Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Thomas Gleixner | 3053 | 54.58% | 65 | 41.94% |
Jiang Liu | 1992 | 35.61% | 24 | 15.48% |
David Woodhouse | 223 | 3.99% | 3 | 1.94% |
Linus Torvalds (pre-git) | 62 | 1.11% | 8 | 5.16% |
Dongli Zhang | 28 | 0.50% | 1 | 0.65% |
Neil Horman | 28 | 0.50% | 1 | 0.65% |
Mika Westerberg | 26 | 0.46% | 1 | 0.65% |
Andi Kleen | 25 | 0.45% | 3 | 1.94% |
Mike Travis | 18 | 0.32% | 2 | 1.29% |
Yinghai Lu | 16 | 0.29% | 7 | 4.52% |
Eric W. Biedermann | 15 | 0.27% | 2 | 1.29% |
Suresh B. Siddha | 13 | 0.23% | 4 | 2.58% |
Jake Oshins | 10 | 0.18% | 1 | 0.65% |
Ingo Molnar | 9 | 0.16% | 4 | 2.58% |
Borislav Petkov | 7 | 0.13% | 2 | 1.29% |
Pekka J Enberg | 7 | 0.13% | 1 | 0.65% |
Linus Torvalds | 7 | 0.13% | 2 | 1.29% |
H. Peter Anvin | 6 | 0.11% | 1 | 0.65% |
Venkatesh Pallipadi | 6 | 0.11% | 1 | 0.65% |
Dou Liyang | 5 | 0.09% | 2 | 1.29% |
Jacob jun Pan | 4 | 0.07% | 1 | 0.65% |
Vitaly Kuznetsov | 4 | 0.07% | 1 | 0.65% |
Jan Beulich | 4 | 0.07% | 1 | 0.65% |
Andrew Morton | 3 | 0.05% | 1 | 0.65% |
Fenghua Yu | 3 | 0.05% | 1 | 0.65% |
Andy Grover | 2 | 0.04% | 1 | 0.65% |
Joerg Roedel | 2 | 0.04% | 1 | 0.65% |
Dave Hansen | 2 | 0.04% | 2 | 1.29% |
Maciej W. Rozycki | 2 | 0.04% | 1 | 0.65% |
Keith Busch | 2 | 0.04% | 1 | 0.65% |
Feng Tang | 2 | 0.04% | 1 | 0.65% |
Yury Norov | 1 | 0.02% | 1 | 0.65% |
Rusty Russell | 1 | 0.02% | 1 | 0.65% |
Jaswinder Singh Rajput | 1 | 0.02% | 1 | 0.65% |
Colin Ian King | 1 | 0.02% | 1 | 0.65% |
Alan Cox | 1 | 0.02% | 1 | 0.65% |
Peter Xu | 1 | 0.02% | 1 | 0.65% |
Björn Helgaas | 1 | 0.02% | 1 | 0.65% |
Brian Gerst | 1 | 0.02% | 1 | 0.65% |
Total | 5594 | 155 |
// SPDX-License-Identifier: GPL-2.0-only /* * Local APIC related interfaces to support IOAPIC, MSI, etc. * * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo * Moved from arch/x86/kernel/apic/io_apic.c. * Jiang Liu <jiang.liu@linux.intel.com> * Enable support of hierarchical irqdomains */ #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/seq_file.h> #include <linux/init.h> #include <linux/compiler.h> #include <linux/slab.h> #include <asm/irqdomain.h> #include <asm/hw_irq.h> #include <asm/traps.h> #include <asm/apic.h> #include <asm/i8259.h> #include <asm/desc.h> #include <asm/irq_remapping.h> #include <asm/trace/irq_vectors.h> struct apic_chip_data { struct irq_cfg hw_irq_cfg; unsigned int vector; unsigned int prev_vector; unsigned int cpu; unsigned int prev_cpu; unsigned int irq; struct hlist_node clist; unsigned int move_in_progress : 1, is_managed : 1, can_reserve : 1, has_reserved : 1; }; struct irq_domain *x86_vector_domain; EXPORT_SYMBOL_GPL(x86_vector_domain); static DEFINE_RAW_SPINLOCK(vector_lock); static cpumask_var_t vector_searchmask; static struct irq_chip lapic_controller; static struct irq_matrix *vector_matrix; #ifdef CONFIG_SMP static void vector_cleanup_callback(struct timer_list *tmr); struct vector_cleanup { struct hlist_head head; struct timer_list timer; }; static DEFINE_PER_CPU(struct vector_cleanup, vector_cleanup) = { .head = HLIST_HEAD_INIT, .timer = __TIMER_INITIALIZER(vector_cleanup_callback, TIMER_PINNED), }; #endif void lock_vector_lock(void) { /* Used to the online set of cpus does not change * during assign_irq_vector. */ raw_spin_lock(&vector_lock); } void unlock_vector_lock(void) { raw_spin_unlock(&vector_lock); } void init_irq_alloc_info(struct irq_alloc_info *info, const struct cpumask *mask) { memset(info, 0, sizeof(*info)); info->mask = mask; } void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src) { if (src) *dst = *src; else memset(dst, 0, sizeof(*dst)); } static struct apic_chip_data *apic_chip_data(struct irq_data *irqd) { if (!irqd) return NULL; while (irqd->parent_data) irqd = irqd->parent_data; return irqd->chip_data; } struct irq_cfg *irqd_cfg(struct irq_data *irqd) { struct apic_chip_data *apicd = apic_chip_data(irqd); return apicd ? &apicd->hw_irq_cfg : NULL; } EXPORT_SYMBOL_GPL(irqd_cfg); struct irq_cfg *irq_cfg(unsigned int irq) { return irqd_cfg(irq_get_irq_data(irq)); } static struct apic_chip_data *alloc_apic_chip_data(int node) { struct apic_chip_data *apicd; apicd = kzalloc_node(sizeof(*apicd), GFP_KERNEL, node); if (apicd) INIT_HLIST_NODE(&apicd->clist); return apicd; } static void free_apic_chip_data(struct apic_chip_data *apicd) { kfree(apicd); } static void apic_update_irq_cfg(struct irq_data *irqd, unsigned int vector, unsigned int cpu) { struct apic_chip_data *apicd = apic_chip_data(irqd); lockdep_assert_held(&vector_lock); apicd->hw_irq_cfg.vector = vector; apicd->hw_irq_cfg.dest_apicid = apic->calc_dest_apicid(cpu); irq_data_update_effective_affinity(irqd, cpumask_of(cpu)); trace_vector_config(irqd->irq, vector, cpu, apicd->hw_irq_cfg.dest_apicid); } static void apic_update_vector(struct irq_data *irqd, unsigned int newvec, unsigned int newcpu) { struct apic_chip_data *apicd = apic_chip_data(irqd); struct irq_desc *desc = irq_data_to_desc(irqd); bool managed = irqd_affinity_is_managed(irqd); lockdep_assert_held(&vector_lock); trace_vector_update(irqd->irq, newvec, newcpu, apicd->vector, apicd->cpu); /* * If there is no vector associated or if the associated vector is * the shutdown vector, which is associated to make PCI/MSI * shutdown mode work, then there is nothing to release. Clear out * prev_vector for this and the offlined target case. */ apicd->prev_vector = 0; if (!apicd->vector || apicd->vector == MANAGED_IRQ_SHUTDOWN_VECTOR) goto setnew; /* * If the target CPU of the previous vector is online, then mark * the vector as move in progress and store it for cleanup when the * first interrupt on the new vector arrives. If the target CPU is * offline then the regular release mechanism via the cleanup * vector is not possible and the vector can be immediately freed * in the underlying matrix allocator. */ if (cpu_online(apicd->cpu)) { apicd->move_in_progress = true; apicd->prev_vector = apicd->vector; apicd->prev_cpu = apicd->cpu; WARN_ON_ONCE(apicd->cpu == newcpu); } else { irq_matrix_free(vector_matrix, apicd->cpu, apicd->vector, managed); } setnew: apicd->vector = newvec; apicd->cpu = newcpu; BUG_ON(!IS_ERR_OR_NULL(per_cpu(vector_irq, newcpu)[newvec])); per_cpu(vector_irq, newcpu)[newvec] = desc; } static void vector_assign_managed_shutdown(struct irq_data *irqd) { unsigned int cpu = cpumask_first(cpu_online_mask); apic_update_irq_cfg(irqd, MANAGED_IRQ_SHUTDOWN_VECTOR, cpu); } static int reserve_managed_vector(struct irq_data *irqd) { const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd); struct apic_chip_data *apicd = apic_chip_data(irqd); unsigned long flags; int ret; raw_spin_lock_irqsave(&vector_lock, flags); apicd->is_managed = true; ret = irq_matrix_reserve_managed(vector_matrix, affmsk); raw_spin_unlock_irqrestore(&vector_lock, flags); trace_vector_reserve_managed(irqd->irq, ret); return ret; } static void reserve_irq_vector_locked(struct irq_data *irqd) { struct apic_chip_data *apicd = apic_chip_data(irqd); irq_matrix_reserve(vector_matrix); apicd->can_reserve = true; apicd->has_reserved = true; irqd_set_can_reserve(irqd); trace_vector_reserve(irqd->irq, 0); vector_assign_managed_shutdown(irqd); } static int reserve_irq_vector(struct irq_data *irqd) { unsigned long flags; raw_spin_lock_irqsave(&vector_lock, flags); reserve_irq_vector_locked(irqd); raw_spin_unlock_irqrestore(&vector_lock, flags); return 0; } static int assign_vector_locked(struct irq_data *irqd, const struct cpumask *dest) { struct apic_chip_data *apicd = apic_chip_data(irqd); bool resvd = apicd->has_reserved; unsigned int cpu = apicd->cpu; int vector = apicd->vector; lockdep_assert_held(&vector_lock); /* * If the current target CPU is online and in the new requested * affinity mask, there is no point in moving the interrupt from * one CPU to another. */ if (vector && cpu_online(cpu) && cpumask_test_cpu(cpu, dest)) return 0; /* * Careful here. @apicd might either have move_in_progress set or * be enqueued for cleanup. Assigning a new vector would either * leave a stale vector on some CPU around or in case of a pending * cleanup corrupt the hlist. */ if (apicd->move_in_progress || !hlist_unhashed(&apicd->clist)) return -EBUSY; vector = irq_matrix_alloc(vector_matrix, dest, resvd, &cpu); trace_vector_alloc(irqd->irq, vector, resvd, vector); if (vector < 0) return vector; apic_update_vector(irqd, vector, cpu); apic_update_irq_cfg(irqd, vector, cpu); return 0; } static int assign_irq_vector(struct irq_data *irqd, const struct cpumask *dest) { unsigned long flags; int ret; raw_spin_lock_irqsave(&vector_lock, flags); cpumask_and(vector_searchmask, dest, cpu_online_mask); ret = assign_vector_locked(irqd, vector_searchmask); raw_spin_unlock_irqrestore(&vector_lock, flags); return ret; } static int assign_irq_vector_any_locked(struct irq_data *irqd) { /* Get the affinity mask - either irq_default_affinity or (user) set */ const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd); int node = irq_data_get_node(irqd); if (node != NUMA_NO_NODE) { /* Try the intersection of @affmsk and node mask */ cpumask_and(vector_searchmask, cpumask_of_node(node), affmsk); if (!assign_vector_locked(irqd, vector_searchmask)) return 0; } /* Try the full affinity mask */ cpumask_and(vector_searchmask, affmsk, cpu_online_mask); if (!assign_vector_locked(irqd, vector_searchmask)) return 0; if (node != NUMA_NO_NODE) { /* Try the node mask */ if (!assign_vector_locked(irqd, cpumask_of_node(node))) return 0; } /* Try the full online mask */ return assign_vector_locked(irqd, cpu_online_mask); } static int assign_irq_vector_policy(struct irq_data *irqd, struct irq_alloc_info *info) { if (irqd_affinity_is_managed(irqd)) return reserve_managed_vector(irqd); if (info->mask) return assign_irq_vector(irqd, info->mask); /* * Make only a global reservation with no guarantee. A real vector * is associated at activation time. */ return reserve_irq_vector(irqd); } static int assign_managed_vector(struct irq_data *irqd, const struct cpumask *dest) { const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd); struct apic_chip_data *apicd = apic_chip_data(irqd); int vector, cpu; cpumask_and(vector_searchmask, dest, affmsk); /* set_affinity might call here for nothing */ if (apicd->vector && cpumask_test_cpu(apicd->cpu, vector_searchmask)) return 0; vector = irq_matrix_alloc_managed(vector_matrix, vector_searchmask, &cpu); trace_vector_alloc_managed(irqd->irq, vector, vector); if (vector < 0) return vector; apic_update_vector(irqd, vector, cpu); apic_update_irq_cfg(irqd, vector, cpu); return 0; } static void clear_irq_vector(struct irq_data *irqd) { struct apic_chip_data *apicd = apic_chip_data(irqd); bool managed = irqd_affinity_is_managed(irqd); unsigned int vector = apicd->vector; lockdep_assert_held(&vector_lock); if (!vector) return; trace_vector_clear(irqd->irq, vector, apicd->cpu, apicd->prev_vector, apicd->prev_cpu); per_cpu(vector_irq, apicd->cpu)[vector] = VECTOR_SHUTDOWN; irq_matrix_free(vector_matrix, apicd->cpu, vector, managed); apicd->vector = 0; /* Clean up move in progress */ vector = apicd->prev_vector; if (!vector) return; per_cpu(vector_irq, apicd->prev_cpu)[vector] = VECTOR_SHUTDOWN; irq_matrix_free(vector_matrix, apicd->prev_cpu, vector, managed); apicd->prev_vector = 0; apicd->move_in_progress = 0; hlist_del_init(&apicd->clist); } static void x86_vector_deactivate(struct irq_domain *dom, struct irq_data *irqd) { struct apic_chip_data *apicd = apic_chip_data(irqd); unsigned long flags; trace_vector_deactivate(irqd->irq, apicd->is_managed, apicd->can_reserve, false); /* Regular fixed assigned interrupt */ if (!apicd->is_managed && !apicd->can_reserve) return; /* If the interrupt has a global reservation, nothing to do */ if (apicd->has_reserved) return; raw_spin_lock_irqsave(&vector_lock, flags); clear_irq_vector(irqd); if (apicd->can_reserve) reserve_irq_vector_locked(irqd); else vector_assign_managed_shutdown(irqd); raw_spin_unlock_irqrestore(&vector_lock, flags); } static int activate_reserved(struct irq_data *irqd) { struct apic_chip_data *apicd = apic_chip_data(irqd); int ret; ret = assign_irq_vector_any_locked(irqd); if (!ret) { apicd->has_reserved = false; /* * Core might have disabled reservation mode after * allocating the irq descriptor. Ideally this should * happen before allocation time, but that would require * completely convoluted ways of transporting that * information. */ if (!irqd_can_reserve(irqd)) apicd->can_reserve = false; } /* * Check to ensure that the effective affinity mask is a subset * the user supplied affinity mask, and warn the user if it is not */ if (!cpumask_subset(irq_data_get_effective_affinity_mask(irqd), irq_data_get_affinity_mask(irqd))) { pr_warn("irq %u: Affinity broken due to vector space exhaustion.\n", irqd->irq); } return ret; } static int activate_managed(struct irq_data *irqd) { const struct cpumask *dest = irq_data_get_affinity_mask(irqd); int ret; cpumask_and(vector_searchmask, dest, cpu_online_mask); if (WARN_ON_ONCE(cpumask_empty(vector_searchmask))) { /* Something in the core code broke! Survive gracefully */ pr_err("Managed startup for irq %u, but no CPU\n", irqd->irq); return -EINVAL; } ret = assign_managed_vector(irqd, vector_searchmask); /* * This should not happen. The vector reservation got buggered. Handle * it gracefully. */ if (WARN_ON_ONCE(ret < 0)) { pr_err("Managed startup irq %u, no vector available\n", irqd->irq); } return ret; } static int x86_vector_activate(struct irq_domain *dom, struct irq_data *irqd, bool reserve) { struct apic_chip_data *apicd = apic_chip_data(irqd); unsigned long flags; int ret = 0; trace_vector_activate(irqd->irq, apicd->is_managed, apicd->can_reserve, reserve); raw_spin_lock_irqsave(&vector_lock, flags); if (!apicd->can_reserve && !apicd->is_managed) assign_irq_vector_any_locked(irqd); else if (reserve || irqd_is_managed_and_shutdown(irqd)) vector_assign_managed_shutdown(irqd); else if (apicd->is_managed) ret = activate_managed(irqd); else if (apicd->has_reserved) ret = activate_reserved(irqd); raw_spin_unlock_irqrestore(&vector_lock, flags); return ret; } static void vector_free_reserved_and_managed(struct irq_data *irqd) { const struct cpumask *dest = irq_data_get_affinity_mask(irqd); struct apic_chip_data *apicd = apic_chip_data(irqd); trace_vector_teardown(irqd->irq, apicd->is_managed, apicd->has_reserved); if (apicd->has_reserved) irq_matrix_remove_reserved(vector_matrix); if (apicd->is_managed) irq_matrix_remove_managed(vector_matrix, dest); } static void x86_vector_free_irqs(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs) { struct apic_chip_data *apicd; struct irq_data *irqd; unsigned long flags; int i; for (i = 0; i < nr_irqs; i++) { irqd = irq_domain_get_irq_data(x86_vector_domain, virq + i); if (irqd && irqd->chip_data) { raw_spin_lock_irqsave(&vector_lock, flags); clear_irq_vector(irqd); vector_free_reserved_and_managed(irqd); apicd = irqd->chip_data; irq_domain_reset_irq_data(irqd); raw_spin_unlock_irqrestore(&vector_lock, flags); free_apic_chip_data(apicd); } } } static bool vector_configure_legacy(unsigned int virq, struct irq_data *irqd, struct apic_chip_data *apicd) { unsigned long flags; bool realloc = false; apicd->vector = ISA_IRQ_VECTOR(virq); apicd->cpu = 0; raw_spin_lock_irqsave(&vector_lock, flags); /* * If the interrupt is activated, then it must stay at this vector * position. That's usually the timer interrupt (0). */ if (irqd_is_activated(irqd)) { trace_vector_setup(virq, true, 0); apic_update_irq_cfg(irqd, apicd->vector, apicd->cpu); } else { /* Release the vector */ apicd->can_reserve = true; irqd_set_can_reserve(irqd); clear_irq_vector(irqd); realloc = true; } raw_spin_unlock_irqrestore(&vector_lock, flags); return realloc; } static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs, void *arg) { struct irq_alloc_info *info = arg; struct apic_chip_data *apicd; struct irq_data *irqd; int i, err, node; if (apic_is_disabled) return -ENXIO; /* * Catch any attempt to touch the cascade interrupt on a PIC * equipped system. */ if (WARN_ON_ONCE(info->flags & X86_IRQ_ALLOC_LEGACY && virq == PIC_CASCADE_IR)) return -EINVAL; for (i = 0; i < nr_irqs; i++) { irqd = irq_domain_get_irq_data(domain, virq + i); BUG_ON(!irqd); node = irq_data_get_node(irqd); WARN_ON_ONCE(irqd->chip_data); apicd = alloc_apic_chip_data(node); if (!apicd) { err = -ENOMEM; goto error; } apicd->irq = virq + i; irqd->chip = &lapic_controller; irqd->chip_data = apicd; irqd->hwirq = virq + i; irqd_set_single_target(irqd); /* * Prevent that any of these interrupts is invoked in * non interrupt context via e.g. generic_handle_irq() * as that can corrupt the affinity move state. */ irqd_set_handle_enforce_irqctx(irqd); /* Don't invoke affinity setter on deactivated interrupts */ irqd_set_affinity_on_activate(irqd); /* * Legacy vectors are already assigned when the IOAPIC * takes them over. They stay on the same vector. This is * required for check_timer() to work correctly as it might * switch back to legacy mode. Only update the hardware * config. */ if (info->flags & X86_IRQ_ALLOC_LEGACY) { if (!vector_configure_legacy(virq + i, irqd, apicd)) continue; } err = assign_irq_vector_policy(irqd, info); trace_vector_setup(virq + i, false, err); if (err) { irqd->chip_data = NULL; free_apic_chip_data(apicd); goto error; } } return 0; error: x86_vector_free_irqs(domain, virq, i); return err; } #ifdef CONFIG_GENERIC_IRQ_DEBUGFS static void x86_vector_debug_show(struct seq_file *m, struct irq_domain *d, struct irq_data *irqd, int ind) { struct apic_chip_data apicd; unsigned long flags; int irq; if (!irqd) { irq_matrix_debug_show(m, vector_matrix, ind); return; } irq = irqd->irq; if (irq < nr_legacy_irqs() && !test_bit(irq, &io_apic_irqs)) { seq_printf(m, "%*sVector: %5d\n", ind, "", ISA_IRQ_VECTOR(irq)); seq_printf(m, "%*sTarget: Legacy PIC all CPUs\n", ind, ""); return; } if (!irqd->chip_data) { seq_printf(m, "%*sVector: Not assigned\n", ind, ""); return; } raw_spin_lock_irqsave(&vector_lock, flags); memcpy(&apicd, irqd->chip_data, sizeof(apicd)); raw_spin_unlock_irqrestore(&vector_lock, flags); seq_printf(m, "%*sVector: %5u\n", ind, "", apicd.vector); seq_printf(m, "%*sTarget: %5u\n", ind, "", apicd.cpu); if (apicd.prev_vector) { seq_printf(m, "%*sPrevious vector: %5u\n", ind, "", apicd.prev_vector); seq_printf(m, "%*sPrevious target: %5u\n", ind, "", apicd.prev_cpu); } seq_printf(m, "%*smove_in_progress: %u\n", ind, "", apicd.move_in_progress ? 1 : 0); seq_printf(m, "%*sis_managed: %u\n", ind, "", apicd.is_managed ? 1 : 0); seq_printf(m, "%*scan_reserve: %u\n", ind, "", apicd.can_reserve ? 1 : 0); seq_printf(m, "%*shas_reserved: %u\n", ind, "", apicd.has_reserved ? 1 : 0); seq_printf(m, "%*scleanup_pending: %u\n", ind, "", !hlist_unhashed(&apicd.clist)); } #endif int x86_fwspec_is_ioapic(struct irq_fwspec *fwspec) { if (fwspec->param_count != 1) return 0; if (is_fwnode_irqchip(fwspec->fwnode)) { const char *fwname = fwnode_get_name(fwspec->fwnode); return fwname && !strncmp(fwname, "IO-APIC-", 8) && simple_strtol(fwname+8, NULL, 10) == fwspec->param[0]; } return to_of_node(fwspec->fwnode) && of_device_is_compatible(to_of_node(fwspec->fwnode), "intel,ce4100-ioapic"); } int x86_fwspec_is_hpet(struct irq_fwspec *fwspec) { if (fwspec->param_count != 1) return 0; if (is_fwnode_irqchip(fwspec->fwnode)) { const char *fwname = fwnode_get_name(fwspec->fwnode); return fwname && !strncmp(fwname, "HPET-MSI-", 9) && simple_strtol(fwname+9, NULL, 10) == fwspec->param[0]; } return 0; } static int x86_vector_select(struct irq_domain *d, struct irq_fwspec *fwspec, enum irq_domain_bus_token bus_token) { /* * HPET and I/OAPIC cannot be parented in the vector domain * if IRQ remapping is enabled. APIC IDs above 15 bits are * only permitted if IRQ remapping is enabled, so check that. */ if (apic_id_valid(32768)) return 0; return x86_fwspec_is_ioapic(fwspec) || x86_fwspec_is_hpet(fwspec); } static const struct irq_domain_ops x86_vector_domain_ops = { .select = x86_vector_select, .alloc = x86_vector_alloc_irqs, .free = x86_vector_free_irqs, .activate = x86_vector_activate, .deactivate = x86_vector_deactivate, #ifdef CONFIG_GENERIC_IRQ_DEBUGFS .debug_show = x86_vector_debug_show, #endif }; int __init arch_probe_nr_irqs(void) { int nr; if (nr_irqs > (NR_VECTORS * nr_cpu_ids)) nr_irqs = NR_VECTORS * nr_cpu_ids; nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids; #if defined(CONFIG_PCI_MSI) /* * for MSI and HT dyn irq */ if (gsi_top <= NR_IRQS_LEGACY) nr += 8 * nr_cpu_ids; else nr += gsi_top * 16; #endif if (nr < nr_irqs) nr_irqs = nr; /* * We don't know if PIC is present at this point so we need to do * probe() to get the right number of legacy IRQs. */ return legacy_pic->probe(); } void lapic_assign_legacy_vector(unsigned int irq, bool replace) { /* * Use assign system here so it won't get accounted as allocated * and movable in the cpu hotplug check and it prevents managed * irq reservation from touching it. */ irq_matrix_assign_system(vector_matrix, ISA_IRQ_VECTOR(irq), replace); } void __init lapic_update_legacy_vectors(void) { unsigned int i; if (IS_ENABLED(CONFIG_X86_IO_APIC) && nr_ioapics > 0) return; /* * If the IO/APIC is disabled via config, kernel command line or * lack of enumeration then all legacy interrupts are routed * through the PIC. Make sure that they are marked as legacy * vectors. PIC_CASCADE_IRQ has already been marked in * lapic_assign_system_vectors(). */ for (i = 0; i < nr_legacy_irqs(); i++) { if (i != PIC_CASCADE_IR) lapic_assign_legacy_vector(i, true); } } void __init lapic_assign_system_vectors(void) { unsigned int i, vector; for_each_set_bit(vector, system_vectors, NR_VECTORS) irq_matrix_assign_system(vector_matrix, vector, false); if (nr_legacy_irqs() > 1) lapic_assign_legacy_vector(PIC_CASCADE_IR, false); /* System vectors are reserved, online it */ irq_matrix_online(vector_matrix); /* Mark the preallocated legacy interrupts */ for (i = 0; i < nr_legacy_irqs(); i++) { /* * Don't touch the cascade interrupt. It's unusable * on PIC equipped machines. See the large comment * in the IO/APIC code. */ if (i != PIC_CASCADE_IR) irq_matrix_assign(vector_matrix, ISA_IRQ_VECTOR(i)); } } int __init arch_early_irq_init(void) { struct fwnode_handle *fn; fn = irq_domain_alloc_named_fwnode("VECTOR"); BUG_ON(!fn); x86_vector_domain = irq_domain_create_tree(fn, &x86_vector_domain_ops, NULL); BUG_ON(x86_vector_domain == NULL); irq_set_default_host(x86_vector_domain); BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL)); /* * Allocate the vector matrix allocator data structure and limit the * search area. */ vector_matrix = irq_alloc_matrix(NR_VECTORS, FIRST_EXTERNAL_VECTOR, FIRST_SYSTEM_VECTOR); BUG_ON(!vector_matrix); return arch_early_ioapic_init(); } #ifdef CONFIG_SMP static struct irq_desc *__setup_vector_irq(int vector) { int isairq = vector - ISA_IRQ_VECTOR(0); /* Check whether the irq is in the legacy space */ if (isairq < 0 || isairq >= nr_legacy_irqs()) return VECTOR_UNUSED; /* Check whether the irq is handled by the IOAPIC */ if (test_bit(isairq, &io_apic_irqs)) return VECTOR_UNUSED; return irq_to_desc(isairq); } /* Online the local APIC infrastructure and initialize the vectors */ void lapic_online(void) { unsigned int vector; lockdep_assert_held(&vector_lock); /* Online the vector matrix array for this CPU */ irq_matrix_online(vector_matrix); /* * The interrupt affinity logic never targets interrupts to offline * CPUs. The exception are the legacy PIC interrupts. In general * they are only targeted to CPU0, but depending on the platform * they can be distributed to any online CPU in hardware. The * kernel has no influence on that. So all active legacy vectors * must be installed on all CPUs. All non legacy interrupts can be * cleared. */ for (vector = 0; vector < NR_VECTORS; vector++) this_cpu_write(vector_irq[vector], __setup_vector_irq(vector)); } static void __vector_cleanup(struct vector_cleanup *cl, bool check_irr); void lapic_offline(void) { struct vector_cleanup *cl = this_cpu_ptr(&vector_cleanup); lock_vector_lock(); /* In case the vector cleanup timer has not expired */ __vector_cleanup(cl, false); irq_matrix_offline(vector_matrix); WARN_ON_ONCE(try_to_del_timer_sync(&cl->timer) < 0); WARN_ON_ONCE(!hlist_empty(&cl->head)); unlock_vector_lock(); } static int apic_set_affinity(struct irq_data *irqd, const struct cpumask *dest, bool force) { int err; if (WARN_ON_ONCE(!irqd_is_activated(irqd))) return -EIO; raw_spin_lock(&vector_lock); cpumask_and(vector_searchmask, dest, cpu_online_mask); if (irqd_affinity_is_managed(irqd)) err = assign_managed_vector(irqd, vector_searchmask); else err = assign_vector_locked(irqd, vector_searchmask); raw_spin_unlock(&vector_lock); return err ? err : IRQ_SET_MASK_OK; } #else # define apic_set_affinity NULL #endif static int apic_retrigger_irq(struct irq_data *irqd) { struct apic_chip_data *apicd = apic_chip_data(irqd); unsigned long flags; raw_spin_lock_irqsave(&vector_lock, flags); __apic_send_IPI(apicd->cpu, apicd->vector); raw_spin_unlock_irqrestore(&vector_lock, flags); return 1; } void apic_ack_irq(struct irq_data *irqd) { irq_move_irq(irqd); apic_eoi(); } void apic_ack_edge(struct irq_data *irqd) { irq_complete_move(irqd_cfg(irqd)); apic_ack_irq(irqd); } static void x86_vector_msi_compose_msg(struct irq_data *data, struct msi_msg *msg) { __irq_msi_compose_msg(irqd_cfg(data), msg, false); } static struct irq_chip lapic_controller = { .name = "APIC", .irq_ack = apic_ack_edge, .irq_set_affinity = apic_set_affinity, .irq_compose_msi_msg = x86_vector_msi_compose_msg, .irq_retrigger = apic_retrigger_irq, }; #ifdef CONFIG_SMP static void free_moved_vector(struct apic_chip_data *apicd) { unsigned int vector = apicd->prev_vector; unsigned int cpu = apicd->prev_cpu; bool managed = apicd->is_managed; /* * Managed interrupts are usually not migrated away * from an online CPU, but CPU isolation 'managed_irq' * can make that happen. * 1) Activation does not take the isolation into account * to keep the code simple * 2) Migration away from an isolated CPU can happen when * a non-isolated CPU which is in the calculated * affinity mask comes online. */ trace_vector_free_moved(apicd->irq, cpu, vector, managed); irq_matrix_free(vector_matrix, cpu, vector, managed); per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED; hlist_del_init(&apicd->clist); apicd->prev_vector = 0; apicd->move_in_progress = 0; } static void __vector_cleanup(struct vector_cleanup *cl, bool check_irr) { struct apic_chip_data *apicd; struct hlist_node *tmp; bool rearm = false; lockdep_assert_held(&vector_lock); hlist_for_each_entry_safe(apicd, tmp, &cl->head, clist) { unsigned int vector = apicd->prev_vector; /* * Paranoia: Check if the vector that needs to be cleaned * up is registered at the APICs IRR. That's clearly a * hardware issue if the vector arrived on the old target * _after_ interrupts were disabled above. Keep @apicd * on the list and schedule the timer again to give the CPU * a chance to handle the pending interrupt. * * Do not check IRR when called from lapic_offline(), because * fixup_irqs() was just called to scan IRR for set bits and * forward them to new destination CPUs via IPIs. */ if (check_irr && is_vector_pending(vector)) { pr_warn_once("Moved interrupt pending in old target APIC %u\n", apicd->irq); rearm = true; continue; } free_moved_vector(apicd); } /* * Must happen under vector_lock to make the timer_pending() check * in __vector_schedule_cleanup() race free against the rearm here. */ if (rearm) mod_timer(&cl->timer, jiffies + 1); } static void vector_cleanup_callback(struct timer_list *tmr) { struct vector_cleanup *cl = container_of(tmr, typeof(*cl), timer); /* Prevent vectors vanishing under us */ raw_spin_lock_irq(&vector_lock); __vector_cleanup(cl, true); raw_spin_unlock_irq(&vector_lock); } static void __vector_schedule_cleanup(struct apic_chip_data *apicd) { unsigned int cpu = apicd->prev_cpu; raw_spin_lock(&vector_lock); apicd->move_in_progress = 0; if (cpu_online(cpu)) { struct vector_cleanup *cl = per_cpu_ptr(&vector_cleanup, cpu); hlist_add_head(&apicd->clist, &cl->head); /* * The lockless timer_pending() check is safe here. If it * returns true, then the callback will observe this new * apic data in the hlist as everything is serialized by * vector lock. * * If it returns false then the timer is either not armed * or the other CPU executes the callback, which again * would be blocked on vector lock. Rearming it in the * latter case makes it fire for nothing. * * This is also safe against the callback rearming the timer * because that's serialized via vector lock too. */ if (!timer_pending(&cl->timer)) { cl->timer.expires = jiffies + 1; add_timer_on(&cl->timer, cpu); } } else { pr_warn("IRQ %u schedule cleanup for offline CPU %u\n", apicd->irq, cpu); free_moved_vector(apicd); } raw_spin_unlock(&vector_lock); } void vector_schedule_cleanup(struct irq_cfg *cfg) { struct apic_chip_data *apicd; apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg); if (apicd->move_in_progress) __vector_schedule_cleanup(apicd); } void irq_complete_move(struct irq_cfg *cfg) { struct apic_chip_data *apicd; apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg); if (likely(!apicd->move_in_progress)) return; /* * If the interrupt arrived on the new target CPU, cleanup the * vector on the old target CPU. A vector check is not required * because an interrupt can never move from one vector to another * on the same CPU. */ if (apicd->cpu == smp_processor_id()) __vector_schedule_cleanup(apicd); } /* * Called from fixup_irqs() with @desc->lock held and interrupts disabled. */ void irq_force_complete_move(struct irq_desc *desc) { unsigned int cpu = smp_processor_id(); struct apic_chip_data *apicd; struct irq_data *irqd; unsigned int vector; /* * The function is called for all descriptors regardless of which * irqdomain they belong to. For example if an IRQ is provided by * an irq_chip as part of a GPIO driver, the chip data for that * descriptor is specific to the irq_chip in question. * * Check first that the chip_data is what we expect * (apic_chip_data) before touching it any further. */ irqd = irq_domain_get_irq_data(x86_vector_domain, irq_desc_get_irq(desc)); if (!irqd) return; raw_spin_lock(&vector_lock); apicd = apic_chip_data(irqd); if (!apicd) goto unlock; /* * If prev_vector is empty or the descriptor is neither currently * nor previously on the outgoing CPU no action required. */ vector = apicd->prev_vector; if (!vector || (apicd->cpu != cpu && apicd->prev_cpu != cpu)) goto unlock; /* * This is tricky. If the cleanup of the old vector has not been * done yet, then the following setaffinity call will fail with * -EBUSY. This can leave the interrupt in a stale state. * * All CPUs are stuck in stop machine with interrupts disabled so * calling __irq_complete_move() would be completely pointless. * * 1) The interrupt is in move_in_progress state. That means that we * have not seen an interrupt since the io_apic was reprogrammed to * the new vector. * * 2) The interrupt has fired on the new vector, but the cleanup IPIs * have not been processed yet. */ if (apicd->move_in_progress) { /* * In theory there is a race: * * set_ioapic(new_vector) <-- Interrupt is raised before update * is effective, i.e. it's raised on * the old vector. * * So if the target cpu cannot handle that interrupt before * the old vector is cleaned up, we get a spurious interrupt * and in the worst case the ioapic irq line becomes stale. * * But in case of cpu hotplug this should be a non issue * because if the affinity update happens right before all * cpus rendezvous in stop machine, there is no way that the * interrupt can be blocked on the target cpu because all cpus * loops first with interrupts enabled in stop machine, so the * old vector is not yet cleaned up when the interrupt fires. * * So the only way to run into this issue is if the delivery * of the interrupt on the apic/system bus would be delayed * beyond the point where the target cpu disables interrupts * in stop machine. I doubt that it can happen, but at least * there is a theoretical chance. Virtualization might be * able to expose this, but AFAICT the IOAPIC emulation is not * as stupid as the real hardware. * * Anyway, there is nothing we can do about that at this point * w/o refactoring the whole fixup_irq() business completely. * We print at least the irq number and the old vector number, * so we have the necessary information when a problem in that * area arises. */ pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n", irqd->irq, vector); } free_moved_vector(apicd); unlock: raw_spin_unlock(&vector_lock); } #ifdef CONFIG_HOTPLUG_CPU /* * Note, this is not accurate accounting, but at least good enough to * prevent that the actual interrupt move will run out of vectors. */ int lapic_can_unplug_cpu(void) { unsigned int rsvd, avl, tomove, cpu = smp_processor_id(); int ret = 0; raw_spin_lock(&vector_lock); tomove = irq_matrix_allocated(vector_matrix); avl = irq_matrix_available(vector_matrix, true); if (avl < tomove) { pr_warn("CPU %u has %u vectors, %u available. Cannot disable CPU\n", cpu, tomove, avl); ret = -ENOSPC; goto out; } rsvd = irq_matrix_reserved(vector_matrix); if (avl < rsvd) { pr_warn("Reserved vectors %u > available %u. IRQ request may fail\n", rsvd, avl); } out: raw_spin_unlock(&vector_lock); return ret; } #endif /* HOTPLUG_CPU */ #endif /* SMP */ static void __init print_APIC_field(int base) { int i; printk(KERN_DEBUG); for (i = 0; i < 8; i++) pr_cont("%08x", apic_read(base + i*0x10)); pr_cont("\n"); } static void __init print_local_APIC(void *dummy) { unsigned int i, v, ver, maxlvt; u64 icr; pr_debug("printing local APIC contents on CPU#%d/%d:\n", smp_processor_id(), read_apic_id()); v = apic_read(APIC_ID); pr_info("... APIC ID: %08x (%01x)\n", v, read_apic_id()); v = apic_read(APIC_LVR); pr_info("... APIC VERSION: %08x\n", v); ver = GET_APIC_VERSION(v); maxlvt = lapic_get_maxlvt(); v = apic_read(APIC_TASKPRI); pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK); /* !82489DX */ if (APIC_INTEGRATED(ver)) { if (!APIC_XAPIC(ver)) { v = apic_read(APIC_ARBPRI); pr_debug("... APIC ARBPRI: %08x (%02x)\n", v, v & APIC_ARBPRI_MASK); } v = apic_read(APIC_PROCPRI); pr_debug("... APIC PROCPRI: %08x\n", v); } /* * Remote read supported only in the 82489DX and local APIC for * Pentium processors. */ if (!APIC_INTEGRATED(ver) || maxlvt == 3) { v = apic_read(APIC_RRR); pr_debug("... APIC RRR: %08x\n", v); } v = apic_read(APIC_LDR); pr_debug("... APIC LDR: %08x\n", v); if (!x2apic_enabled()) { v = apic_read(APIC_DFR); pr_debug("... APIC DFR: %08x\n", v); } v = apic_read(APIC_SPIV); pr_debug("... APIC SPIV: %08x\n", v); pr_debug("... APIC ISR field:\n"); print_APIC_field(APIC_ISR); pr_debug("... APIC TMR field:\n"); print_APIC_field(APIC_TMR); pr_debug("... APIC IRR field:\n"); print_APIC_field(APIC_IRR); /* !82489DX */ if (APIC_INTEGRATED(ver)) { /* Due to the Pentium erratum 3AP. */ if (maxlvt > 3) apic_write(APIC_ESR, 0); v = apic_read(APIC_ESR); pr_debug("... APIC ESR: %08x\n", v); } icr = apic_icr_read(); pr_debug("... APIC ICR: %08x\n", (u32)icr); pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32)); v = apic_read(APIC_LVTT); pr_debug("... APIC LVTT: %08x\n", v); if (maxlvt > 3) { /* PC is LVT#4. */ v = apic_read(APIC_LVTPC); pr_debug("... APIC LVTPC: %08x\n", v); } v = apic_read(APIC_LVT0); pr_debug("... APIC LVT0: %08x\n", v); v = apic_read(APIC_LVT1); pr_debug("... APIC LVT1: %08x\n", v); if (maxlvt > 2) { /* ERR is LVT#3. */ v = apic_read(APIC_LVTERR); pr_debug("... APIC LVTERR: %08x\n", v); } v = apic_read(APIC_TMICT); pr_debug("... APIC TMICT: %08x\n", v); v = apic_read(APIC_TMCCT); pr_debug("... APIC TMCCT: %08x\n", v); v = apic_read(APIC_TDCR); pr_debug("... APIC TDCR: %08x\n", v); if (boot_cpu_has(X86_FEATURE_EXTAPIC)) { v = apic_read(APIC_EFEAT); maxlvt = (v >> 16) & 0xff; pr_debug("... APIC EFEAT: %08x\n", v); v = apic_read(APIC_ECTRL); pr_debug("... APIC ECTRL: %08x\n", v); for (i = 0; i < maxlvt; i++) { v = apic_read(APIC_EILVTn(i)); pr_debug("... APIC EILVT%d: %08x\n", i, v); } } pr_cont("\n"); } static void __init print_local_APICs(int maxcpu) { int cpu; if (!maxcpu) return; preempt_disable(); for_each_online_cpu(cpu) { if (cpu >= maxcpu) break; smp_call_function_single(cpu, print_local_APIC, NULL, 1); } preempt_enable(); } static void __init print_PIC(void) { unsigned int v; unsigned long flags; if (!nr_legacy_irqs()) return; pr_debug("\nprinting PIC contents\n"); raw_spin_lock_irqsave(&i8259A_lock, flags); v = inb(0xa1) << 8 | inb(0x21); pr_debug("... PIC IMR: %04x\n", v); v = inb(0xa0) << 8 | inb(0x20); pr_debug("... PIC IRR: %04x\n", v); outb(0x0b, 0xa0); outb(0x0b, 0x20); v = inb(0xa0) << 8 | inb(0x20); outb(0x0a, 0xa0); outb(0x0a, 0x20); raw_spin_unlock_irqrestore(&i8259A_lock, flags); pr_debug("... PIC ISR: %04x\n", v); v = inb(PIC_ELCR2) << 8 | inb(PIC_ELCR1); pr_debug("... PIC ELCR: %04x\n", v); } static int show_lapic __initdata = 1; static __init int setup_show_lapic(char *arg) { int num = -1; if (strcmp(arg, "all") == 0) { show_lapic = CONFIG_NR_CPUS; } else { get_option(&arg, &num); if (num >= 0) show_lapic = num; } return 1; } __setup("show_lapic=", setup_show_lapic); static int __init print_ICs(void) { if (apic_verbosity == APIC_QUIET) return 0; print_PIC(); /* don't print out if apic is not there */ if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config()) return 0; print_local_APICs(show_lapic); print_IO_APICs(); return 0; } late_initcall(print_ICs);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1