Contributors: 85
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Glauber de Oliveira Costa |
335 |
16.67% |
14 |
5.24% |
Andi Kleen |
232 |
11.54% |
23 |
8.61% |
Thomas Gleixner |
164 |
8.16% |
26 |
9.74% |
Andrew Lutomirski |
154 |
7.66% |
22 |
8.24% |
Linus Torvalds (pre-git) |
122 |
6.07% |
20 |
7.49% |
Borislav Petkov |
111 |
5.52% |
10 |
3.75% |
Ingo Molnar |
90 |
4.48% |
10 |
3.75% |
Alex Shi |
47 |
2.34% |
1 |
0.37% |
Dave Hansen |
35 |
1.74% |
7 |
2.62% |
Kees Cook |
34 |
1.69% |
3 |
1.12% |
Brian Gerst |
32 |
1.59% |
7 |
2.62% |
Erik Bosman |
30 |
1.49% |
1 |
0.37% |
H. Peter Anvin |
30 |
1.49% |
5 |
1.87% |
Linus Torvalds |
26 |
1.29% |
2 |
0.75% |
Mike Travis |
25 |
1.24% |
3 |
1.12% |
Vitaly Kuznetsov |
24 |
1.19% |
2 |
0.75% |
Tony Luck |
23 |
1.14% |
2 |
0.75% |
Jiri Kosina |
21 |
1.04% |
1 |
0.37% |
Rick Edgecombe |
20 |
1.00% |
2 |
0.75% |
Yinghai Lu |
20 |
1.00% |
4 |
1.50% |
Ravikiran G. Thirumalai |
19 |
0.95% |
1 |
0.37% |
Uros Bizjak |
18 |
0.90% |
4 |
1.50% |
Len Brown |
17 |
0.85% |
2 |
0.75% |
Peter Zijlstra |
17 |
0.85% |
7 |
2.62% |
Arjan van de Ven |
14 |
0.70% |
2 |
0.75% |
Fenghua Yu |
14 |
0.70% |
2 |
0.75% |
Thomas Garnier |
14 |
0.70% |
2 |
0.75% |
Thomas Renninger |
14 |
0.70% |
1 |
0.37% |
Sean Christopherson |
14 |
0.70% |
2 |
0.75% |
Ashok Raj |
13 |
0.65% |
2 |
0.75% |
David Howells |
13 |
0.65% |
2 |
0.75% |
Oleg Nesterov |
13 |
0.65% |
2 |
0.75% |
Rusty Russell |
12 |
0.60% |
5 |
1.87% |
Albert D. Cahalan |
12 |
0.60% |
1 |
0.37% |
Jacob Shin |
11 |
0.55% |
1 |
0.37% |
Frédéric Weisbecker |
11 |
0.55% |
2 |
0.75% |
Tejun Heo |
10 |
0.50% |
1 |
0.37% |
Tom Lendacky |
10 |
0.50% |
3 |
1.12% |
Andrew Morton |
10 |
0.50% |
4 |
1.50% |
David Woodhouse |
9 |
0.45% |
2 |
0.75% |
Kirill A. Shutemov |
9 |
0.45% |
2 |
0.75% |
Jeremy Fitzhardinge |
9 |
0.45% |
4 |
1.50% |
Gerd Hoffmann |
8 |
0.40% |
1 |
0.37% |
Peter P. Waskiewicz Jr |
8 |
0.40% |
1 |
0.37% |
Stefani Seibold |
8 |
0.40% |
1 |
0.37% |
Huang Rui |
8 |
0.40% |
1 |
0.37% |
K.Prasad |
7 |
0.35% |
1 |
0.37% |
Dmitry Safonov |
7 |
0.35% |
1 |
0.37% |
Kyle Huey |
7 |
0.35% |
1 |
0.37% |
Dave Jones |
7 |
0.35% |
2 |
0.75% |
Jan Beulich |
6 |
0.30% |
3 |
1.12% |
Patrick Mochel |
6 |
0.30% |
1 |
0.37% |
Jaswinder Singh Rajput |
6 |
0.30% |
1 |
0.37% |
Alexander Duyck |
5 |
0.25% |
1 |
0.37% |
Marcos Del Sol Vives |
5 |
0.25% |
1 |
0.37% |
Alexey Dobriyan |
5 |
0.25% |
3 |
1.12% |
Pavel Machek |
4 |
0.20% |
1 |
0.37% |
Pu Wen |
4 |
0.20% |
1 |
0.37% |
Balbir Singh |
4 |
0.20% |
1 |
0.37% |
Tony W Wang-oc |
4 |
0.20% |
1 |
0.37% |
Reinette Chatre |
4 |
0.20% |
1 |
0.37% |
Vincenzo Frascino |
3 |
0.15% |
1 |
0.37% |
Josh Poimboeuf |
3 |
0.15% |
1 |
0.37% |
Daniel Sneddon |
3 |
0.15% |
1 |
0.37% |
Kim Phillips |
3 |
0.15% |
1 |
0.37% |
Joerg Roedel |
3 |
0.15% |
1 |
0.37% |
Roland McGrath |
2 |
0.10% |
1 |
0.37% |
Shaohua Li |
2 |
0.10% |
1 |
0.37% |
Vlastimil Babka |
2 |
0.10% |
1 |
0.37% |
Juergen Gross |
2 |
0.10% |
1 |
0.37% |
Adrian Bunk |
2 |
0.10% |
1 |
0.37% |
Suresh B. Siddha |
1 |
0.05% |
1 |
0.37% |
Denys Vlasenko |
1 |
0.05% |
1 |
0.37% |
Nikolay Borisov |
1 |
0.05% |
1 |
0.37% |
Gustavo A. R. Silva |
1 |
0.05% |
1 |
0.37% |
Christoph Hellwig |
1 |
0.05% |
1 |
0.37% |
Mathias Krause |
1 |
0.05% |
1 |
0.37% |
Chang S. Bae |
1 |
0.05% |
1 |
0.37% |
jia zhang |
1 |
0.05% |
1 |
0.37% |
Greg Kroah-Hartman |
1 |
0.05% |
1 |
0.37% |
Alan Cox |
1 |
0.05% |
1 |
0.37% |
Mateusz Guzik |
1 |
0.05% |
1 |
0.37% |
Ivan Vecera |
1 |
0.05% |
1 |
0.37% |
Srikar Dronamraju |
1 |
0.05% |
1 |
0.37% |
Stas Sergeev |
1 |
0.05% |
1 |
0.37% |
Total |
2010 |
|
267 |
|
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_X86_PROCESSOR_H
#define _ASM_X86_PROCESSOR_H
#include <asm/processor-flags.h>
/* Forward declaration, a strange C thing */
struct task_struct;
struct mm_struct;
struct io_bitmap;
struct vm86;
#include <asm/math_emu.h>
#include <asm/segment.h>
#include <asm/types.h>
#include <uapi/asm/sigcontext.h>
#include <asm/current.h>
#include <asm/cpufeatures.h>
#include <asm/cpuid.h>
#include <asm/page.h>
#include <asm/pgtable_types.h>
#include <asm/percpu.h>
#include <asm/desc_defs.h>
#include <asm/nops.h>
#include <asm/special_insns.h>
#include <asm/fpu/types.h>
#include <asm/unwind_hints.h>
#include <asm/vmxfeatures.h>
#include <asm/vdso/processor.h>
#include <asm/shstk.h>
#include <linux/personality.h>
#include <linux/cache.h>
#include <linux/threads.h>
#include <linux/math64.h>
#include <linux/err.h>
#include <linux/irqflags.h>
#include <linux/mem_encrypt.h>
/*
* We handle most unaligned accesses in hardware. On the other hand
* unaligned DMA can be quite expensive on some Nehalem processors.
*
* Based on this we disable the IP header alignment in network drivers.
*/
#define NET_IP_ALIGN 0
#define HBP_NUM 4
/*
* These alignment constraints are for performance in the vSMP case,
* but in the task_struct case we must also meet hardware imposed
* alignment requirements of the FPU state:
*/
#ifdef CONFIG_X86_VSMP
# define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
# define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
#else
# define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
# define ARCH_MIN_MMSTRUCT_ALIGN 0
#endif
enum tlb_infos {
ENTRIES,
NR_INFO
};
extern u16 __read_mostly tlb_lli_4k[NR_INFO];
extern u16 __read_mostly tlb_lli_2m[NR_INFO];
extern u16 __read_mostly tlb_lli_4m[NR_INFO];
extern u16 __read_mostly tlb_lld_4k[NR_INFO];
extern u16 __read_mostly tlb_lld_2m[NR_INFO];
extern u16 __read_mostly tlb_lld_4m[NR_INFO];
extern u16 __read_mostly tlb_lld_1g[NR_INFO];
/*
* CPU type and hardware bug flags. Kept separately for each CPU.
*/
struct cpuinfo_topology {
// Real APIC ID read from the local APIC
u32 apicid;
// The initial APIC ID provided by CPUID
u32 initial_apicid;
// Physical package ID
u32 pkg_id;
// Physical die ID on AMD, Relative on Intel
u32 die_id;
// Compute unit ID - AMD specific
u32 cu_id;
// Core ID relative to the package
u32 core_id;
// Logical ID mappings
u32 logical_pkg_id;
u32 logical_die_id;
// AMD Node ID and Nodes per Package info
u32 amd_node_id;
// Cache level topology IDs
u32 llc_id;
u32 l2c_id;
};
struct cpuinfo_x86 {
union {
/*
* The particular ordering (low-to-high) of (vendor,
* family, model) is done in case range of models, like
* it is usually done on AMD, need to be compared.
*/
struct {
__u8 x86_model;
/* CPU family */
__u8 x86;
/* CPU vendor */
__u8 x86_vendor;
__u8 x86_reserved;
};
/* combined vendor, family, model */
__u32 x86_vfm;
};
__u8 x86_stepping;
#ifdef CONFIG_X86_64
/* Number of 4K pages in DTLB/ITLB combined(in pages): */
int x86_tlbsize;
#endif
#ifdef CONFIG_X86_VMX_FEATURE_NAMES
__u32 vmx_capability[NVMXINTS];
#endif
__u8 x86_virt_bits;
__u8 x86_phys_bits;
/* Max extended CPUID function supported: */
__u32 extended_cpuid_level;
/* Maximum supported CPUID level, -1=no CPUID: */
int cpuid_level;
/*
* Align to size of unsigned long because the x86_capability array
* is passed to bitops which require the alignment. Use unnamed
* union to enforce the array is aligned to size of unsigned long.
*/
union {
__u32 x86_capability[NCAPINTS + NBUGINTS];
unsigned long x86_capability_alignment;
};
char x86_vendor_id[16];
char x86_model_id[64];
struct cpuinfo_topology topo;
/* in KB - valid for CPUS which support this call: */
unsigned int x86_cache_size;
int x86_cache_alignment; /* In bytes */
/* Cache QoS architectural values, valid only on the BSP: */
int x86_cache_max_rmid; /* max index */
int x86_cache_occ_scale; /* scale to bytes */
int x86_cache_mbm_width_offset;
int x86_power;
unsigned long loops_per_jiffy;
/* protected processor identification number */
u64 ppin;
u16 x86_clflush_size;
/* number of cores as seen by the OS: */
u16 booted_cores;
/* Index into per_cpu list: */
u16 cpu_index;
/* Is SMT active on this core? */
bool smt_active;
u32 microcode;
/* Address space bits used by the cache internally */
u8 x86_cache_bits;
unsigned initialized : 1;
} __randomize_layout;
#define X86_VENDOR_INTEL 0
#define X86_VENDOR_CYRIX 1
#define X86_VENDOR_AMD 2
#define X86_VENDOR_UMC 3
#define X86_VENDOR_CENTAUR 5
#define X86_VENDOR_TRANSMETA 7
#define X86_VENDOR_NSC 8
#define X86_VENDOR_HYGON 9
#define X86_VENDOR_ZHAOXIN 10
#define X86_VENDOR_VORTEX 11
#define X86_VENDOR_NUM 12
#define X86_VENDOR_UNKNOWN 0xff
/*
* capabilities of CPUs
*/
extern struct cpuinfo_x86 boot_cpu_data;
extern struct cpuinfo_x86 new_cpu_data;
extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
#define cpu_data(cpu) per_cpu(cpu_info, cpu)
extern const struct seq_operations cpuinfo_op;
#define cache_line_size() (boot_cpu_data.x86_cache_alignment)
extern void cpu_detect(struct cpuinfo_x86 *c);
static inline unsigned long long l1tf_pfn_limit(void)
{
return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT);
}
extern void early_cpu_init(void);
extern void identify_secondary_cpu(struct cpuinfo_x86 *);
extern void print_cpu_info(struct cpuinfo_x86 *);
void print_cpu_msr(struct cpuinfo_x86 *);
/*
* Friendlier CR3 helpers.
*/
static inline unsigned long read_cr3_pa(void)
{
return __read_cr3() & CR3_ADDR_MASK;
}
static inline unsigned long native_read_cr3_pa(void)
{
return __native_read_cr3() & CR3_ADDR_MASK;
}
static inline void load_cr3(pgd_t *pgdir)
{
write_cr3(__sme_pa(pgdir));
}
/*
* Note that while the legacy 'TSS' name comes from 'Task State Segment',
* on modern x86 CPUs the TSS also holds information important to 64-bit mode,
* unrelated to the task-switch mechanism:
*/
#ifdef CONFIG_X86_32
/* This is the TSS defined by the hardware. */
struct x86_hw_tss {
unsigned short back_link, __blh;
unsigned long sp0;
unsigned short ss0, __ss0h;
unsigned long sp1;
/*
* We don't use ring 1, so ss1 is a convenient scratch space in
* the same cacheline as sp0. We use ss1 to cache the value in
* MSR_IA32_SYSENTER_CS. When we context switch
* MSR_IA32_SYSENTER_CS, we first check if the new value being
* written matches ss1, and, if it's not, then we wrmsr the new
* value and update ss1.
*
* The only reason we context switch MSR_IA32_SYSENTER_CS is
* that we set it to zero in vm86 tasks to avoid corrupting the
* stack if we were to go through the sysenter path from vm86
* mode.
*/
unsigned short ss1; /* MSR_IA32_SYSENTER_CS */
unsigned short __ss1h;
unsigned long sp2;
unsigned short ss2, __ss2h;
unsigned long __cr3;
unsigned long ip;
unsigned long flags;
unsigned long ax;
unsigned long cx;
unsigned long dx;
unsigned long bx;
unsigned long sp;
unsigned long bp;
unsigned long si;
unsigned long di;
unsigned short es, __esh;
unsigned short cs, __csh;
unsigned short ss, __ssh;
unsigned short ds, __dsh;
unsigned short fs, __fsh;
unsigned short gs, __gsh;
unsigned short ldt, __ldth;
unsigned short trace;
unsigned short io_bitmap_base;
} __attribute__((packed));
#else
struct x86_hw_tss {
u32 reserved1;
u64 sp0;
u64 sp1;
/*
* Since Linux does not use ring 2, the 'sp2' slot is unused by
* hardware. entry_SYSCALL_64 uses it as scratch space to stash
* the user RSP value.
*/
u64 sp2;
u64 reserved2;
u64 ist[7];
u32 reserved3;
u32 reserved4;
u16 reserved5;
u16 io_bitmap_base;
} __attribute__((packed));
#endif
/*
* IO-bitmap sizes:
*/
#define IO_BITMAP_BITS 65536
#define IO_BITMAP_BYTES (IO_BITMAP_BITS / BITS_PER_BYTE)
#define IO_BITMAP_LONGS (IO_BITMAP_BYTES / sizeof(long))
#define IO_BITMAP_OFFSET_VALID_MAP \
(offsetof(struct tss_struct, io_bitmap.bitmap) - \
offsetof(struct tss_struct, x86_tss))
#define IO_BITMAP_OFFSET_VALID_ALL \
(offsetof(struct tss_struct, io_bitmap.mapall) - \
offsetof(struct tss_struct, x86_tss))
#ifdef CONFIG_X86_IOPL_IOPERM
/*
* sizeof(unsigned long) coming from an extra "long" at the end of the
* iobitmap. The limit is inclusive, i.e. the last valid byte.
*/
# define __KERNEL_TSS_LIMIT \
(IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \
sizeof(unsigned long) - 1)
#else
# define __KERNEL_TSS_LIMIT \
(offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1)
#endif
/* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */
#define IO_BITMAP_OFFSET_INVALID (__KERNEL_TSS_LIMIT + 1)
struct entry_stack {
char stack[PAGE_SIZE];
};
struct entry_stack_page {
struct entry_stack stack;
} __aligned(PAGE_SIZE);
/*
* All IO bitmap related data stored in the TSS:
*/
struct x86_io_bitmap {
/* The sequence number of the last active bitmap. */
u64 prev_sequence;
/*
* Store the dirty size of the last io bitmap offender. The next
* one will have to do the cleanup as the switch out to a non io
* bitmap user will just set x86_tss.io_bitmap_base to a value
* outside of the TSS limit. So for sane tasks there is no need to
* actually touch the io_bitmap at all.
*/
unsigned int prev_max;
/*
* The extra 1 is there because the CPU will access an
* additional byte beyond the end of the IO permission
* bitmap. The extra byte must be all 1 bits, and must
* be within the limit.
*/
unsigned long bitmap[IO_BITMAP_LONGS + 1];
/*
* Special I/O bitmap to emulate IOPL(3). All bytes zero,
* except the additional byte at the end.
*/
unsigned long mapall[IO_BITMAP_LONGS + 1];
};
struct tss_struct {
/*
* The fixed hardware portion. This must not cross a page boundary
* at risk of violating the SDM's advice and potentially triggering
* errata.
*/
struct x86_hw_tss x86_tss;
struct x86_io_bitmap io_bitmap;
} __aligned(PAGE_SIZE);
DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
/* Per CPU interrupt stacks */
struct irq_stack {
char stack[IRQ_STACK_SIZE];
} __aligned(IRQ_STACK_SIZE);
#ifdef CONFIG_X86_64
struct fixed_percpu_data {
/*
* GCC hardcodes the stack canary as %gs:40. Since the
* irq_stack is the object at %gs:0, we reserve the bottom
* 48 bytes of the irq stack for the canary.
*
* Once we are willing to require -mstack-protector-guard-symbol=
* support for x86_64 stackprotector, we can get rid of this.
*/
char gs_base[40];
unsigned long stack_canary;
};
DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible;
DECLARE_INIT_PER_CPU(fixed_percpu_data);
static inline unsigned long cpu_kernelmode_gs_base(int cpu)
{
return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu);
}
extern asmlinkage void entry_SYSCALL32_ignore(void);
/* Save actual FS/GS selectors and bases to current->thread */
void current_save_fsgs(void);
#else /* X86_64 */
#ifdef CONFIG_STACKPROTECTOR
DECLARE_PER_CPU(unsigned long, __stack_chk_guard);
#endif
#endif /* !X86_64 */
struct perf_event;
struct thread_struct {
/* Cached TLS descriptors: */
struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
#ifdef CONFIG_X86_32
unsigned long sp0;
#endif
unsigned long sp;
#ifdef CONFIG_X86_32
unsigned long sysenter_cs;
#else
unsigned short es;
unsigned short ds;
unsigned short fsindex;
unsigned short gsindex;
#endif
#ifdef CONFIG_X86_64
unsigned long fsbase;
unsigned long gsbase;
#else
/*
* XXX: this could presumably be unsigned short. Alternatively,
* 32-bit kernels could be taught to use fsindex instead.
*/
unsigned long fs;
unsigned long gs;
#endif
/* Save middle states of ptrace breakpoints */
struct perf_event *ptrace_bps[HBP_NUM];
/* Debug status used for traps, single steps, etc... */
unsigned long virtual_dr6;
/* Keep track of the exact dr7 value set by the user */
unsigned long ptrace_dr7;
/* Fault info: */
unsigned long cr2;
unsigned long trap_nr;
unsigned long error_code;
#ifdef CONFIG_VM86
/* Virtual 86 mode info */
struct vm86 *vm86;
#endif
/* IO permissions: */
struct io_bitmap *io_bitmap;
/*
* IOPL. Privilege level dependent I/O permission which is
* emulated via the I/O bitmap to prevent user space from disabling
* interrupts.
*/
unsigned long iopl_emul;
unsigned int iopl_warn:1;
/*
* Protection Keys Register for Userspace. Loaded immediately on
* context switch. Store it in thread_struct to avoid a lookup in
* the tasks's FPU xstate buffer. This value is only valid when a
* task is scheduled out. For 'current' the authoritative source of
* PKRU is the hardware itself.
*/
u32 pkru;
#ifdef CONFIG_X86_USER_SHADOW_STACK
unsigned long features;
unsigned long features_locked;
struct thread_shstk shstk;
#endif
/* Floating point and extended processor state */
struct fpu fpu;
/*
* WARNING: 'fpu' is dynamically-sized. It *MUST* be at
* the end.
*/
};
extern void fpu_thread_struct_whitelist(unsigned long *offset, unsigned long *size);
static inline void arch_thread_struct_whitelist(unsigned long *offset,
unsigned long *size)
{
fpu_thread_struct_whitelist(offset, size);
}
static inline void
native_load_sp0(unsigned long sp0)
{
this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
}
static __always_inline void native_swapgs(void)
{
#ifdef CONFIG_X86_64
asm volatile("swapgs" ::: "memory");
#endif
}
static __always_inline unsigned long current_top_of_stack(void)
{
/*
* We can't read directly from tss.sp0: sp0 on x86_32 is special in
* and around vm86 mode and sp0 on x86_64 is special because of the
* entry trampoline.
*/
if (IS_ENABLED(CONFIG_USE_X86_SEG_SUPPORT))
return this_cpu_read_const(const_pcpu_hot.top_of_stack);
return this_cpu_read_stable(pcpu_hot.top_of_stack);
}
static __always_inline bool on_thread_stack(void)
{
return (unsigned long)(current_top_of_stack() -
current_stack_pointer) < THREAD_SIZE;
}
#ifdef CONFIG_PARAVIRT_XXL
#include <asm/paravirt.h>
#else
static inline void load_sp0(unsigned long sp0)
{
native_load_sp0(sp0);
}
#endif /* CONFIG_PARAVIRT_XXL */
unsigned long __get_wchan(struct task_struct *p);
extern void select_idle_routine(void);
extern void amd_e400_c1e_apic_setup(void);
extern unsigned long boot_option_idle_override;
enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
IDLE_POLL};
extern void enable_sep_cpu(void);
/* Defined in head.S */
extern struct desc_ptr early_gdt_descr;
extern void switch_gdt_and_percpu_base(int);
extern void load_direct_gdt(int);
extern void load_fixmap_gdt(int);
extern void cpu_init(void);
extern void cpu_init_exception_handling(void);
extern void cr4_init(void);
extern void set_task_blockstep(struct task_struct *task, bool on);
/* Boot loader type from the setup header: */
extern int bootloader_type;
extern int bootloader_version;
extern char ignore_fpu_irq;
#define HAVE_ARCH_PICK_MMAP_LAYOUT 1
#define ARCH_HAS_PREFETCHW
#ifdef CONFIG_X86_32
# define BASE_PREFETCH ""
# define ARCH_HAS_PREFETCH
#else
# define BASE_PREFETCH "prefetcht0 %1"
#endif
/*
* Prefetch instructions for Pentium III (+) and AMD Athlon (+)
*
* It's not worth to care about 3dnow prefetches for the K6
* because they are microcoded there and very slow.
*/
static inline void prefetch(const void *x)
{
alternative_input(BASE_PREFETCH, "prefetchnta %1",
X86_FEATURE_XMM,
"m" (*(const char *)x));
}
/*
* 3dnow prefetch to get an exclusive cache line.
* Useful for spinlocks to avoid one state transition in the
* cache coherency protocol:
*/
static __always_inline void prefetchw(const void *x)
{
alternative_input(BASE_PREFETCH, "prefetchw %1",
X86_FEATURE_3DNOWPREFETCH,
"m" (*(const char *)x));
}
#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
TOP_OF_KERNEL_STACK_PADDING)
#define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
#define task_pt_regs(task) \
({ \
unsigned long __ptr = (unsigned long)task_stack_page(task); \
__ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
((struct pt_regs *)__ptr) - 1; \
})
#ifdef CONFIG_X86_32
#define INIT_THREAD { \
.sp0 = TOP_OF_INIT_STACK, \
.sysenter_cs = __KERNEL_CS, \
}
#define KSTK_ESP(task) (task_pt_regs(task)->sp)
#else
extern unsigned long __top_init_kernel_stack[];
#define INIT_THREAD { \
.sp = (unsigned long)&__top_init_kernel_stack, \
}
extern unsigned long KSTK_ESP(struct task_struct *task);
#endif /* CONFIG_X86_64 */
extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
unsigned long new_sp);
/*
* This decides where the kernel will search for a free chunk of vm
* space during mmap's.
*/
#define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
#define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
#define KSTK_EIP(task) (task_pt_regs(task)->ip)
/* Get/set a process' ability to use the timestamp counter instruction */
#define GET_TSC_CTL(adr) get_tsc_mode((adr))
#define SET_TSC_CTL(val) set_tsc_mode((val))
extern int get_tsc_mode(unsigned long adr);
extern int set_tsc_mode(unsigned int val);
DECLARE_PER_CPU(u64, msr_misc_features_shadow);
static inline u32 per_cpu_llc_id(unsigned int cpu)
{
return per_cpu(cpu_info.topo.llc_id, cpu);
}
static inline u32 per_cpu_l2c_id(unsigned int cpu)
{
return per_cpu(cpu_info.topo.l2c_id, cpu);
}
#ifdef CONFIG_CPU_SUP_AMD
extern u32 amd_get_highest_perf(void);
/*
* Issue a DIV 0/1 insn to clear any division data from previous DIV
* operations.
*/
static __always_inline void amd_clear_divider(void)
{
asm volatile(ALTERNATIVE("", "div %2\n\t", X86_BUG_DIV0)
:: "a" (0), "d" (0), "r" (1));
}
extern void amd_check_microcode(void);
#else
static inline u32 amd_get_highest_perf(void) { return 0; }
static inline void amd_clear_divider(void) { }
static inline void amd_check_microcode(void) { }
#endif
extern unsigned long arch_align_stack(unsigned long sp);
void free_init_pages(const char *what, unsigned long begin, unsigned long end);
extern void free_kernel_image_pages(const char *what, void *begin, void *end);
void default_idle(void);
#ifdef CONFIG_XEN
bool xen_set_default_idle(void);
#else
#define xen_set_default_idle 0
#endif
void __noreturn stop_this_cpu(void *dummy);
void microcode_check(struct cpuinfo_x86 *prev_info);
void store_cpu_caps(struct cpuinfo_x86 *info);
enum l1tf_mitigations {
L1TF_MITIGATION_OFF,
L1TF_MITIGATION_FLUSH_NOWARN,
L1TF_MITIGATION_FLUSH,
L1TF_MITIGATION_FLUSH_NOSMT,
L1TF_MITIGATION_FULL,
L1TF_MITIGATION_FULL_FORCE
};
extern enum l1tf_mitigations l1tf_mitigation;
enum mds_mitigations {
MDS_MITIGATION_OFF,
MDS_MITIGATION_FULL,
MDS_MITIGATION_VMWERV,
};
extern bool gds_ucode_mitigated(void);
/*
* Make previous memory operations globally visible before
* a WRMSR.
*
* MFENCE makes writes visible, but only affects load/store
* instructions. WRMSR is unfortunately not a load/store
* instruction and is unaffected by MFENCE. The LFENCE ensures
* that the WRMSR is not reordered.
*
* Most WRMSRs are full serializing instructions themselves and
* do not require this barrier. This is only required for the
* IA32_TSC_DEADLINE and X2APIC MSRs.
*/
static inline void weak_wrmsr_fence(void)
{
alternative("mfence; lfence", "", ALT_NOT(X86_FEATURE_APIC_MSRS_FENCE));
}
#endif /* _ASM_X86_PROCESSOR_H */