Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Huang Ying | 1352 | 78.56% | 5 | 16.13% |
Herbert Xu | 149 | 8.66% | 7 | 22.58% |
Rui Y Wang | 58 | 3.37% | 1 | 3.23% |
Ard Biesheuvel | 55 | 3.20% | 1 | 3.23% |
Eric Biggers | 33 | 1.92% | 6 | 19.35% |
Andi Kleen | 29 | 1.69% | 1 | 3.23% |
Loc Ho | 18 | 1.05% | 1 | 3.23% |
James Morris | 5 | 0.29% | 1 | 3.23% |
Thomas Gleixner | 5 | 0.29% | 2 | 6.45% |
Andrey Ryabinin | 4 | 0.23% | 1 | 3.23% |
Martin Willi | 3 | 0.17% | 1 | 3.23% |
Stephan Mueller | 3 | 0.17% | 1 | 3.23% |
David S. Miller | 3 | 0.17% | 1 | 3.23% |
Randy Dunlap | 3 | 0.17% | 1 | 3.23% |
Kees Cook | 1 | 0.06% | 1 | 3.23% |
Total | 1721 | 31 |
// SPDX-License-Identifier: GPL-2.0-only /* * Accelerated GHASH implementation with Intel PCLMULQDQ-NI * instructions. This file contains glue code. * * Copyright (c) 2009 Intel Corp. * Author: Huang Ying <ying.huang@intel.com> */ #include <linux/err.h> #include <linux/module.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/crypto.h> #include <crypto/algapi.h> #include <crypto/cryptd.h> #include <crypto/gf128mul.h> #include <crypto/internal/hash.h> #include <crypto/internal/simd.h> #include <asm/cpu_device_id.h> #include <asm/simd.h> #include <asm/unaligned.h> #define GHASH_BLOCK_SIZE 16 #define GHASH_DIGEST_SIZE 16 void clmul_ghash_mul(char *dst, const le128 *shash); void clmul_ghash_update(char *dst, const char *src, unsigned int srclen, const le128 *shash); struct ghash_async_ctx { struct cryptd_ahash *cryptd_tfm; }; struct ghash_ctx { le128 shash; }; struct ghash_desc_ctx { u8 buffer[GHASH_BLOCK_SIZE]; u32 bytes; }; static int ghash_init(struct shash_desc *desc) { struct ghash_desc_ctx *dctx = shash_desc_ctx(desc); memset(dctx, 0, sizeof(*dctx)); return 0; } static int ghash_setkey(struct crypto_shash *tfm, const u8 *key, unsigned int keylen) { struct ghash_ctx *ctx = crypto_shash_ctx(tfm); u64 a, b; if (keylen != GHASH_BLOCK_SIZE) return -EINVAL; /* * GHASH maps bits to polynomial coefficients backwards, which makes it * hard to implement. But it can be shown that the GHASH multiplication * * D * K (mod x^128 + x^7 + x^2 + x + 1) * * (where D is a data block and K is the key) is equivalent to: * * bitreflect(D) * bitreflect(K) * x^(-127) * (mod x^128 + x^127 + x^126 + x^121 + 1) * * So, the code below precomputes: * * bitreflect(K) * x^(-127) (mod x^128 + x^127 + x^126 + x^121 + 1) * * ... but in Montgomery form (so that Montgomery multiplication can be * used), i.e. with an extra x^128 factor, which means actually: * * bitreflect(K) * x (mod x^128 + x^127 + x^126 + x^121 + 1) * * The within-a-byte part of bitreflect() cancels out GHASH's built-in * reflection, and thus bitreflect() is actually a byteswap. */ a = get_unaligned_be64(key); b = get_unaligned_be64(key + 8); ctx->shash.a = cpu_to_le64((a << 1) | (b >> 63)); ctx->shash.b = cpu_to_le64((b << 1) | (a >> 63)); if (a >> 63) ctx->shash.a ^= cpu_to_le64((u64)0xc2 << 56); return 0; } static int ghash_update(struct shash_desc *desc, const u8 *src, unsigned int srclen) { struct ghash_desc_ctx *dctx = shash_desc_ctx(desc); struct ghash_ctx *ctx = crypto_shash_ctx(desc->tfm); u8 *dst = dctx->buffer; kernel_fpu_begin(); if (dctx->bytes) { int n = min(srclen, dctx->bytes); u8 *pos = dst + (GHASH_BLOCK_SIZE - dctx->bytes); dctx->bytes -= n; srclen -= n; while (n--) *pos++ ^= *src++; if (!dctx->bytes) clmul_ghash_mul(dst, &ctx->shash); } clmul_ghash_update(dst, src, srclen, &ctx->shash); kernel_fpu_end(); if (srclen & 0xf) { src += srclen - (srclen & 0xf); srclen &= 0xf; dctx->bytes = GHASH_BLOCK_SIZE - srclen; while (srclen--) *dst++ ^= *src++; } return 0; } static void ghash_flush(struct ghash_ctx *ctx, struct ghash_desc_ctx *dctx) { u8 *dst = dctx->buffer; if (dctx->bytes) { u8 *tmp = dst + (GHASH_BLOCK_SIZE - dctx->bytes); while (dctx->bytes--) *tmp++ ^= 0; kernel_fpu_begin(); clmul_ghash_mul(dst, &ctx->shash); kernel_fpu_end(); } dctx->bytes = 0; } static int ghash_final(struct shash_desc *desc, u8 *dst) { struct ghash_desc_ctx *dctx = shash_desc_ctx(desc); struct ghash_ctx *ctx = crypto_shash_ctx(desc->tfm); u8 *buf = dctx->buffer; ghash_flush(ctx, dctx); memcpy(dst, buf, GHASH_BLOCK_SIZE); return 0; } static struct shash_alg ghash_alg = { .digestsize = GHASH_DIGEST_SIZE, .init = ghash_init, .update = ghash_update, .final = ghash_final, .setkey = ghash_setkey, .descsize = sizeof(struct ghash_desc_ctx), .base = { .cra_name = "__ghash", .cra_driver_name = "__ghash-pclmulqdqni", .cra_priority = 0, .cra_flags = CRYPTO_ALG_INTERNAL, .cra_blocksize = GHASH_BLOCK_SIZE, .cra_ctxsize = sizeof(struct ghash_ctx), .cra_module = THIS_MODULE, }, }; static int ghash_async_init(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm); struct ahash_request *cryptd_req = ahash_request_ctx(req); struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm; struct shash_desc *desc = cryptd_shash_desc(cryptd_req); struct crypto_shash *child = cryptd_ahash_child(cryptd_tfm); desc->tfm = child; return crypto_shash_init(desc); } static int ghash_async_update(struct ahash_request *req) { struct ahash_request *cryptd_req = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm); struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm; if (!crypto_simd_usable() || (in_atomic() && cryptd_ahash_queued(cryptd_tfm))) { memcpy(cryptd_req, req, sizeof(*req)); ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base); return crypto_ahash_update(cryptd_req); } else { struct shash_desc *desc = cryptd_shash_desc(cryptd_req); return shash_ahash_update(req, desc); } } static int ghash_async_final(struct ahash_request *req) { struct ahash_request *cryptd_req = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm); struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm; if (!crypto_simd_usable() || (in_atomic() && cryptd_ahash_queued(cryptd_tfm))) { memcpy(cryptd_req, req, sizeof(*req)); ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base); return crypto_ahash_final(cryptd_req); } else { struct shash_desc *desc = cryptd_shash_desc(cryptd_req); return crypto_shash_final(desc, req->result); } } static int ghash_async_import(struct ahash_request *req, const void *in) { struct ahash_request *cryptd_req = ahash_request_ctx(req); struct shash_desc *desc = cryptd_shash_desc(cryptd_req); struct ghash_desc_ctx *dctx = shash_desc_ctx(desc); ghash_async_init(req); memcpy(dctx, in, sizeof(*dctx)); return 0; } static int ghash_async_export(struct ahash_request *req, void *out) { struct ahash_request *cryptd_req = ahash_request_ctx(req); struct shash_desc *desc = cryptd_shash_desc(cryptd_req); struct ghash_desc_ctx *dctx = shash_desc_ctx(desc); memcpy(out, dctx, sizeof(*dctx)); return 0; } static int ghash_async_digest(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm); struct ahash_request *cryptd_req = ahash_request_ctx(req); struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm; if (!crypto_simd_usable() || (in_atomic() && cryptd_ahash_queued(cryptd_tfm))) { memcpy(cryptd_req, req, sizeof(*req)); ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base); return crypto_ahash_digest(cryptd_req); } else { struct shash_desc *desc = cryptd_shash_desc(cryptd_req); struct crypto_shash *child = cryptd_ahash_child(cryptd_tfm); desc->tfm = child; return shash_ahash_digest(req, desc); } } static int ghash_async_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm); struct crypto_ahash *child = &ctx->cryptd_tfm->base; crypto_ahash_clear_flags(child, CRYPTO_TFM_REQ_MASK); crypto_ahash_set_flags(child, crypto_ahash_get_flags(tfm) & CRYPTO_TFM_REQ_MASK); return crypto_ahash_setkey(child, key, keylen); } static int ghash_async_init_tfm(struct crypto_tfm *tfm) { struct cryptd_ahash *cryptd_tfm; struct ghash_async_ctx *ctx = crypto_tfm_ctx(tfm); cryptd_tfm = cryptd_alloc_ahash("__ghash-pclmulqdqni", CRYPTO_ALG_INTERNAL, CRYPTO_ALG_INTERNAL); if (IS_ERR(cryptd_tfm)) return PTR_ERR(cryptd_tfm); ctx->cryptd_tfm = cryptd_tfm; crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct ahash_request) + crypto_ahash_reqsize(&cryptd_tfm->base)); return 0; } static void ghash_async_exit_tfm(struct crypto_tfm *tfm) { struct ghash_async_ctx *ctx = crypto_tfm_ctx(tfm); cryptd_free_ahash(ctx->cryptd_tfm); } static struct ahash_alg ghash_async_alg = { .init = ghash_async_init, .update = ghash_async_update, .final = ghash_async_final, .setkey = ghash_async_setkey, .digest = ghash_async_digest, .export = ghash_async_export, .import = ghash_async_import, .halg = { .digestsize = GHASH_DIGEST_SIZE, .statesize = sizeof(struct ghash_desc_ctx), .base = { .cra_name = "ghash", .cra_driver_name = "ghash-clmulni", .cra_priority = 400, .cra_ctxsize = sizeof(struct ghash_async_ctx), .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = GHASH_BLOCK_SIZE, .cra_module = THIS_MODULE, .cra_init = ghash_async_init_tfm, .cra_exit = ghash_async_exit_tfm, }, }, }; static const struct x86_cpu_id pcmul_cpu_id[] = { X86_MATCH_FEATURE(X86_FEATURE_PCLMULQDQ, NULL), /* Pickle-Mickle-Duck */ {} }; MODULE_DEVICE_TABLE(x86cpu, pcmul_cpu_id); static int __init ghash_pclmulqdqni_mod_init(void) { int err; if (!x86_match_cpu(pcmul_cpu_id)) return -ENODEV; err = crypto_register_shash(&ghash_alg); if (err) goto err_out; err = crypto_register_ahash(&ghash_async_alg); if (err) goto err_shash; return 0; err_shash: crypto_unregister_shash(&ghash_alg); err_out: return err; } static void __exit ghash_pclmulqdqni_mod_exit(void) { crypto_unregister_ahash(&ghash_async_alg); crypto_unregister_shash(&ghash_alg); } module_init(ghash_pclmulqdqni_mod_init); module_exit(ghash_pclmulqdqni_mod_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("GHASH hash function, accelerated by PCLMULQDQ-NI"); MODULE_ALIAS_CRYPTO("ghash");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1