Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mike Travis | 5631 | 70.67% | 67 | 36.02% |
Jack Steiner | 980 | 12.30% | 28 | 15.05% |
Steve Wahl | 724 | 9.09% | 8 | 4.30% |
Ingo Molnar | 177 | 2.22% | 10 | 5.38% |
Russ Anderson | 136 | 1.71% | 9 | 4.84% |
Dimitri Sivanich | 51 | 0.64% | 3 | 1.61% |
Thomas Gleixner | 45 | 0.56% | 13 | 6.99% |
Suresh B. Siddha | 34 | 0.43% | 7 | 3.76% |
Yinghai Lu | 32 | 0.40% | 4 | 2.15% |
Robin Holt | 27 | 0.34% | 2 | 1.08% |
Christoph Hellwig | 24 | 0.30% | 3 | 1.61% |
Venkatesh Pallipadi | 19 | 0.24% | 2 | 1.08% |
Arnd Bergmann | 16 | 0.20% | 1 | 0.54% |
Cliff Wickman | 9 | 0.11% | 3 | 1.61% |
Dave Airlie | 7 | 0.09% | 2 | 1.08% |
Tejun Heo | 7 | 0.09% | 1 | 0.54% |
Andi Kleen | 5 | 0.06% | 2 | 1.08% |
James Cleverdon | 5 | 0.06% | 1 | 0.54% |
H. Peter Anvin | 4 | 0.05% | 2 | 1.08% |
Jeremy Fitzhardinge | 4 | 0.05% | 1 | 0.54% |
Linus Torvalds (pre-git) | 3 | 0.04% | 2 | 1.08% |
Michael S. Tsirkin | 3 | 0.04% | 1 | 0.54% |
Anshuman Khandual | 3 | 0.04% | 1 | 0.54% |
Linus Torvalds | 3 | 0.04% | 1 | 0.54% |
Alex Thorlton | 3 | 0.04% | 1 | 0.54% |
Marcin Ślusarz | 2 | 0.03% | 2 | 1.08% |
Justin Stitt | 2 | 0.03% | 1 | 0.54% |
Glauber de Oliveira Costa | 2 | 0.03% | 1 | 0.54% |
Borislav Petkov | 2 | 0.03% | 1 | 0.54% |
Dan Carpenter | 2 | 0.03% | 1 | 0.54% |
Dou Liyang | 2 | 0.03% | 1 | 0.54% |
Paul Gortmaker | 1 | 0.01% | 1 | 0.54% |
Kees Cook | 1 | 0.01% | 1 | 0.54% |
Leonardo Potenza | 1 | 0.01% | 1 | 0.54% |
Adam Buchbinder | 1 | 0.01% | 1 | 0.54% |
Total | 7968 | 186 |
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * SGI UV APIC functions (note: not an Intel compatible APIC) * * (C) Copyright 2020 Hewlett Packard Enterprise Development LP * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved. */ #include <linux/crash_dump.h> #include <linux/cpuhotplug.h> #include <linux/cpumask.h> #include <linux/proc_fs.h> #include <linux/memory.h> #include <linux/export.h> #include <linux/pci.h> #include <linux/acpi.h> #include <linux/efi.h> #include <asm/e820/api.h> #include <asm/uv/uv_mmrs.h> #include <asm/uv/uv_hub.h> #include <asm/uv/bios.h> #include <asm/uv/uv.h> #include <asm/apic.h> #include "local.h" static enum uv_system_type uv_system_type; static int uv_hubbed_system; static int uv_hubless_system; static u64 gru_start_paddr, gru_end_paddr; static union uvh_apicid uvh_apicid; static int uv_node_id; /* Unpack AT/OEM/TABLE ID's to be NULL terminated strings */ static u8 uv_archtype[UV_AT_SIZE + 1]; static u8 oem_id[ACPI_OEM_ID_SIZE + 1]; static u8 oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1]; /* Information derived from CPUID and some UV MMRs */ static struct { unsigned int apicid_shift; unsigned int apicid_mask; unsigned int socketid_shift; /* aka pnode_shift for UV2/3 */ unsigned int pnode_mask; unsigned int nasid_shift; unsigned int gpa_shift; unsigned int gnode_shift; unsigned int m_skt; unsigned int n_skt; } uv_cpuid; static int uv_min_hub_revision_id; static struct apic apic_x2apic_uv_x; static struct uv_hub_info_s uv_hub_info_node0; /* Set this to use hardware error handler instead of kernel panic: */ static int disable_uv_undefined_panic = 1; unsigned long uv_undefined(char *str) { if (likely(!disable_uv_undefined_panic)) panic("UV: error: undefined MMR: %s\n", str); else pr_crit("UV: error: undefined MMR: %s\n", str); /* Cause a machine fault: */ return ~0ul; } EXPORT_SYMBOL(uv_undefined); static unsigned long __init uv_early_read_mmr(unsigned long addr) { unsigned long val, *mmr; mmr = early_ioremap(UV_LOCAL_MMR_BASE | addr, sizeof(*mmr)); val = *mmr; early_iounmap(mmr, sizeof(*mmr)); return val; } static inline bool is_GRU_range(u64 start, u64 end) { if (!gru_start_paddr) return false; return start >= gru_start_paddr && end <= gru_end_paddr; } static bool uv_is_untracked_pat_range(u64 start, u64 end) { return is_ISA_range(start, end) || is_GRU_range(start, end); } static void __init early_get_pnodeid(void) { int pnode; uv_cpuid.m_skt = 0; if (UVH_RH10_GAM_ADDR_MAP_CONFIG) { union uvh_rh10_gam_addr_map_config_u m_n_config; m_n_config.v = uv_early_read_mmr(UVH_RH10_GAM_ADDR_MAP_CONFIG); uv_cpuid.n_skt = m_n_config.s.n_skt; uv_cpuid.nasid_shift = 0; } else if (UVH_RH_GAM_ADDR_MAP_CONFIG) { union uvh_rh_gam_addr_map_config_u m_n_config; m_n_config.v = uv_early_read_mmr(UVH_RH_GAM_ADDR_MAP_CONFIG); uv_cpuid.n_skt = m_n_config.s.n_skt; if (is_uv(UV3)) uv_cpuid.m_skt = m_n_config.s3.m_skt; if (is_uv(UV2)) uv_cpuid.m_skt = m_n_config.s2.m_skt; uv_cpuid.nasid_shift = 1; } else { unsigned long GAM_ADDR_MAP_CONFIG = 0; WARN(GAM_ADDR_MAP_CONFIG == 0, "UV: WARN: GAM_ADDR_MAP_CONFIG is not available\n"); uv_cpuid.n_skt = 0; uv_cpuid.nasid_shift = 0; } if (is_uv(UV4|UVY)) uv_cpuid.gnode_shift = 2; /* min partition is 4 sockets */ uv_cpuid.pnode_mask = (1 << uv_cpuid.n_skt) - 1; pnode = (uv_node_id >> uv_cpuid.nasid_shift) & uv_cpuid.pnode_mask; uv_cpuid.gpa_shift = 46; /* Default unless changed */ pr_info("UV: n_skt:%d pnmsk:%x pn:%x\n", uv_cpuid.n_skt, uv_cpuid.pnode_mask, pnode); } /* Running on a UV Hubbed system, determine which UV Hub Type it is */ static int __init early_set_hub_type(void) { union uvh_node_id_u node_id; /* * The NODE_ID MMR is always at offset 0. * Contains the chip part # + revision. * Node_id field started with 15 bits, * ... now 7 but upper 8 are masked to 0. * All blades/nodes have the same part # and hub revision. */ node_id.v = uv_early_read_mmr(UVH_NODE_ID); uv_node_id = node_id.sx.node_id; switch (node_id.s.part_number) { case UV5_HUB_PART_NUMBER: uv_min_hub_revision_id = node_id.s.revision + UV5_HUB_REVISION_BASE; uv_hub_type_set(UV5); break; /* UV4/4A only have a revision difference */ case UV4_HUB_PART_NUMBER: uv_min_hub_revision_id = node_id.s.revision + UV4_HUB_REVISION_BASE - 1; uv_hub_type_set(UV4); if (uv_min_hub_revision_id == UV4A_HUB_REVISION_BASE) uv_hub_type_set(UV4|UV4A); break; case UV3_HUB_PART_NUMBER: case UV3_HUB_PART_NUMBER_X: uv_min_hub_revision_id = node_id.s.revision + UV3_HUB_REVISION_BASE; uv_hub_type_set(UV3); break; case UV2_HUB_PART_NUMBER: case UV2_HUB_PART_NUMBER_X: uv_min_hub_revision_id = node_id.s.revision + UV2_HUB_REVISION_BASE - 1; uv_hub_type_set(UV2); break; default: return 0; } pr_info("UV: part#:%x rev:%d rev_id:%d UVtype:0x%x\n", node_id.s.part_number, node_id.s.revision, uv_min_hub_revision_id, is_uv(~0)); return 1; } static void __init uv_tsc_check_sync(void) { u64 mmr; int sync_state; int mmr_shift; char *state; /* UV5 guarantees synced TSCs; do not zero TSC_ADJUST */ if (!is_uv(UV2|UV3|UV4)) { mark_tsc_async_resets("UV5+"); return; } /* UV2,3,4, UV BIOS TSC sync state available */ mmr = uv_early_read_mmr(UVH_TSC_SYNC_MMR); mmr_shift = is_uv2_hub() ? UVH_TSC_SYNC_SHIFT_UV2K : UVH_TSC_SYNC_SHIFT; sync_state = (mmr >> mmr_shift) & UVH_TSC_SYNC_MASK; /* Check if TSC is valid for all sockets */ switch (sync_state) { case UVH_TSC_SYNC_VALID: state = "in sync"; mark_tsc_async_resets("UV BIOS"); break; /* If BIOS state unknown, don't do anything */ case UVH_TSC_SYNC_UNKNOWN: state = "unknown"; break; /* Otherwise, BIOS indicates problem with TSC */ default: state = "unstable"; mark_tsc_unstable("UV BIOS"); break; } pr_info("UV: TSC sync state from BIOS:0%d(%s)\n", sync_state, state); } /* Selector for (4|4A|5) structs */ #define uvxy_field(sname, field, undef) ( \ is_uv(UV4A) ? sname.s4a.field : \ is_uv(UV4) ? sname.s4.field : \ is_uv(UV3) ? sname.s3.field : \ undef) static void __init early_get_apic_socketid_shift(void) { unsigned int sid_shift = topology_get_domain_shift(TOPO_PKG_DOMAIN); if (is_uv2_hub() || is_uv3_hub()) uvh_apicid.v = uv_early_read_mmr(UVH_APICID); if (sid_shift) { uv_cpuid.apicid_shift = 0; uv_cpuid.apicid_mask = (~(-1 << sid_shift)); uv_cpuid.socketid_shift = sid_shift; } else { pr_info("UV: CPU does not have valid CPUID.11\n"); } pr_info("UV: apicid_shift:%d apicid_mask:0x%x\n", uv_cpuid.apicid_shift, uv_cpuid.apicid_mask); pr_info("UV: socketid_shift:%d pnode_mask:0x%x\n", uv_cpuid.socketid_shift, uv_cpuid.pnode_mask); } static void __init uv_stringify(int len, char *to, char *from) { strscpy(to, from, len); /* Trim trailing spaces */ (void)strim(to); } /* Find UV arch type entry in UVsystab */ static unsigned long __init early_find_archtype(struct uv_systab *st) { int i; for (i = 0; st->entry[i].type != UV_SYSTAB_TYPE_UNUSED; i++) { unsigned long ptr = st->entry[i].offset; if (!ptr) continue; ptr += (unsigned long)st; if (st->entry[i].type == UV_SYSTAB_TYPE_ARCH_TYPE) return ptr; } return 0; } /* Validate UV arch type field in UVsystab */ static int __init decode_arch_type(unsigned long ptr) { struct uv_arch_type_entry *uv_ate = (struct uv_arch_type_entry *)ptr; int n = strlen(uv_ate->archtype); if (n > 0 && n < sizeof(uv_ate->archtype)) { pr_info("UV: UVarchtype received from BIOS\n"); uv_stringify(sizeof(uv_archtype), uv_archtype, uv_ate->archtype); return 1; } return 0; } /* Determine if UV arch type entry might exist in UVsystab */ static int __init early_get_arch_type(void) { unsigned long uvst_physaddr, uvst_size, ptr; struct uv_systab *st; u32 rev; int ret; uvst_physaddr = get_uv_systab_phys(0); if (!uvst_physaddr) return 0; st = early_memremap_ro(uvst_physaddr, sizeof(struct uv_systab)); if (!st) { pr_err("UV: Cannot access UVsystab, remap failed\n"); return 0; } rev = st->revision; if (rev < UV_SYSTAB_VERSION_UV5) { early_memunmap(st, sizeof(struct uv_systab)); return 0; } uvst_size = st->size; early_memunmap(st, sizeof(struct uv_systab)); st = early_memremap_ro(uvst_physaddr, uvst_size); if (!st) { pr_err("UV: Cannot access UVarchtype, remap failed\n"); return 0; } ptr = early_find_archtype(st); if (!ptr) { early_memunmap(st, uvst_size); return 0; } ret = decode_arch_type(ptr); early_memunmap(st, uvst_size); return ret; } /* UV system found, check which APIC MODE BIOS already selected */ static void __init early_set_apic_mode(void) { if (x2apic_enabled()) uv_system_type = UV_X2APIC; else uv_system_type = UV_LEGACY_APIC; } static int __init uv_set_system_type(char *_oem_id, char *_oem_table_id) { /* Save OEM_ID passed from ACPI MADT */ uv_stringify(sizeof(oem_id), oem_id, _oem_id); /* Check if BIOS sent us a UVarchtype */ if (!early_get_arch_type()) /* If not use OEM ID for UVarchtype */ uv_stringify(sizeof(uv_archtype), uv_archtype, oem_id); /* Check if not hubbed */ if (strncmp(uv_archtype, "SGI", 3) != 0) { /* (Not hubbed), check if not hubless */ if (strncmp(uv_archtype, "NSGI", 4) != 0) /* (Not hubless), not a UV */ return 0; /* Is UV hubless system */ uv_hubless_system = 0x01; /* UV5 Hubless */ if (strncmp(uv_archtype, "NSGI5", 5) == 0) uv_hubless_system |= 0x20; /* UV4 Hubless: CH */ else if (strncmp(uv_archtype, "NSGI4", 5) == 0) uv_hubless_system |= 0x10; /* UV3 Hubless: UV300/MC990X w/o hub */ else uv_hubless_system |= 0x8; /* Copy OEM Table ID */ uv_stringify(sizeof(oem_table_id), oem_table_id, _oem_table_id); pr_info("UV: OEM IDs %s/%s, SystemType %d, HUBLESS ID %x\n", oem_id, oem_table_id, uv_system_type, uv_hubless_system); return 0; } if (numa_off) { pr_err("UV: NUMA is off, disabling UV support\n"); return 0; } /* Set hubbed type if true */ uv_hub_info->hub_revision = !strncmp(uv_archtype, "SGI5", 4) ? UV5_HUB_REVISION_BASE : !strncmp(uv_archtype, "SGI4", 4) ? UV4_HUB_REVISION_BASE : !strncmp(uv_archtype, "SGI3", 4) ? UV3_HUB_REVISION_BASE : !strcmp(uv_archtype, "SGI2") ? UV2_HUB_REVISION_BASE : 0; switch (uv_hub_info->hub_revision) { case UV5_HUB_REVISION_BASE: uv_hubbed_system = 0x21; uv_hub_type_set(UV5); break; case UV4_HUB_REVISION_BASE: uv_hubbed_system = 0x11; uv_hub_type_set(UV4); break; case UV3_HUB_REVISION_BASE: uv_hubbed_system = 0x9; uv_hub_type_set(UV3); break; case UV2_HUB_REVISION_BASE: uv_hubbed_system = 0x5; uv_hub_type_set(UV2); break; default: return 0; } /* Get UV hub chip part number & revision */ early_set_hub_type(); /* Other UV setup functions */ early_set_apic_mode(); early_get_pnodeid(); early_get_apic_socketid_shift(); x86_platform.is_untracked_pat_range = uv_is_untracked_pat_range; x86_platform.nmi_init = uv_nmi_init; uv_tsc_check_sync(); return 1; } /* Called early to probe for the correct APIC driver */ static int __init uv_acpi_madt_oem_check(char *_oem_id, char *_oem_table_id) { /* Set up early hub info fields for Node 0 */ uv_cpu_info->p_uv_hub_info = &uv_hub_info_node0; /* If not UV, return. */ if (uv_set_system_type(_oem_id, _oem_table_id) == 0) return 0; /* Save for display of the OEM Table ID */ uv_stringify(sizeof(oem_table_id), oem_table_id, _oem_table_id); pr_info("UV: OEM IDs %s/%s, System/UVType %d/0x%x, HUB RevID %d\n", oem_id, oem_table_id, uv_system_type, is_uv(UV_ANY), uv_min_hub_revision_id); return 0; } enum uv_system_type get_uv_system_type(void) { return uv_system_type; } int uv_get_hubless_system(void) { return uv_hubless_system; } EXPORT_SYMBOL_GPL(uv_get_hubless_system); ssize_t uv_get_archtype(char *buf, int len) { return scnprintf(buf, len, "%s/%s", uv_archtype, oem_table_id); } EXPORT_SYMBOL_GPL(uv_get_archtype); int is_uv_system(void) { return uv_system_type != UV_NONE; } EXPORT_SYMBOL_GPL(is_uv_system); int is_uv_hubbed(int uvtype) { return (uv_hubbed_system & uvtype); } EXPORT_SYMBOL_GPL(is_uv_hubbed); static int is_uv_hubless(int uvtype) { return (uv_hubless_system & uvtype); } void **__uv_hub_info_list; EXPORT_SYMBOL_GPL(__uv_hub_info_list); DEFINE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info); EXPORT_PER_CPU_SYMBOL_GPL(__uv_cpu_info); short uv_possible_blades; EXPORT_SYMBOL_GPL(uv_possible_blades); unsigned long sn_rtc_cycles_per_second; EXPORT_SYMBOL(sn_rtc_cycles_per_second); /* The following values are used for the per node hub info struct */ static __initdata unsigned short _min_socket, _max_socket; static __initdata unsigned short _min_pnode, _max_pnode, _gr_table_len; static __initdata struct uv_gam_range_entry *uv_gre_table; static __initdata struct uv_gam_parameters *uv_gp_table; static __initdata unsigned short *_socket_to_node; static __initdata unsigned short *_socket_to_pnode; static __initdata unsigned short *_pnode_to_socket; static __initdata unsigned short *_node_to_socket; static __initdata struct uv_gam_range_s *_gr_table; #define SOCK_EMPTY ((unsigned short)~0) /* Default UV memory block size is 2GB */ static unsigned long mem_block_size __initdata = (2UL << 30); /* Kernel parameter to specify UV mem block size */ static int __init parse_mem_block_size(char *ptr) { unsigned long size = memparse(ptr, NULL); /* Size will be rounded down by set_block_size() below */ mem_block_size = size; return 0; } early_param("uv_memblksize", parse_mem_block_size); static __init int adj_blksize(u32 lgre) { unsigned long base = (unsigned long)lgre << UV_GAM_RANGE_SHFT; unsigned long size; for (size = mem_block_size; size > MIN_MEMORY_BLOCK_SIZE; size >>= 1) if (IS_ALIGNED(base, size)) break; if (size >= mem_block_size) return 0; mem_block_size = size; return 1; } static __init void set_block_size(void) { unsigned int order = ffs(mem_block_size); if (order) { /* adjust for ffs return of 1..64 */ set_memory_block_size_order(order - 1); pr_info("UV: mem_block_size set to 0x%lx\n", mem_block_size); } else { /* bad or zero value, default to 1UL << 31 (2GB) */ pr_err("UV: mem_block_size error with 0x%lx\n", mem_block_size); set_memory_block_size_order(31); } } /* Build GAM range lookup table: */ static __init void build_uv_gr_table(void) { struct uv_gam_range_entry *gre = uv_gre_table; struct uv_gam_range_s *grt; unsigned long last_limit = 0, ram_limit = 0; int bytes, i, sid, lsid = -1, indx = 0, lindx = -1; if (!gre) return; bytes = _gr_table_len * sizeof(struct uv_gam_range_s); grt = kzalloc(bytes, GFP_KERNEL); if (WARN_ON_ONCE(!grt)) return; _gr_table = grt; for (; gre->type != UV_GAM_RANGE_TYPE_UNUSED; gre++) { if (gre->type == UV_GAM_RANGE_TYPE_HOLE) { if (!ram_limit) { /* Mark hole between RAM/non-RAM: */ ram_limit = last_limit; last_limit = gre->limit; lsid++; continue; } last_limit = gre->limit; pr_info("UV: extra hole in GAM RE table @%d\n", (int)(gre - uv_gre_table)); continue; } if (_max_socket < gre->sockid) { pr_err("UV: GAM table sockid(%d) too large(>%d) @%d\n", gre->sockid, _max_socket, (int)(gre - uv_gre_table)); continue; } sid = gre->sockid - _min_socket; if (lsid < sid) { /* New range: */ grt = &_gr_table[indx]; grt->base = lindx; grt->nasid = gre->nasid; grt->limit = last_limit = gre->limit; lsid = sid; lindx = indx++; continue; } /* Update range: */ if (lsid == sid && !ram_limit) { /* .. if contiguous: */ if (grt->limit == last_limit) { grt->limit = last_limit = gre->limit; continue; } } /* Non-contiguous RAM range: */ if (!ram_limit) { grt++; grt->base = lindx; grt->nasid = gre->nasid; grt->limit = last_limit = gre->limit; continue; } /* Non-contiguous/non-RAM: */ grt++; /* base is this entry */ grt->base = grt - _gr_table; grt->nasid = gre->nasid; grt->limit = last_limit = gre->limit; lsid++; } /* Shorten table if possible */ grt++; i = grt - _gr_table; if (i < _gr_table_len) { void *ret; bytes = i * sizeof(struct uv_gam_range_s); ret = krealloc(_gr_table, bytes, GFP_KERNEL); if (ret) { _gr_table = ret; _gr_table_len = i; } } /* Display resultant GAM range table: */ for (i = 0, grt = _gr_table; i < _gr_table_len; i++, grt++) { unsigned long start, end; int gb = grt->base; start = gb < 0 ? 0 : (unsigned long)_gr_table[gb].limit << UV_GAM_RANGE_SHFT; end = (unsigned long)grt->limit << UV_GAM_RANGE_SHFT; pr_info("UV: GAM Range %2d %04x 0x%013lx-0x%013lx (%d)\n", i, grt->nasid, start, end, gb); } } static int uv_wakeup_secondary(u32 phys_apicid, unsigned long start_rip) { unsigned long val; int pnode; pnode = uv_apicid_to_pnode(phys_apicid); val = (1UL << UVH_IPI_INT_SEND_SHFT) | (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) | ((start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) | APIC_DM_INIT; uv_write_global_mmr64(pnode, UVH_IPI_INT, val); val = (1UL << UVH_IPI_INT_SEND_SHFT) | (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) | ((start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) | APIC_DM_STARTUP; uv_write_global_mmr64(pnode, UVH_IPI_INT, val); return 0; } static void uv_send_IPI_one(int cpu, int vector) { unsigned long apicid = per_cpu(x86_cpu_to_apicid, cpu); int pnode = uv_apicid_to_pnode(apicid); unsigned long dmode, val; if (vector == NMI_VECTOR) dmode = APIC_DELIVERY_MODE_NMI; else dmode = APIC_DELIVERY_MODE_FIXED; val = (1UL << UVH_IPI_INT_SEND_SHFT) | (apicid << UVH_IPI_INT_APIC_ID_SHFT) | (dmode << UVH_IPI_INT_DELIVERY_MODE_SHFT) | (vector << UVH_IPI_INT_VECTOR_SHFT); uv_write_global_mmr64(pnode, UVH_IPI_INT, val); } static void uv_send_IPI_mask(const struct cpumask *mask, int vector) { unsigned int cpu; for_each_cpu(cpu, mask) uv_send_IPI_one(cpu, vector); } static void uv_send_IPI_mask_allbutself(const struct cpumask *mask, int vector) { unsigned int this_cpu = smp_processor_id(); unsigned int cpu; for_each_cpu(cpu, mask) { if (cpu != this_cpu) uv_send_IPI_one(cpu, vector); } } static void uv_send_IPI_allbutself(int vector) { unsigned int this_cpu = smp_processor_id(); unsigned int cpu; for_each_online_cpu(cpu) { if (cpu != this_cpu) uv_send_IPI_one(cpu, vector); } } static void uv_send_IPI_all(int vector) { uv_send_IPI_mask(cpu_online_mask, vector); } static int uv_probe(void) { return apic == &apic_x2apic_uv_x; } static struct apic apic_x2apic_uv_x __ro_after_init = { .name = "UV large system", .probe = uv_probe, .acpi_madt_oem_check = uv_acpi_madt_oem_check, .dest_mode_logical = false, .disable_esr = 0, .cpu_present_to_apicid = default_cpu_present_to_apicid, .max_apic_id = UINT_MAX, .get_apic_id = x2apic_get_apic_id, .calc_dest_apicid = apic_default_calc_apicid, .send_IPI = uv_send_IPI_one, .send_IPI_mask = uv_send_IPI_mask, .send_IPI_mask_allbutself = uv_send_IPI_mask_allbutself, .send_IPI_allbutself = uv_send_IPI_allbutself, .send_IPI_all = uv_send_IPI_all, .send_IPI_self = x2apic_send_IPI_self, .wakeup_secondary_cpu = uv_wakeup_secondary, .read = native_apic_msr_read, .write = native_apic_msr_write, .eoi = native_apic_msr_eoi, .icr_read = native_x2apic_icr_read, .icr_write = native_x2apic_icr_write, }; #define UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_LENGTH 3 #define DEST_SHIFT UVXH_RH_GAM_ALIAS_0_REDIRECT_CONFIG_DEST_BASE_SHFT static __init void get_lowmem_redirect(unsigned long *base, unsigned long *size) { union uvh_rh_gam_alias_2_overlay_config_u alias; union uvh_rh_gam_alias_2_redirect_config_u redirect; unsigned long m_redirect; unsigned long m_overlay; int i; for (i = 0; i < UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_LENGTH; i++) { switch (i) { case 0: m_redirect = UVH_RH_GAM_ALIAS_0_REDIRECT_CONFIG; m_overlay = UVH_RH_GAM_ALIAS_0_OVERLAY_CONFIG; break; case 1: m_redirect = UVH_RH_GAM_ALIAS_1_REDIRECT_CONFIG; m_overlay = UVH_RH_GAM_ALIAS_1_OVERLAY_CONFIG; break; case 2: m_redirect = UVH_RH_GAM_ALIAS_2_REDIRECT_CONFIG; m_overlay = UVH_RH_GAM_ALIAS_2_OVERLAY_CONFIG; break; } alias.v = uv_read_local_mmr(m_overlay); if (alias.s.enable && alias.s.base == 0) { *size = (1UL << alias.s.m_alias); redirect.v = uv_read_local_mmr(m_redirect); *base = (unsigned long)redirect.s.dest_base << DEST_SHIFT; return; } } *base = *size = 0; } enum map_type {map_wb, map_uc}; static const char * const mt[] = { "WB", "UC" }; static __init void map_high(char *id, unsigned long base, int pshift, int bshift, int max_pnode, enum map_type map_type) { unsigned long bytes, paddr; paddr = base << pshift; bytes = (1UL << bshift) * (max_pnode + 1); if (!paddr) { pr_info("UV: Map %s_HI base address NULL\n", id); return; } if (map_type == map_uc) init_extra_mapping_uc(paddr, bytes); else init_extra_mapping_wb(paddr, bytes); pr_info("UV: Map %s_HI 0x%lx - 0x%lx %s (%d segments)\n", id, paddr, paddr + bytes, mt[map_type], max_pnode + 1); } static __init void map_gru_high(int max_pnode) { union uvh_rh_gam_gru_overlay_config_u gru; unsigned long mask, base; int shift; if (UVH_RH_GAM_GRU_OVERLAY_CONFIG) { gru.v = uv_read_local_mmr(UVH_RH_GAM_GRU_OVERLAY_CONFIG); shift = UVH_RH_GAM_GRU_OVERLAY_CONFIG_BASE_SHFT; mask = UVH_RH_GAM_GRU_OVERLAY_CONFIG_BASE_MASK; } else if (UVH_RH10_GAM_GRU_OVERLAY_CONFIG) { gru.v = uv_read_local_mmr(UVH_RH10_GAM_GRU_OVERLAY_CONFIG); shift = UVH_RH10_GAM_GRU_OVERLAY_CONFIG_BASE_SHFT; mask = UVH_RH10_GAM_GRU_OVERLAY_CONFIG_BASE_MASK; } else { pr_err("UV: GRU unavailable (no MMR)\n"); return; } if (!gru.s.enable) { pr_info("UV: GRU disabled (by BIOS)\n"); return; } base = (gru.v & mask) >> shift; map_high("GRU", base, shift, shift, max_pnode, map_wb); gru_start_paddr = ((u64)base << shift); gru_end_paddr = gru_start_paddr + (1UL << shift) * (max_pnode + 1); } static __init void map_mmr_high(int max_pnode) { unsigned long base; int shift; bool enable; if (UVH_RH10_GAM_MMR_OVERLAY_CONFIG) { union uvh_rh10_gam_mmr_overlay_config_u mmr; mmr.v = uv_read_local_mmr(UVH_RH10_GAM_MMR_OVERLAY_CONFIG); enable = mmr.s.enable; base = mmr.s.base; shift = UVH_RH10_GAM_MMR_OVERLAY_CONFIG_BASE_SHFT; } else if (UVH_RH_GAM_MMR_OVERLAY_CONFIG) { union uvh_rh_gam_mmr_overlay_config_u mmr; mmr.v = uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG); enable = mmr.s.enable; base = mmr.s.base; shift = UVH_RH_GAM_MMR_OVERLAY_CONFIG_BASE_SHFT; } else { pr_err("UV:%s:RH_GAM_MMR_OVERLAY_CONFIG MMR undefined?\n", __func__); return; } if (enable) map_high("MMR", base, shift, shift, max_pnode, map_uc); else pr_info("UV: MMR disabled\n"); } /* Arch specific ENUM cases */ enum mmioh_arch { UV2_MMIOH = -1, UVY_MMIOH0, UVY_MMIOH1, UVX_MMIOH0, UVX_MMIOH1, }; /* Calculate and Map MMIOH Regions */ static void __init calc_mmioh_map(enum mmioh_arch index, int min_pnode, int max_pnode, int shift, unsigned long base, int m_io, int n_io) { unsigned long mmr, nasid_mask; int nasid, min_nasid, max_nasid, lnasid, mapped; int i, fi, li, n, max_io; char id[8]; /* One (UV2) mapping */ if (index == UV2_MMIOH) { strscpy(id, "MMIOH", sizeof(id)); max_io = max_pnode; mapped = 0; goto map_exit; } /* small and large MMIOH mappings */ switch (index) { case UVY_MMIOH0: mmr = UVH_RH10_GAM_MMIOH_REDIRECT_CONFIG0; nasid_mask = UVYH_RH10_GAM_MMIOH_REDIRECT_CONFIG0_NASID_MASK; n = UVH_RH10_GAM_MMIOH_REDIRECT_CONFIG0_DEPTH; min_nasid = min_pnode; max_nasid = max_pnode; mapped = 1; break; case UVY_MMIOH1: mmr = UVH_RH10_GAM_MMIOH_REDIRECT_CONFIG1; nasid_mask = UVYH_RH10_GAM_MMIOH_REDIRECT_CONFIG1_NASID_MASK; n = UVH_RH10_GAM_MMIOH_REDIRECT_CONFIG1_DEPTH; min_nasid = min_pnode; max_nasid = max_pnode; mapped = 1; break; case UVX_MMIOH0: mmr = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG0; nasid_mask = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG0_NASID_MASK; n = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG0_DEPTH; min_nasid = min_pnode * 2; max_nasid = max_pnode * 2; mapped = 1; break; case UVX_MMIOH1: mmr = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG1; nasid_mask = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG1_NASID_MASK; n = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG1_DEPTH; min_nasid = min_pnode * 2; max_nasid = max_pnode * 2; mapped = 1; break; default: pr_err("UV:%s:Invalid mapping type:%d\n", __func__, index); return; } /* enum values chosen so (index mod 2) is MMIOH 0/1 (low/high) */ snprintf(id, sizeof(id), "MMIOH%d", index%2); max_io = lnasid = fi = li = -1; for (i = 0; i < n; i++) { unsigned long m_redirect = mmr + i * 8; unsigned long redirect = uv_read_local_mmr(m_redirect); nasid = redirect & nasid_mask; if (i == 0) pr_info("UV: %s redirect base 0x%lx(@0x%lx) 0x%04x\n", id, redirect, m_redirect, nasid); /* Invalid NASID check */ if (nasid < min_nasid || max_nasid < nasid) { /* Not an error: unused table entries get "poison" values */ pr_debug("UV:%s:Invalid NASID(%x):%x (range:%x..%x)\n", __func__, index, nasid, min_nasid, max_nasid); nasid = -1; } if (nasid == lnasid) { li = i; /* Last entry check: */ if (i != n-1) continue; } /* Check if we have a cached (or last) redirect to print: */ if (lnasid != -1 || (i == n-1 && nasid != -1)) { unsigned long addr1, addr2; int f, l; if (lnasid == -1) { f = l = i; lnasid = nasid; } else { f = fi; l = li; } addr1 = (base << shift) + f * (1ULL << m_io); addr2 = (base << shift) + (l + 1) * (1ULL << m_io); pr_info("UV: %s[%03d..%03d] NASID 0x%04x ADDR 0x%016lx - 0x%016lx\n", id, fi, li, lnasid, addr1, addr2); if (max_io < l) max_io = l; } fi = li = i; lnasid = nasid; } map_exit: pr_info("UV: %s base:0x%lx shift:%d m_io:%d max_io:%d max_pnode:0x%x\n", id, base, shift, m_io, max_io, max_pnode); if (max_io >= 0 && !mapped) map_high(id, base, shift, m_io, max_io, map_uc); } static __init void map_mmioh_high(int min_pnode, int max_pnode) { /* UVY flavor */ if (UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG0) { union uvh_rh10_gam_mmioh_overlay_config0_u mmioh0; union uvh_rh10_gam_mmioh_overlay_config1_u mmioh1; mmioh0.v = uv_read_local_mmr(UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG0); if (unlikely(mmioh0.s.enable == 0)) pr_info("UV: MMIOH0 disabled\n"); else calc_mmioh_map(UVY_MMIOH0, min_pnode, max_pnode, UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG0_BASE_SHFT, mmioh0.s.base, mmioh0.s.m_io, mmioh0.s.n_io); mmioh1.v = uv_read_local_mmr(UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG1); if (unlikely(mmioh1.s.enable == 0)) pr_info("UV: MMIOH1 disabled\n"); else calc_mmioh_map(UVY_MMIOH1, min_pnode, max_pnode, UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG1_BASE_SHFT, mmioh1.s.base, mmioh1.s.m_io, mmioh1.s.n_io); return; } /* UVX flavor */ if (UVH_RH_GAM_MMIOH_OVERLAY_CONFIG0) { union uvh_rh_gam_mmioh_overlay_config0_u mmioh0; union uvh_rh_gam_mmioh_overlay_config1_u mmioh1; mmioh0.v = uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG0); if (unlikely(mmioh0.s.enable == 0)) pr_info("UV: MMIOH0 disabled\n"); else { unsigned long base = uvxy_field(mmioh0, base, 0); int m_io = uvxy_field(mmioh0, m_io, 0); int n_io = uvxy_field(mmioh0, n_io, 0); calc_mmioh_map(UVX_MMIOH0, min_pnode, max_pnode, UVH_RH_GAM_MMIOH_OVERLAY_CONFIG0_BASE_SHFT, base, m_io, n_io); } mmioh1.v = uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG1); if (unlikely(mmioh1.s.enable == 0)) pr_info("UV: MMIOH1 disabled\n"); else { unsigned long base = uvxy_field(mmioh1, base, 0); int m_io = uvxy_field(mmioh1, m_io, 0); int n_io = uvxy_field(mmioh1, n_io, 0); calc_mmioh_map(UVX_MMIOH1, min_pnode, max_pnode, UVH_RH_GAM_MMIOH_OVERLAY_CONFIG1_BASE_SHFT, base, m_io, n_io); } return; } /* UV2 flavor */ if (UVH_RH_GAM_MMIOH_OVERLAY_CONFIG) { union uvh_rh_gam_mmioh_overlay_config_u mmioh; mmioh.v = uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG); if (unlikely(mmioh.s2.enable == 0)) pr_info("UV: MMIOH disabled\n"); else calc_mmioh_map(UV2_MMIOH, min_pnode, max_pnode, UV2H_RH_GAM_MMIOH_OVERLAY_CONFIG_BASE_SHFT, mmioh.s2.base, mmioh.s2.m_io, mmioh.s2.n_io); return; } } static __init void map_low_mmrs(void) { if (UV_GLOBAL_MMR32_BASE) init_extra_mapping_uc(UV_GLOBAL_MMR32_BASE, UV_GLOBAL_MMR32_SIZE); if (UV_LOCAL_MMR_BASE) init_extra_mapping_uc(UV_LOCAL_MMR_BASE, UV_LOCAL_MMR_SIZE); } static __init void uv_rtc_init(void) { long status; u64 ticks_per_sec; status = uv_bios_freq_base(BIOS_FREQ_BASE_REALTIME_CLOCK, &ticks_per_sec); if (status != BIOS_STATUS_SUCCESS || ticks_per_sec < 100000) { pr_warn("UV: unable to determine platform RTC clock frequency, guessing.\n"); /* BIOS gives wrong value for clock frequency, so guess: */ sn_rtc_cycles_per_second = 1000000000000UL / 30000UL; } else { sn_rtc_cycles_per_second = ticks_per_sec; } } /* Direct Legacy VGA I/O traffic to designated IOH */ static int uv_set_vga_state(struct pci_dev *pdev, bool decode, unsigned int command_bits, u32 flags) { int domain, bus, rc; if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) return 0; if ((command_bits & PCI_COMMAND_IO) == 0) return 0; domain = pci_domain_nr(pdev->bus); bus = pdev->bus->number; rc = uv_bios_set_legacy_vga_target(decode, domain, bus); return rc; } /* * Called on each CPU to initialize the per_cpu UV data area. * FIXME: hotplug not supported yet */ void uv_cpu_init(void) { /* CPU 0 initialization will be done via uv_system_init. */ if (smp_processor_id() == 0) return; uv_hub_info->nr_online_cpus++; } struct mn { unsigned char m_val; unsigned char n_val; unsigned char m_shift; unsigned char n_lshift; }; /* Initialize caller's MN struct and fill in values */ static void get_mn(struct mn *mnp) { memset(mnp, 0, sizeof(*mnp)); mnp->n_val = uv_cpuid.n_skt; if (is_uv(UV4|UVY)) { mnp->m_val = 0; mnp->n_lshift = 0; } else if (is_uv3_hub()) { union uvyh_gr0_gam_gr_config_u m_gr_config; mnp->m_val = uv_cpuid.m_skt; m_gr_config.v = uv_read_local_mmr(UVH_GR0_GAM_GR_CONFIG); mnp->n_lshift = m_gr_config.s3.m_skt; } else if (is_uv2_hub()) { mnp->m_val = uv_cpuid.m_skt; mnp->n_lshift = mnp->m_val == 40 ? 40 : 39; } mnp->m_shift = mnp->m_val ? 64 - mnp->m_val : 0; } static void __init uv_init_hub_info(struct uv_hub_info_s *hi) { struct mn mn; get_mn(&mn); hi->gpa_mask = mn.m_val ? (1UL << (mn.m_val + mn.n_val)) - 1 : (1UL << uv_cpuid.gpa_shift) - 1; hi->m_val = mn.m_val; hi->n_val = mn.n_val; hi->m_shift = mn.m_shift; hi->n_lshift = mn.n_lshift ? mn.n_lshift : 0; hi->hub_revision = uv_hub_info->hub_revision; hi->hub_type = uv_hub_info->hub_type; hi->pnode_mask = uv_cpuid.pnode_mask; hi->nasid_shift = uv_cpuid.nasid_shift; hi->min_pnode = _min_pnode; hi->min_socket = _min_socket; hi->node_to_socket = _node_to_socket; hi->pnode_to_socket = _pnode_to_socket; hi->socket_to_node = _socket_to_node; hi->socket_to_pnode = _socket_to_pnode; hi->gr_table_len = _gr_table_len; hi->gr_table = _gr_table; uv_cpuid.gnode_shift = max_t(unsigned int, uv_cpuid.gnode_shift, mn.n_val); hi->gnode_extra = (uv_node_id & ~((1 << uv_cpuid.gnode_shift) - 1)) >> 1; if (mn.m_val) hi->gnode_upper = (u64)hi->gnode_extra << mn.m_val; if (uv_gp_table) { hi->global_mmr_base = uv_gp_table->mmr_base; hi->global_mmr_shift = uv_gp_table->mmr_shift; hi->global_gru_base = uv_gp_table->gru_base; hi->global_gru_shift = uv_gp_table->gru_shift; hi->gpa_shift = uv_gp_table->gpa_shift; hi->gpa_mask = (1UL << hi->gpa_shift) - 1; } else { hi->global_mmr_base = uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG) & ~UV_MMR_ENABLE; hi->global_mmr_shift = _UV_GLOBAL_MMR64_PNODE_SHIFT; } get_lowmem_redirect(&hi->lowmem_remap_base, &hi->lowmem_remap_top); hi->apic_pnode_shift = uv_cpuid.socketid_shift; /* Show system specific info: */ pr_info("UV: N:%d M:%d m_shift:%d n_lshift:%d\n", hi->n_val, hi->m_val, hi->m_shift, hi->n_lshift); pr_info("UV: gpa_mask/shift:0x%lx/%d pnode_mask:0x%x apic_pns:%d\n", hi->gpa_mask, hi->gpa_shift, hi->pnode_mask, hi->apic_pnode_shift); pr_info("UV: mmr_base/shift:0x%lx/%ld\n", hi->global_mmr_base, hi->global_mmr_shift); if (hi->global_gru_base) pr_info("UV: gru_base/shift:0x%lx/%ld\n", hi->global_gru_base, hi->global_gru_shift); pr_info("UV: gnode_upper:0x%lx gnode_extra:0x%x\n", hi->gnode_upper, hi->gnode_extra); } static void __init decode_gam_params(unsigned long ptr) { uv_gp_table = (struct uv_gam_parameters *)ptr; pr_info("UV: GAM Params...\n"); pr_info("UV: mmr_base/shift:0x%llx/%d gru_base/shift:0x%llx/%d gpa_shift:%d\n", uv_gp_table->mmr_base, uv_gp_table->mmr_shift, uv_gp_table->gru_base, uv_gp_table->gru_shift, uv_gp_table->gpa_shift); } static void __init decode_gam_rng_tbl(unsigned long ptr) { struct uv_gam_range_entry *gre = (struct uv_gam_range_entry *)ptr; unsigned long lgre = 0, gend = 0; int index = 0; int sock_min = INT_MAX, pnode_min = INT_MAX; int sock_max = -1, pnode_max = -1; uv_gre_table = gre; for (; gre->type != UV_GAM_RANGE_TYPE_UNUSED; gre++) { unsigned long size = ((unsigned long)(gre->limit - lgre) << UV_GAM_RANGE_SHFT); int order = 0; char suffix[] = " KMGTPE"; int flag = ' '; while (size > 9999 && order < sizeof(suffix)) { size /= 1024; order++; } /* adjust max block size to current range start */ if (gre->type == 1 || gre->type == 2) if (adj_blksize(lgre)) flag = '*'; if (!index) { pr_info("UV: GAM Range Table...\n"); pr_info("UV: # %20s %14s %6s %4s %5s %3s %2s\n", "Range", "", "Size", "Type", "NASID", "SID", "PN"); } pr_info("UV: %2d: 0x%014lx-0x%014lx%c %5lu%c %3d %04x %02x %02x\n", index++, (unsigned long)lgre << UV_GAM_RANGE_SHFT, (unsigned long)gre->limit << UV_GAM_RANGE_SHFT, flag, size, suffix[order], gre->type, gre->nasid, gre->sockid, gre->pnode); if (gre->type == UV_GAM_RANGE_TYPE_HOLE) gend = (unsigned long)gre->limit << UV_GAM_RANGE_SHFT; /* update to next range start */ lgre = gre->limit; if (sock_min > gre->sockid) sock_min = gre->sockid; if (sock_max < gre->sockid) sock_max = gre->sockid; if (pnode_min > gre->pnode) pnode_min = gre->pnode; if (pnode_max < gre->pnode) pnode_max = gre->pnode; } _min_socket = sock_min; _max_socket = sock_max; _min_pnode = pnode_min; _max_pnode = pnode_max; _gr_table_len = index; pr_info("UV: GRT: %d entries, sockets(min:%x,max:%x), pnodes(min:%x,max:%x), gap_end(%d)\n", index, _min_socket, _max_socket, _min_pnode, _max_pnode, fls64(gend)); } /* Walk through UVsystab decoding the fields */ static int __init decode_uv_systab(void) { struct uv_systab *st; int i; /* Get mapped UVsystab pointer */ st = uv_systab; /* If UVsystab is version 1, there is no extended UVsystab */ if (st && st->revision == UV_SYSTAB_VERSION_1) return 0; if ((!st) || (st->revision < UV_SYSTAB_VERSION_UV4_LATEST)) { int rev = st ? st->revision : 0; pr_err("UV: BIOS UVsystab mismatch, (%x < %x)\n", rev, UV_SYSTAB_VERSION_UV4_LATEST); pr_err("UV: Does not support UV, switch to non-UV x86_64\n"); uv_system_type = UV_NONE; return -EINVAL; } for (i = 0; st->entry[i].type != UV_SYSTAB_TYPE_UNUSED; i++) { unsigned long ptr = st->entry[i].offset; if (!ptr) continue; /* point to payload */ ptr += (unsigned long)st; switch (st->entry[i].type) { case UV_SYSTAB_TYPE_GAM_PARAMS: decode_gam_params(ptr); break; case UV_SYSTAB_TYPE_GAM_RNG_TBL: decode_gam_rng_tbl(ptr); break; case UV_SYSTAB_TYPE_ARCH_TYPE: /* already processed in early startup */ break; default: pr_err("UV:%s:Unrecognized UV_SYSTAB_TYPE:%d, skipped\n", __func__, st->entry[i].type); break; } } return 0; } /* * Given a bitmask 'bits' representing presnt blades, numbered * starting at 'base', masking off unused high bits of blade number * with 'mask', update the minimum and maximum blade numbers that we * have found. (Masking with 'mask' necessary because of BIOS * treatment of system partitioning when creating this table we are * interpreting.) */ static inline void blade_update_min_max(unsigned long bits, int base, int mask, int *min, int *max) { int first, last; if (!bits) return; first = (base + __ffs(bits)) & mask; last = (base + __fls(bits)) & mask; if (*min > first) *min = first; if (*max < last) *max = last; } /* Set up physical blade translations from UVH_NODE_PRESENT_TABLE */ static __init void boot_init_possible_blades(struct uv_hub_info_s *hub_info) { unsigned long np; int i, uv_pb = 0; int sock_min = INT_MAX, sock_max = -1, s_mask; s_mask = (1 << uv_cpuid.n_skt) - 1; if (UVH_NODE_PRESENT_TABLE) { pr_info("UV: NODE_PRESENT_DEPTH = %d\n", UVH_NODE_PRESENT_TABLE_DEPTH); for (i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++) { np = uv_read_local_mmr(UVH_NODE_PRESENT_TABLE + i * 8); pr_info("UV: NODE_PRESENT(%d) = 0x%016lx\n", i, np); blade_update_min_max(np, i * 64, s_mask, &sock_min, &sock_max); } } if (UVH_NODE_PRESENT_0) { np = uv_read_local_mmr(UVH_NODE_PRESENT_0); pr_info("UV: NODE_PRESENT_0 = 0x%016lx\n", np); blade_update_min_max(np, 0, s_mask, &sock_min, &sock_max); } if (UVH_NODE_PRESENT_1) { np = uv_read_local_mmr(UVH_NODE_PRESENT_1); pr_info("UV: NODE_PRESENT_1 = 0x%016lx\n", np); blade_update_min_max(np, 64, s_mask, &sock_min, &sock_max); } /* Only update if we actually found some bits indicating blades present */ if (sock_max >= sock_min) { _min_socket = sock_min; _max_socket = sock_max; uv_pb = sock_max - sock_min + 1; } if (uv_possible_blades != uv_pb) uv_possible_blades = uv_pb; pr_info("UV: number nodes/possible blades %d (%d - %d)\n", uv_pb, sock_min, sock_max); } static int __init alloc_conv_table(int num_elem, unsigned short **table) { int i; size_t bytes; bytes = num_elem * sizeof(*table[0]); *table = kmalloc(bytes, GFP_KERNEL); if (WARN_ON_ONCE(!*table)) return -ENOMEM; for (i = 0; i < num_elem; i++) ((unsigned short *)*table)[i] = SOCK_EMPTY; return 0; } /* Remove conversion table if it's 1:1 */ #define FREE_1_TO_1_TABLE(tbl, min, max, max2) free_1_to_1_table(&tbl, #tbl, min, max, max2) static void __init free_1_to_1_table(unsigned short **tp, char *tname, int min, int max, int max2) { int i; unsigned short *table = *tp; if (table == NULL) return; if (max != max2) return; for (i = 0; i < max; i++) { if (i != table[i]) return; } kfree(table); *tp = NULL; pr_info("UV: %s is 1:1, conversion table removed\n", tname); } /* * Build Socket Tables * If the number of nodes is >1 per socket, socket to node table will * contain lowest node number on that socket. */ static void __init build_socket_tables(void) { struct uv_gam_range_entry *gre = uv_gre_table; int nums, numn, nump; int i, lnid, apicid; int minsock = _min_socket; int maxsock = _max_socket; int minpnode = _min_pnode; int maxpnode = _max_pnode; if (!gre) { if (is_uv2_hub() || is_uv3_hub()) { pr_info("UV: No UVsystab socket table, ignoring\n"); return; } pr_err("UV: Error: UVsystab address translations not available!\n"); WARN_ON_ONCE(!gre); return; } numn = num_possible_nodes(); nump = maxpnode - minpnode + 1; nums = maxsock - minsock + 1; /* Allocate and clear tables */ if ((alloc_conv_table(nump, &_pnode_to_socket) < 0) || (alloc_conv_table(nums, &_socket_to_pnode) < 0) || (alloc_conv_table(numn, &_node_to_socket) < 0) || (alloc_conv_table(nums, &_socket_to_node) < 0)) { kfree(_pnode_to_socket); kfree(_socket_to_pnode); kfree(_node_to_socket); return; } /* Fill in pnode/node/addr conversion list values: */ for (; gre->type != UV_GAM_RANGE_TYPE_UNUSED; gre++) { if (gre->type == UV_GAM_RANGE_TYPE_HOLE) continue; i = gre->sockid - minsock; if (_socket_to_pnode[i] == SOCK_EMPTY) _socket_to_pnode[i] = gre->pnode; i = gre->pnode - minpnode; if (_pnode_to_socket[i] == SOCK_EMPTY) _pnode_to_socket[i] = gre->sockid; pr_info("UV: sid:%02x type:%d nasid:%04x pn:%02x pn2s:%2x\n", gre->sockid, gre->type, gre->nasid, _socket_to_pnode[gre->sockid - minsock], _pnode_to_socket[gre->pnode - minpnode]); } /* Set socket -> node values: */ lnid = NUMA_NO_NODE; for (apicid = 0; apicid < ARRAY_SIZE(__apicid_to_node); apicid++) { int nid = __apicid_to_node[apicid]; int sockid; if ((nid == NUMA_NO_NODE) || (lnid == nid)) continue; lnid = nid; sockid = apicid >> uv_cpuid.socketid_shift; if (_socket_to_node[sockid - minsock] == SOCK_EMPTY) _socket_to_node[sockid - minsock] = nid; if (_node_to_socket[nid] == SOCK_EMPTY) _node_to_socket[nid] = sockid; pr_info("UV: sid:%02x: apicid:%04x socket:%02d node:%03x s2n:%03x\n", sockid, apicid, _node_to_socket[nid], nid, _socket_to_node[sockid - minsock]); } /* * If e.g. socket id == pnode for all pnodes, * system runs faster by removing corresponding conversion table. */ FREE_1_TO_1_TABLE(_socket_to_node, _min_socket, nums, numn); FREE_1_TO_1_TABLE(_node_to_socket, _min_socket, nums, numn); FREE_1_TO_1_TABLE(_socket_to_pnode, _min_pnode, nums, nump); FREE_1_TO_1_TABLE(_pnode_to_socket, _min_pnode, nums, nump); } /* Check which reboot to use */ static void check_efi_reboot(void) { /* If EFI reboot not available, use ACPI reboot */ if (!efi_enabled(EFI_BOOT)) reboot_type = BOOT_ACPI; } /* * User proc fs file handling now deprecated. * Recommend using /sys/firmware/sgi_uv/... instead. */ static int __maybe_unused proc_hubbed_show(struct seq_file *file, void *data) { pr_notice_once("%s: using deprecated /proc/sgi_uv/hubbed, use /sys/firmware/sgi_uv/hub_type\n", current->comm); seq_printf(file, "0x%x\n", uv_hubbed_system); return 0; } static int __maybe_unused proc_hubless_show(struct seq_file *file, void *data) { pr_notice_once("%s: using deprecated /proc/sgi_uv/hubless, use /sys/firmware/sgi_uv/hubless\n", current->comm); seq_printf(file, "0x%x\n", uv_hubless_system); return 0; } static int __maybe_unused proc_archtype_show(struct seq_file *file, void *data) { pr_notice_once("%s: using deprecated /proc/sgi_uv/archtype, use /sys/firmware/sgi_uv/archtype\n", current->comm); seq_printf(file, "%s/%s\n", uv_archtype, oem_table_id); return 0; } static __init void uv_setup_proc_files(int hubless) { struct proc_dir_entry *pde; pde = proc_mkdir(UV_PROC_NODE, NULL); proc_create_single("archtype", 0, pde, proc_archtype_show); if (hubless) proc_create_single("hubless", 0, pde, proc_hubless_show); else proc_create_single("hubbed", 0, pde, proc_hubbed_show); } /* Initialize UV hubless systems */ static __init int uv_system_init_hubless(void) { int rc; /* Setup PCH NMI handler */ uv_nmi_setup_hubless(); /* Init kernel/BIOS interface */ rc = uv_bios_init(); if (rc < 0) return rc; /* Process UVsystab */ rc = decode_uv_systab(); if (rc < 0) return rc; /* Set section block size for current node memory */ set_block_size(); /* Create user access node */ if (rc >= 0) uv_setup_proc_files(1); check_efi_reboot(); return rc; } static void __init uv_system_init_hub(void) { struct uv_hub_info_s hub_info = {0}; int bytes, cpu, nodeid, bid; unsigned short min_pnode = USHRT_MAX, max_pnode = 0; char *hub = is_uv5_hub() ? "UV500" : is_uv4_hub() ? "UV400" : is_uv3_hub() ? "UV300" : is_uv2_hub() ? "UV2000/3000" : NULL; struct uv_hub_info_s **uv_hub_info_list_blade; if (!hub) { pr_err("UV: Unknown/unsupported UV hub\n"); return; } pr_info("UV: Found %s hub\n", hub); map_low_mmrs(); /* Get uv_systab for decoding, setup UV BIOS calls */ uv_bios_init(); /* If there's an UVsystab problem then abort UV init: */ if (decode_uv_systab() < 0) { pr_err("UV: Mangled UVsystab format\n"); return; } build_socket_tables(); build_uv_gr_table(); set_block_size(); uv_init_hub_info(&hub_info); /* If UV2 or UV3 may need to get # blades from HW */ if (is_uv(UV2|UV3) && !uv_gre_table) boot_init_possible_blades(&hub_info); else /* min/max sockets set in decode_gam_rng_tbl */ uv_possible_blades = (_max_socket - _min_socket) + 1; /* uv_num_possible_blades() is really the hub count: */ pr_info("UV: Found %d hubs, %d nodes, %d CPUs\n", uv_num_possible_blades(), num_possible_nodes(), num_possible_cpus()); uv_bios_get_sn_info(0, &uv_type, &sn_partition_id, &sn_coherency_id, &sn_region_size, &system_serial_number); hub_info.coherency_domain_number = sn_coherency_id; uv_rtc_init(); /* * __uv_hub_info_list[] is indexed by node, but there is only * one hub_info structure per blade. First, allocate one * structure per blade. Further down we create a per-node * table (__uv_hub_info_list[]) pointing to hub_info * structures for the correct blade. */ bytes = sizeof(void *) * uv_num_possible_blades(); uv_hub_info_list_blade = kzalloc(bytes, GFP_KERNEL); if (WARN_ON_ONCE(!uv_hub_info_list_blade)) return; bytes = sizeof(struct uv_hub_info_s); for_each_possible_blade(bid) { struct uv_hub_info_s *new_hub; /* Allocate & fill new per hub info list */ new_hub = (bid == 0) ? &uv_hub_info_node0 : kzalloc_node(bytes, GFP_KERNEL, uv_blade_to_node(bid)); if (WARN_ON_ONCE(!new_hub)) { /* do not kfree() bid 0, which is statically allocated */ while (--bid > 0) kfree(uv_hub_info_list_blade[bid]); kfree(uv_hub_info_list_blade); return; } uv_hub_info_list_blade[bid] = new_hub; *new_hub = hub_info; /* Use information from GAM table if available: */ if (uv_gre_table) new_hub->pnode = uv_blade_to_pnode(bid); else /* Or fill in during CPU loop: */ new_hub->pnode = 0xffff; new_hub->numa_blade_id = bid; new_hub->memory_nid = NUMA_NO_NODE; new_hub->nr_possible_cpus = 0; new_hub->nr_online_cpus = 0; } /* * Now populate __uv_hub_info_list[] for each node with the * pointer to the struct for the blade it resides on. */ bytes = sizeof(void *) * num_possible_nodes(); __uv_hub_info_list = kzalloc(bytes, GFP_KERNEL); if (WARN_ON_ONCE(!__uv_hub_info_list)) { for_each_possible_blade(bid) /* bid 0 is statically allocated */ if (bid != 0) kfree(uv_hub_info_list_blade[bid]); kfree(uv_hub_info_list_blade); return; } for_each_node(nodeid) __uv_hub_info_list[nodeid] = uv_hub_info_list_blade[uv_node_to_blade_id(nodeid)]; /* Initialize per CPU info: */ for_each_possible_cpu(cpu) { int apicid = per_cpu(x86_cpu_to_apicid, cpu); unsigned short bid; unsigned short pnode; pnode = uv_apicid_to_pnode(apicid); bid = uv_pnode_to_socket(pnode) - _min_socket; uv_cpu_info_per(cpu)->p_uv_hub_info = uv_hub_info_list_blade[bid]; uv_cpu_info_per(cpu)->blade_cpu_id = uv_cpu_hub_info(cpu)->nr_possible_cpus++; if (uv_cpu_hub_info(cpu)->memory_nid == NUMA_NO_NODE) uv_cpu_hub_info(cpu)->memory_nid = cpu_to_node(cpu); if (uv_cpu_hub_info(cpu)->pnode == 0xffff) uv_cpu_hub_info(cpu)->pnode = pnode; } for_each_possible_blade(bid) { unsigned short pnode = uv_hub_info_list_blade[bid]->pnode; if (pnode == 0xffff) continue; min_pnode = min(pnode, min_pnode); max_pnode = max(pnode, max_pnode); pr_info("UV: HUB:%2d pn:%02x nrcpus:%d\n", bid, uv_hub_info_list_blade[bid]->pnode, uv_hub_info_list_blade[bid]->nr_possible_cpus); } pr_info("UV: min_pnode:%02x max_pnode:%02x\n", min_pnode, max_pnode); map_gru_high(max_pnode); map_mmr_high(max_pnode); map_mmioh_high(min_pnode, max_pnode); kfree(uv_hub_info_list_blade); uv_hub_info_list_blade = NULL; uv_nmi_setup(); uv_cpu_init(); uv_setup_proc_files(0); /* Register Legacy VGA I/O redirection handler: */ pci_register_set_vga_state(uv_set_vga_state); check_efi_reboot(); } /* * There is a different code path needed to initialize a UV system that does * not have a "UV HUB" (referred to as "hubless"). */ void __init uv_system_init(void) { if (likely(!is_uv_system() && !is_uv_hubless(1))) return; if (is_uv_system()) uv_system_init_hub(); else uv_system_init_hubless(); } apic_driver(apic_x2apic_uv_x);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1