HV_EOK) printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," "HV_INTR_DISABLED): err(%d)\n", dev_handle, dev_ino, err); } static void sun4v_virq_eoi(struct irq_data *data) { unsigned long dev_handle = irq_data_to_handle(data); unsigned long dev_ino = irq_data_to_ino(data); int err; err = sun4v_vintr_set_state(dev_handle, dev_ino, HV_INTR_STATE_IDLE); if (err != HV_EOK) printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx," "HV_INTR_STATE_IDLE): err(%d)\n", dev_handle, dev_ino, err); } static struct irq_chip sun4u_irq = { .name = "sun4u", .irq_enable = sun4u_irq_enable, .irq_disable = sun4u_irq_disable, .irq_eoi = sun4u_irq_eoi, .irq_set_affinity = sun4u_set_affinity, .flags = IRQCHIP_EOI_IF_HANDLED, }; static struct irq_chip sun4v_irq = { .name = "sun4v", .irq_enable = sun4v_irq_enable, .irq_disable = sun4v_irq_disable, .irq_eoi = sun4v_irq_eoi, .irq_set_affinity = sun4v_set_affinity, .flags = IRQCHIP_EOI_IF_HANDLED, }; static struct irq_chip sun4v_virq = { .name = "vsun4v", .irq_enable = sun4v_virq_enable, .irq_disable = sun4v_virq_disable, .irq_eoi = sun4v_virq_eoi, .irq_set_affinity = sun4v_virt_set_affinity, .flags = IRQCHIP_EOI_IF_HANDLED, }; unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap) { struct irq_handler_data *handler_data; struct ino_bucket *bucket; unsigned int irq; int ino; BUG_ON(tlb_type == hypervisor); ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup; bucket = &ivector_table[ino]; irq = bucket_get_irq(__pa(bucket)); if (!irq) { irq = irq_alloc(0, ino); bucket_set_irq(__pa(bucket), irq); irq_set_chip_and_handler_name(irq, &sun4u_irq, handle_fasteoi_irq, "IVEC"); } handler_data = irq_get_handler_data(irq); if (unlikely(handler_data)) goto out; handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC); if (unlikely(!handler_data)) { prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n"); prom_halt(); } irq_set_handler_data(irq, handler_data); handler_data->imap = imap; handler_data->iclr = iclr; out: return irq; } static unsigned int sun4v_build_common(u32 devhandle, unsigned int devino, void (*handler_data_init)(struct irq_handler_data *data, u32 devhandle, unsigned int devino), struct irq_chip *chip) { struct irq_handler_data *data; unsigned int irq; irq = irq_alloc(devhandle, devino); if (!irq) goto out; data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC); if (unlikely(!data)) { pr_err("IRQ handler data allocation failed.\n"); irq_free(irq); irq = 0; goto out; } irq_set_handler_data(irq, data); handler_data_init(data, devhandle, devino); irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq, "IVEC"); data->imap = ~0UL; data->iclr = ~0UL; out: return irq; } static unsigned long cookie_assign(unsigned int irq, u32 devhandle, unsigned int devino) { struct irq_handler_data *ihd = irq_get_handler_data(irq); unsigned long hv_error, cookie; /* handler_irq needs to find the irq. cookie is seen signed in * sun4v_dev_mondo and treated as a non ivector_table delivery. */ ihd->bucket.__irq = irq; cookie = ~__pa(&ihd->bucket); hv_error = sun4v_vintr_set_cookie(devhandle, devino, cookie); if (hv_error) pr_err("HV vintr set cookie failed = %ld\n", hv_error); return hv_error; } static void cookie_handler_data(struct irq_handler_data *data, u32 devhandle, unsigned int devino) { data->dev_handle = devhandle; data->dev_ino = devino; } static unsigned int cookie_build_irq(u32 devhandle, unsigned int devino, struct irq_chip *chip) { unsigned long hv_error; unsigned int irq; irq = sun4v_build_common(devhandle, devino, cookie_handler_data, chip); hv_error = cookie_assign(irq, devhandle, devino); if (hv_error) { irq_free(irq); irq = 0; } return irq; } static unsigned int sun4v_build_cookie(u32 devhandle, unsigned int devino) { unsigned int irq; irq = cookie_exists(devhandle, devino); if (irq) goto out; irq = cookie_build_irq(devhandle, devino, &sun4v_virq); out: return irq; } static void sysino_set_bucket(unsigned int irq) { struct irq_handler_data *ihd = irq_get_handler_data(irq); struct ino_bucket *bucket; unsigned long sysino; sysino = sun4v_devino_to_sysino(ihd->dev_handle, ihd->dev_ino); BUG_ON(sysino >= nr_ivec); bucket = &ivector_table[sysino]; bucket_set_irq(__pa(bucket), irq); } static void sysino_handler_data(struct irq_handler_data *data, u32 devhandle, unsigned int devino) { unsigned long sysino; sysino = sun4v_devino_to_sysino(devhandle, devino); data->sysino = sysino; } static unsigned int sysino_build_irq(u32 devhandle, unsigned int devino, struct irq_chip *chip) { unsigned int irq; irq = sun4v_build_common(devhandle, devino, sysino_handler_data, chip); if (!irq) goto out; sysino_set_bucket(irq); out: return irq; } static int sun4v_build_sysino(u32 devhandle, unsigned int devino) { int irq; irq = sysino_exists(devhandle, devino); if (irq) goto out; irq = sysino_build_irq(devhandle, devino, &sun4v_irq); out: return irq; } unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino) { unsigned int irq; if (sun4v_cookie_only_virqs()) irq = sun4v_build_cookie(devhandle, devino); else irq = sun4v_build_sysino(devhandle, devino); return irq; } unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino) { int irq; irq = cookie_build_irq(devhandle, devino, &sun4v_virq); if (!irq) goto out; /* This is borrowed from the original function. */ irq_set_status_flags(irq, IRQ_NOAUTOEN); out: return irq; } void *hardirq_stack[NR_CPUS]; void *softirq_stack[NR_CPUS]; void __irq_entry handler_irq(int pil, struct pt_regs *regs) { unsigned long pstate, bucket_pa; struct pt_regs *old_regs; void *orig_sp; clear_softint(1 << pil); old_regs = set_irq_regs(regs); irq_enter(); /* Grab an atomic snapshot of the pending IVECs. */ __asm__ __volatile__("rdpr %%pstate, %0\n\t" "wrpr %0, %3, %%pstate\n\t" "ldx [%2], %1\n\t" "stx %%g0, [%2]\n\t" "wrpr %0, 0x0, %%pstate\n\t" : "=&r" (pstate), "=&r" (bucket_pa) : "r" (irq_work_pa(smp_processor_id())), "i" (PSTATE_IE) : "memory"); orig_sp = set_hardirq_stack(); while (bucket_pa) { unsigned long next_pa; unsigned int irq; next_pa = bucket_get_chain_pa(bucket_pa); irq = bucket_get_irq(bucket_pa); bucket_clear_chain_pa(bucket_pa); generic_handle_irq(irq); bucket_pa = next_pa; } restore_hardirq_stack(orig_sp); irq_exit(); set_irq_regs(old_regs); } #ifdef CONFIG_SOFTIRQ_ON_OWN_STACK void do_softirq_own_stack(void) { void *orig_sp, *sp = softirq_stack[smp_processor_id()]; sp += THREAD_SIZE - 192 - STACK_BIAS; __asm__ __volatile__("mov %%sp, %0\n\t" "mov %1, %%sp" : "=&r" (orig_sp) : "r" (sp)); __do_softirq(); __asm__ __volatile__("mov %0, %%sp" : : "r" (orig_sp)); } #endif #ifdef CONFIG_HOTPLUG_CPU void fixup_irqs(void) { unsigned int irq; for (irq = 0; irq < NR_IRQS; irq++) { struct irq_desc *desc = irq_to_desc(irq); struct irq_data *data; unsigned long flags; if (!desc) continue; data = irq_desc_get_irq_data(desc); raw_spin_lock_irqsave(&desc->lock, flags); if (desc->action && !irqd_is_per_cpu(data)) { if (data->chip->irq_set_affinity) data->chip->irq_set_affinity(data, irq_data_get_affinity_mask(data), false); } raw_spin_unlock_irqrestore(&desc->lock, flags); } tick_ops->disable_irq(); } #endif struct sun5_timer { u64 count0; u64 limit0; u64 count1; u64 limit1; }; static struct sun5_timer *prom_timers; static u64 prom_limit0, prom_limit1; static void map_prom_timers(void) { struct device_node *dp; const unsigned int *addr; /* PROM timer node hangs out in the top level of device siblings... */ dp = of_find_node_by_path("/"); dp = dp->child; while (dp) { if (of_node_name_eq(dp, "counter-timer")) break; dp = dp->sibling; } /* Assume if node is not present, PROM uses different tick mechanism * which we should not care about. */ if (!dp) { prom_timers = (struct sun5_timer *) 0; return; } /* If PROM is really using this, it must be mapped by him. */ addr = of_get_property(dp, "address", NULL); if (!addr) { prom_printf("PROM does not have timer mapped, trying to continue.\n"); prom_timers = (struct sun5_timer *) 0; return; } prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]); } static void kill_prom_timer(void) { if (!prom_timers) return; /* Save them away for later. */ prom_limit0 = prom_timers->limit0; prom_limit1 = prom_timers->limit1; /* Just as in sun4c PROM uses timer which ticks at IRQ 14. * We turn both off here just to be paranoid. */ prom_timers->limit0 = 0; prom_timers->limit1 = 0; /* Wheee, eat the interrupt packet too... */ __asm__ __volatile__( " mov 0x40, %%g2\n" " ldxa [%%g0] %0, %%g1\n" " ldxa [%%g2] %1, %%g1\n" " stxa %%g0, [%%g0] %0\n" " membar #Sync\n" : /* no outputs */ : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R) : "g1", "g2"); } void notrace init_irqwork_curcpu(void) { int cpu = hard_smp_processor_id(); trap_block[cpu].irq_worklist_pa = 0UL; } /* Please be very careful with register_one_mondo() and * sun4v_register_mondo_queues(). * * On SMP this gets invoked from the CPU trampoline before * the cpu has fully taken over the trap table from OBP, * and its kernel stack + %g6 thread register state is * not fully cooked yet. * * Therefore you cannot make any OBP calls, not even prom_printf, * from these two routines. */ static void notrace register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask) { unsigned long num_entries = (qmask + 1) / 64; unsigned long status; status = sun4v_cpu_qconf(type, paddr, num_entries); if (status != HV_EOK) { prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, " "err %lu\n", type, paddr, num_entries, status); prom_halt(); } } void notrace sun4v_register_mondo_queues(int this_cpu) { struct trap_per_cpu *tb = &trap_block[this_cpu]; register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO, tb->cpu_mondo_qmask); register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO, tb->dev_mondo_qmask); register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR, tb->resum_qmask); register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR, tb->nonresum_qmask); } /* Each queue region must be a power of 2 multiple of 64 bytes in * size. The base real address must be aligned to the size of the * region. Thus, an 8KB queue must be 8KB aligned, for example. */ static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask) { unsigned long size = PAGE_ALIGN(qmask + 1); unsigned long order = get_order(size); unsigned long p; p = __get_free_pages(GFP_KERNEL | __GFP_ZERO, order); if (!p) { prom_printf("SUN4V: Error, cannot allocate queue.\n"); prom_halt(); } *pa_ptr = __pa(p); } static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb) { #ifdef CONFIG_SMP unsigned long page; void *mondo, *p; BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > PAGE_SIZE); /* Make sure mondo block is 64byte aligned */ p = kzalloc(127, GFP_KERNEL); if (!p) { prom_printf("SUN4V: Error, cannot allocate mondo block.\n"); prom_halt(); } mondo = (void *)(((unsigned long)p + 63) & ~0x3f); tb->cpu_mondo_block_pa = __pa(mondo); page = get_zeroed_page(GFP_KERNEL); if (!page) { prom_printf("SUN4V: Error, cannot allocate cpu list page.\n"); prom_halt(); } tb->cpu_list_pa = __pa(page); #endif } /* Allocate mondo and error queues for all possible cpus. */ static void __init sun4v_init_mondo_queues(void) { int cpu; for_each_possible_cpu(cpu) { struct trap_per_cpu *tb = &trap_block[cpu]; alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask); alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask); alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask); alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask); alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask); alloc_one_queue(&tb->nonresum_kernel_buf_pa, tb->nonresum_qmask); } } static void __init init_send_mondo_info(void) { int cpu; for_each_possible_cpu(cpu) { struct trap_per_cpu *tb = &trap_block[cpu]; init_cpu_send_mondo_info(tb); } } static struct irqaction timer_irq_action = { .name = "timer", }; static void __init irq_ivector_init(void) { unsigned long size, order; unsigned int ivecs; /* If we are doing cookie only VIRQs then we do not need the ivector * table to process interrupts. */ if (sun4v_cookie_only_virqs()) return; ivecs = size_nr_ivec(); size = sizeof(struct ino_bucket) * ivecs; order = get_order(size); ivector_table = (struct ino_bucket *) __get_free_pages(GFP_KERNEL | __GFP_ZERO, order); if (!ivector_table) { prom_printf("Fatal error, cannot allocate ivector_table\n"); prom_halt(); } __flush_dcache_range((unsigned long) ivector_table, ((unsigned long) ivector_table) + size); ivector_table_pa = __pa(ivector_table); } /* Only invoked on boot processor.*/ void __init init_IRQ(void) { irq_init_hv(); irq_ivector_init(); map_prom_timers(); kill_prom_timer(); if (tlb_type == hypervisor) sun4v_init_mondo_queues(); init_send_mondo_info(); if (tlb_type == hypervisor) { /* Load up the boot cpu's entries. */ sun4v_register_mondo_queues(hard_smp_processor_id()); } /* We need to clear any IRQ's pending in the soft interrupt * registers, a spurious one could be left around from the * PROM timer which we just disabled. */ clear_softint(get_softint()); /* Now that ivector table is initialized, it is safe * to receive IRQ vector traps. We will normally take * one or two right now, in case some device PROM used * to boot us wants to speak to us. We just ignore them. */ __asm__ __volatile__("rdpr %%pstate, %%g1\n\t" "or %%g1, %0, %%g1\n\t" "wrpr %%g1, 0x0, %%pstate" : /* No outputs */ : "i" (PSTATE_IE) : "g1"); irq_to_desc(0)->action = &timer_irq_action; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1