Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sudeep Holla | 1364 | 24.63% | 3 | 1.91% |
Andi Kleen | 740 | 13.36% | 9 | 5.73% |
Dave Jones | 564 | 10.18% | 12 | 7.64% |
Borislav Petkov | 557 | 10.06% | 13 | 8.28% |
Venkatesh Pallipadi | 538 | 9.71% | 2 | 1.27% |
Juergen Gross | 193 | 3.48% | 10 | 6.37% |
Andy Grover | 180 | 3.25% | 1 | 0.64% |
Thomas Gleixner | 177 | 3.20% | 15 | 9.55% |
Andreas Herrmann | 163 | 2.94% | 8 | 5.10% |
Suravee Suthikulpanit | 149 | 2.69% | 2 | 1.27% |
Hans Rosenfeld | 140 | 2.53% | 2 | 1.27% |
Suresh B. Siddha | 139 | 2.51% | 7 | 4.46% |
Pu Wen | 79 | 1.43% | 2 | 1.27% |
Frank Arnold | 60 | 1.08% | 2 | 1.27% |
Fenghua Yu | 58 | 1.05% | 1 | 0.64% |
Shaohua Li | 57 | 1.03% | 3 | 1.91% |
Langsdorf, Mark | 34 | 0.61% | 2 | 1.27% |
Linus Torvalds | 27 | 0.49% | 3 | 1.91% |
Patrick Mochel | 25 | 0.45% | 1 | 0.64% |
Linus Torvalds (pre-git) | 24 | 0.43% | 6 | 3.82% |
Akinobu Mita | 23 | 0.42% | 2 | 1.27% |
Andrew Morton | 22 | 0.40% | 2 | 1.27% |
Ashok Raj | 18 | 0.32% | 1 | 0.64% |
Ricardo Neri | 18 | 0.32% | 1 | 0.64% |
Mike Travis | 18 | 0.32% | 4 | 2.55% |
Shai Fultheim | 14 | 0.25% | 1 | 0.64% |
Ingo Molnar | 11 | 0.20% | 2 | 1.27% |
Alan Cox | 11 | 0.20% | 2 | 1.27% |
Jason D. Gaston | 9 | 0.16% | 1 | 0.64% |
Yinghai Lu | 9 | 0.16% | 1 | 0.64% |
Kirill A. Shutemov | 8 | 0.14% | 1 | 0.64% |
Dave Hansen | 8 | 0.14% | 1 | 0.64% |
Greg Kroah-Hartman | 7 | 0.13% | 2 | 1.27% |
Jaswinder Singh Rajput | 7 | 0.13% | 1 | 0.64% |
Laura Abbott | 6 | 0.11% | 1 | 0.64% |
Josh Triplett | 6 | 0.11% | 1 | 0.64% |
Tim Chen | 6 | 0.11% | 1 | 0.64% |
Bryan O'Donoghue | 5 | 0.09% | 1 | 0.64% |
Srivatsa S. Bhat | 5 | 0.09% | 2 | 1.27% |
Hagen Paul Pfeifer | 5 | 0.09% | 1 | 0.64% |
David Wang | 5 | 0.09% | 1 | 0.64% |
Tejun Heo | 4 | 0.07% | 1 | 0.64% |
Jan Beulich | 4 | 0.07% | 1 | 0.64% |
Jesse Barnes | 4 | 0.07% | 1 | 0.64% |
Dmitry Torokhov | 3 | 0.05% | 1 | 0.64% |
H. Peter Anvin | 3 | 0.05% | 2 | 1.27% |
Andrew Lutomirski | 3 | 0.05% | 1 | 0.64% |
Geliang Tang | 3 | 0.05% | 1 | 0.64% |
Peter Zijlstra | 3 | 0.05% | 1 | 0.64% |
Ajaykumar Hotchandani | 3 | 0.05% | 1 | 0.64% |
Vladislav Zolotarov | 2 | 0.04% | 1 | 0.64% |
Sander Vanheule | 2 | 0.04% | 1 | 0.64% |
Satyam Sharma | 2 | 0.04% | 1 | 0.64% |
Gustavo A. R. Silva | 2 | 0.04% | 1 | 0.64% |
Toshi Kani | 2 | 0.04% | 1 | 0.64% |
Daniel Walter | 2 | 0.04% | 1 | 0.64% |
Mel Gorman | 2 | 0.04% | 1 | 0.64% |
Harvey Harrison | 1 | 0.02% | 1 | 0.64% |
Leendert van Doorn | 1 | 0.02% | 1 | 0.64% |
Maxime Jayat | 1 | 0.02% | 1 | 0.64% |
Chen Yucong | 1 | 0.02% | 1 | 0.64% |
Glauber de Oliveira Costa | 1 | 0.02% | 1 | 0.64% |
Prarit Bhargava | 1 | 0.02% | 1 | 0.64% |
Total | 5539 | 157 |
// SPDX-License-Identifier: GPL-2.0 /* * Routines to identify caches on Intel CPU. * * Changes: * Venkatesh Pallipadi : Adding cache identification through cpuid(4) * Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure. * Andi Kleen / Andreas Herrmann : CPUID4 emulation on AMD. */ #include <linux/slab.h> #include <linux/cacheinfo.h> #include <linux/cpu.h> #include <linux/cpuhotplug.h> #include <linux/sched.h> #include <linux/capability.h> #include <linux/sysfs.h> #include <linux/pci.h> #include <linux/stop_machine.h> #include <asm/cpufeature.h> #include <asm/cacheinfo.h> #include <asm/amd_nb.h> #include <asm/smp.h> #include <asm/mtrr.h> #include <asm/tlbflush.h> #include "cpu.h" #define LVL_1_INST 1 #define LVL_1_DATA 2 #define LVL_2 3 #define LVL_3 4 #define LVL_TRACE 5 /* Shared last level cache maps */ DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map); /* Shared L2 cache maps */ DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_l2c_shared_map); static cpumask_var_t cpu_cacheinfo_mask; /* Kernel controls MTRR and/or PAT MSRs. */ unsigned int memory_caching_control __ro_after_init; struct _cache_table { unsigned char descriptor; char cache_type; short size; }; #define MB(x) ((x) * 1024) /* All the cache descriptor types we care about (no TLB or trace cache entries) */ static const struct _cache_table cache_table[] = { { 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */ { 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */ { 0x09, LVL_1_INST, 32 }, /* 4-way set assoc, 64 byte line size */ { 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */ { 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */ { 0x0d, LVL_1_DATA, 16 }, /* 4-way set assoc, 64 byte line size */ { 0x0e, LVL_1_DATA, 24 }, /* 6-way set assoc, 64 byte line size */ { 0x21, LVL_2, 256 }, /* 8-way set assoc, 64 byte line size */ { 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x23, LVL_3, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x25, LVL_3, MB(2) }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x29, LVL_3, MB(4) }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */ { 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */ { 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x3a, LVL_2, 192 }, /* 6-way set assoc, sectored cache, 64 byte line size */ { 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */ { 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x3d, LVL_2, 384 }, /* 6-way set assoc, sectored cache, 64 byte line size */ { 0x3e, LVL_2, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x3f, LVL_2, 256 }, /* 2-way set assoc, 64 byte line size */ { 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */ { 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */ { 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */ { 0x44, LVL_2, MB(1) }, /* 4-way set assoc, 32 byte line size */ { 0x45, LVL_2, MB(2) }, /* 4-way set assoc, 32 byte line size */ { 0x46, LVL_3, MB(4) }, /* 4-way set assoc, 64 byte line size */ { 0x47, LVL_3, MB(8) }, /* 8-way set assoc, 64 byte line size */ { 0x48, LVL_2, MB(3) }, /* 12-way set assoc, 64 byte line size */ { 0x49, LVL_3, MB(4) }, /* 16-way set assoc, 64 byte line size */ { 0x4a, LVL_3, MB(6) }, /* 12-way set assoc, 64 byte line size */ { 0x4b, LVL_3, MB(8) }, /* 16-way set assoc, 64 byte line size */ { 0x4c, LVL_3, MB(12) }, /* 12-way set assoc, 64 byte line size */ { 0x4d, LVL_3, MB(16) }, /* 16-way set assoc, 64 byte line size */ { 0x4e, LVL_2, MB(6) }, /* 24-way set assoc, 64 byte line size */ { 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */ { 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */ { 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */ { 0x73, LVL_TRACE, 64 }, /* 8-way set assoc */ { 0x78, LVL_2, MB(1) }, /* 4-way set assoc, 64 byte line size */ { 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x7c, LVL_2, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x7d, LVL_2, MB(2) }, /* 8-way set assoc, 64 byte line size */ { 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */ { 0x80, LVL_2, 512 }, /* 8-way set assoc, 64 byte line size */ { 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */ { 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */ { 0x84, LVL_2, MB(1) }, /* 8-way set assoc, 32 byte line size */ { 0x85, LVL_2, MB(2) }, /* 8-way set assoc, 32 byte line size */ { 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */ { 0x87, LVL_2, MB(1) }, /* 8-way set assoc, 64 byte line size */ { 0xd0, LVL_3, 512 }, /* 4-way set assoc, 64 byte line size */ { 0xd1, LVL_3, MB(1) }, /* 4-way set assoc, 64 byte line size */ { 0xd2, LVL_3, MB(2) }, /* 4-way set assoc, 64 byte line size */ { 0xd6, LVL_3, MB(1) }, /* 8-way set assoc, 64 byte line size */ { 0xd7, LVL_3, MB(2) }, /* 8-way set assoc, 64 byte line size */ { 0xd8, LVL_3, MB(4) }, /* 12-way set assoc, 64 byte line size */ { 0xdc, LVL_3, MB(2) }, /* 12-way set assoc, 64 byte line size */ { 0xdd, LVL_3, MB(4) }, /* 12-way set assoc, 64 byte line size */ { 0xde, LVL_3, MB(8) }, /* 12-way set assoc, 64 byte line size */ { 0xe2, LVL_3, MB(2) }, /* 16-way set assoc, 64 byte line size */ { 0xe3, LVL_3, MB(4) }, /* 16-way set assoc, 64 byte line size */ { 0xe4, LVL_3, MB(8) }, /* 16-way set assoc, 64 byte line size */ { 0xea, LVL_3, MB(12) }, /* 24-way set assoc, 64 byte line size */ { 0xeb, LVL_3, MB(18) }, /* 24-way set assoc, 64 byte line size */ { 0xec, LVL_3, MB(24) }, /* 24-way set assoc, 64 byte line size */ { 0x00, 0, 0} }; enum _cache_type { CTYPE_NULL = 0, CTYPE_DATA = 1, CTYPE_INST = 2, CTYPE_UNIFIED = 3 }; union _cpuid4_leaf_eax { struct { enum _cache_type type:5; unsigned int level:3; unsigned int is_self_initializing:1; unsigned int is_fully_associative:1; unsigned int reserved:4; unsigned int num_threads_sharing:12; unsigned int num_cores_on_die:6; } split; u32 full; }; union _cpuid4_leaf_ebx { struct { unsigned int coherency_line_size:12; unsigned int physical_line_partition:10; unsigned int ways_of_associativity:10; } split; u32 full; }; union _cpuid4_leaf_ecx { struct { unsigned int number_of_sets:32; } split; u32 full; }; struct _cpuid4_info_regs { union _cpuid4_leaf_eax eax; union _cpuid4_leaf_ebx ebx; union _cpuid4_leaf_ecx ecx; unsigned int id; unsigned long size; struct amd_northbridge *nb; }; static unsigned short num_cache_leaves; /* AMD doesn't have CPUID4. Emulate it here to report the same information to the user. This makes some assumptions about the machine: L2 not shared, no SMT etc. that is currently true on AMD CPUs. In theory the TLBs could be reported as fake type (they are in "dummy"). Maybe later */ union l1_cache { struct { unsigned line_size:8; unsigned lines_per_tag:8; unsigned assoc:8; unsigned size_in_kb:8; }; unsigned val; }; union l2_cache { struct { unsigned line_size:8; unsigned lines_per_tag:4; unsigned assoc:4; unsigned size_in_kb:16; }; unsigned val; }; union l3_cache { struct { unsigned line_size:8; unsigned lines_per_tag:4; unsigned assoc:4; unsigned res:2; unsigned size_encoded:14; }; unsigned val; }; static const unsigned short assocs[] = { [1] = 1, [2] = 2, [4] = 4, [6] = 8, [8] = 16, [0xa] = 32, [0xb] = 48, [0xc] = 64, [0xd] = 96, [0xe] = 128, [0xf] = 0xffff /* fully associative - no way to show this currently */ }; static const unsigned char levels[] = { 1, 1, 2, 3 }; static const unsigned char types[] = { 1, 2, 3, 3 }; static const enum cache_type cache_type_map[] = { [CTYPE_NULL] = CACHE_TYPE_NOCACHE, [CTYPE_DATA] = CACHE_TYPE_DATA, [CTYPE_INST] = CACHE_TYPE_INST, [CTYPE_UNIFIED] = CACHE_TYPE_UNIFIED, }; static void amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax, union _cpuid4_leaf_ebx *ebx, union _cpuid4_leaf_ecx *ecx) { unsigned dummy; unsigned line_size, lines_per_tag, assoc, size_in_kb; union l1_cache l1i, l1d; union l2_cache l2; union l3_cache l3; union l1_cache *l1 = &l1d; eax->full = 0; ebx->full = 0; ecx->full = 0; cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val); cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val); switch (leaf) { case 1: l1 = &l1i; fallthrough; case 0: if (!l1->val) return; assoc = assocs[l1->assoc]; line_size = l1->line_size; lines_per_tag = l1->lines_per_tag; size_in_kb = l1->size_in_kb; break; case 2: if (!l2.val) return; assoc = assocs[l2.assoc]; line_size = l2.line_size; lines_per_tag = l2.lines_per_tag; /* cpu_data has errata corrections for K7 applied */ size_in_kb = __this_cpu_read(cpu_info.x86_cache_size); break; case 3: if (!l3.val) return; assoc = assocs[l3.assoc]; line_size = l3.line_size; lines_per_tag = l3.lines_per_tag; size_in_kb = l3.size_encoded * 512; if (boot_cpu_has(X86_FEATURE_AMD_DCM)) { size_in_kb = size_in_kb >> 1; assoc = assoc >> 1; } break; default: return; } eax->split.is_self_initializing = 1; eax->split.type = types[leaf]; eax->split.level = levels[leaf]; eax->split.num_threads_sharing = 0; eax->split.num_cores_on_die = topology_num_cores_per_package(); if (assoc == 0xffff) eax->split.is_fully_associative = 1; ebx->split.coherency_line_size = line_size - 1; ebx->split.ways_of_associativity = assoc - 1; ebx->split.physical_line_partition = lines_per_tag - 1; ecx->split.number_of_sets = (size_in_kb * 1024) / line_size / (ebx->split.ways_of_associativity + 1) - 1; } #if defined(CONFIG_AMD_NB) && defined(CONFIG_SYSFS) /* * L3 cache descriptors */ static void amd_calc_l3_indices(struct amd_northbridge *nb) { struct amd_l3_cache *l3 = &nb->l3_cache; unsigned int sc0, sc1, sc2, sc3; u32 val = 0; pci_read_config_dword(nb->misc, 0x1C4, &val); /* calculate subcache sizes */ l3->subcaches[0] = sc0 = !(val & BIT(0)); l3->subcaches[1] = sc1 = !(val & BIT(4)); if (boot_cpu_data.x86 == 0x15) { l3->subcaches[0] = sc0 += !(val & BIT(1)); l3->subcaches[1] = sc1 += !(val & BIT(5)); } l3->subcaches[2] = sc2 = !(val & BIT(8)) + !(val & BIT(9)); l3->subcaches[3] = sc3 = !(val & BIT(12)) + !(val & BIT(13)); l3->indices = (max(max3(sc0, sc1, sc2), sc3) << 10) - 1; } /* * check whether a slot used for disabling an L3 index is occupied. * @l3: L3 cache descriptor * @slot: slot number (0..1) * * @returns: the disabled index if used or negative value if slot free. */ static int amd_get_l3_disable_slot(struct amd_northbridge *nb, unsigned slot) { unsigned int reg = 0; pci_read_config_dword(nb->misc, 0x1BC + slot * 4, ®); /* check whether this slot is activated already */ if (reg & (3UL << 30)) return reg & 0xfff; return -1; } static ssize_t show_cache_disable(struct cacheinfo *this_leaf, char *buf, unsigned int slot) { int index; struct amd_northbridge *nb = this_leaf->priv; index = amd_get_l3_disable_slot(nb, slot); if (index >= 0) return sprintf(buf, "%d\n", index); return sprintf(buf, "FREE\n"); } #define SHOW_CACHE_DISABLE(slot) \ static ssize_t \ cache_disable_##slot##_show(struct device *dev, \ struct device_attribute *attr, char *buf) \ { \ struct cacheinfo *this_leaf = dev_get_drvdata(dev); \ return show_cache_disable(this_leaf, buf, slot); \ } SHOW_CACHE_DISABLE(0) SHOW_CACHE_DISABLE(1) static void amd_l3_disable_index(struct amd_northbridge *nb, int cpu, unsigned slot, unsigned long idx) { int i; idx |= BIT(30); /* * disable index in all 4 subcaches */ for (i = 0; i < 4; i++) { u32 reg = idx | (i << 20); if (!nb->l3_cache.subcaches[i]) continue; pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg); /* * We need to WBINVD on a core on the node containing the L3 * cache which indices we disable therefore a simple wbinvd() * is not sufficient. */ wbinvd_on_cpu(cpu); reg |= BIT(31); pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg); } } /* * disable a L3 cache index by using a disable-slot * * @l3: L3 cache descriptor * @cpu: A CPU on the node containing the L3 cache * @slot: slot number (0..1) * @index: index to disable * * @return: 0 on success, error status on failure */ static int amd_set_l3_disable_slot(struct amd_northbridge *nb, int cpu, unsigned slot, unsigned long index) { int ret = 0; /* check if @slot is already used or the index is already disabled */ ret = amd_get_l3_disable_slot(nb, slot); if (ret >= 0) return -EEXIST; if (index > nb->l3_cache.indices) return -EINVAL; /* check whether the other slot has disabled the same index already */ if (index == amd_get_l3_disable_slot(nb, !slot)) return -EEXIST; amd_l3_disable_index(nb, cpu, slot, index); return 0; } static ssize_t store_cache_disable(struct cacheinfo *this_leaf, const char *buf, size_t count, unsigned int slot) { unsigned long val = 0; int cpu, err = 0; struct amd_northbridge *nb = this_leaf->priv; if (!capable(CAP_SYS_ADMIN)) return -EPERM; cpu = cpumask_first(&this_leaf->shared_cpu_map); if (kstrtoul(buf, 10, &val) < 0) return -EINVAL; err = amd_set_l3_disable_slot(nb, cpu, slot, val); if (err) { if (err == -EEXIST) pr_warn("L3 slot %d in use/index already disabled!\n", slot); return err; } return count; } #define STORE_CACHE_DISABLE(slot) \ static ssize_t \ cache_disable_##slot##_store(struct device *dev, \ struct device_attribute *attr, \ const char *buf, size_t count) \ { \ struct cacheinfo *this_leaf = dev_get_drvdata(dev); \ return store_cache_disable(this_leaf, buf, count, slot); \ } STORE_CACHE_DISABLE(0) STORE_CACHE_DISABLE(1) static ssize_t subcaches_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cacheinfo *this_leaf = dev_get_drvdata(dev); int cpu = cpumask_first(&this_leaf->shared_cpu_map); return sprintf(buf, "%x\n", amd_get_subcaches(cpu)); } static ssize_t subcaches_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct cacheinfo *this_leaf = dev_get_drvdata(dev); int cpu = cpumask_first(&this_leaf->shared_cpu_map); unsigned long val; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (kstrtoul(buf, 16, &val) < 0) return -EINVAL; if (amd_set_subcaches(cpu, val)) return -EINVAL; return count; } static DEVICE_ATTR_RW(cache_disable_0); static DEVICE_ATTR_RW(cache_disable_1); static DEVICE_ATTR_RW(subcaches); static umode_t cache_private_attrs_is_visible(struct kobject *kobj, struct attribute *attr, int unused) { struct device *dev = kobj_to_dev(kobj); struct cacheinfo *this_leaf = dev_get_drvdata(dev); umode_t mode = attr->mode; if (!this_leaf->priv) return 0; if ((attr == &dev_attr_subcaches.attr) && amd_nb_has_feature(AMD_NB_L3_PARTITIONING)) return mode; if ((attr == &dev_attr_cache_disable_0.attr || attr == &dev_attr_cache_disable_1.attr) && amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) return mode; return 0; } static struct attribute_group cache_private_group = { .is_visible = cache_private_attrs_is_visible, }; static void init_amd_l3_attrs(void) { int n = 1; static struct attribute **amd_l3_attrs; if (amd_l3_attrs) /* already initialized */ return; if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) n += 2; if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING)) n += 1; amd_l3_attrs = kcalloc(n, sizeof(*amd_l3_attrs), GFP_KERNEL); if (!amd_l3_attrs) return; n = 0; if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) { amd_l3_attrs[n++] = &dev_attr_cache_disable_0.attr; amd_l3_attrs[n++] = &dev_attr_cache_disable_1.attr; } if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING)) amd_l3_attrs[n++] = &dev_attr_subcaches.attr; cache_private_group.attrs = amd_l3_attrs; } const struct attribute_group * cache_get_priv_group(struct cacheinfo *this_leaf) { struct amd_northbridge *nb = this_leaf->priv; if (this_leaf->level < 3 || !nb) return NULL; if (nb && nb->l3_cache.indices) init_amd_l3_attrs(); return &cache_private_group; } static void amd_init_l3_cache(struct _cpuid4_info_regs *this_leaf, int index) { int node; /* only for L3, and not in virtualized environments */ if (index < 3) return; node = topology_amd_node_id(smp_processor_id()); this_leaf->nb = node_to_amd_nb(node); if (this_leaf->nb && !this_leaf->nb->l3_cache.indices) amd_calc_l3_indices(this_leaf->nb); } #else #define amd_init_l3_cache(x, y) #endif /* CONFIG_AMD_NB && CONFIG_SYSFS */ static int cpuid4_cache_lookup_regs(int index, struct _cpuid4_info_regs *this_leaf) { union _cpuid4_leaf_eax eax; union _cpuid4_leaf_ebx ebx; union _cpuid4_leaf_ecx ecx; unsigned edx; if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) { if (boot_cpu_has(X86_FEATURE_TOPOEXT)) cpuid_count(0x8000001d, index, &eax.full, &ebx.full, &ecx.full, &edx); else amd_cpuid4(index, &eax, &ebx, &ecx); amd_init_l3_cache(this_leaf, index); } else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) { cpuid_count(0x8000001d, index, &eax.full, &ebx.full, &ecx.full, &edx); amd_init_l3_cache(this_leaf, index); } else { cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx); } if (eax.split.type == CTYPE_NULL) return -EIO; /* better error ? */ this_leaf->eax = eax; this_leaf->ebx = ebx; this_leaf->ecx = ecx; this_leaf->size = (ecx.split.number_of_sets + 1) * (ebx.split.coherency_line_size + 1) * (ebx.split.physical_line_partition + 1) * (ebx.split.ways_of_associativity + 1); return 0; } static int find_num_cache_leaves(struct cpuinfo_x86 *c) { unsigned int eax, ebx, ecx, edx, op; union _cpuid4_leaf_eax cache_eax; int i = -1; if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) op = 0x8000001d; else op = 4; do { ++i; /* Do cpuid(op) loop to find out num_cache_leaves */ cpuid_count(op, i, &eax, &ebx, &ecx, &edx); cache_eax.full = eax; } while (cache_eax.split.type != CTYPE_NULL); return i; } void cacheinfo_amd_init_llc_id(struct cpuinfo_x86 *c, u16 die_id) { /* * We may have multiple LLCs if L3 caches exist, so check if we * have an L3 cache by looking at the L3 cache CPUID leaf. */ if (!cpuid_edx(0x80000006)) return; if (c->x86 < 0x17) { /* LLC is at the node level. */ c->topo.llc_id = die_id; } else if (c->x86 == 0x17 && c->x86_model <= 0x1F) { /* * LLC is at the core complex level. * Core complex ID is ApicId[3] for these processors. */ c->topo.llc_id = c->topo.apicid >> 3; } else { /* * LLC ID is calculated from the number of threads sharing the * cache. * */ u32 eax, ebx, ecx, edx, num_sharing_cache = 0; u32 llc_index = find_num_cache_leaves(c) - 1; cpuid_count(0x8000001d, llc_index, &eax, &ebx, &ecx, &edx); if (eax) num_sharing_cache = ((eax >> 14) & 0xfff) + 1; if (num_sharing_cache) { int bits = get_count_order(num_sharing_cache); c->topo.llc_id = c->topo.apicid >> bits; } } } void cacheinfo_hygon_init_llc_id(struct cpuinfo_x86 *c) { /* * We may have multiple LLCs if L3 caches exist, so check if we * have an L3 cache by looking at the L3 cache CPUID leaf. */ if (!cpuid_edx(0x80000006)) return; /* * LLC is at the core complex level. * Core complex ID is ApicId[3] for these processors. */ c->topo.llc_id = c->topo.apicid >> 3; } void init_amd_cacheinfo(struct cpuinfo_x86 *c) { if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { num_cache_leaves = find_num_cache_leaves(c); } else if (c->extended_cpuid_level >= 0x80000006) { if (cpuid_edx(0x80000006) & 0xf000) num_cache_leaves = 4; else num_cache_leaves = 3; } } void init_hygon_cacheinfo(struct cpuinfo_x86 *c) { num_cache_leaves = find_num_cache_leaves(c); } void init_intel_cacheinfo(struct cpuinfo_x86 *c) { /* Cache sizes */ unsigned int l1i = 0, l1d = 0, l2 = 0, l3 = 0; unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */ unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */ unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb; if (c->cpuid_level > 3) { static int is_initialized; if (is_initialized == 0) { /* Init num_cache_leaves from boot CPU */ num_cache_leaves = find_num_cache_leaves(c); is_initialized++; } /* * Whenever possible use cpuid(4), deterministic cache * parameters cpuid leaf to find the cache details */ for (i = 0; i < num_cache_leaves; i++) { struct _cpuid4_info_regs this_leaf = {}; int retval; retval = cpuid4_cache_lookup_regs(i, &this_leaf); if (retval < 0) continue; switch (this_leaf.eax.split.level) { case 1: if (this_leaf.eax.split.type == CTYPE_DATA) new_l1d = this_leaf.size/1024; else if (this_leaf.eax.split.type == CTYPE_INST) new_l1i = this_leaf.size/1024; break; case 2: new_l2 = this_leaf.size/1024; num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing; index_msb = get_count_order(num_threads_sharing); l2_id = c->topo.apicid & ~((1 << index_msb) - 1); break; case 3: new_l3 = this_leaf.size/1024; num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing; index_msb = get_count_order(num_threads_sharing); l3_id = c->topo.apicid & ~((1 << index_msb) - 1); break; default: break; } } } /* * Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for * trace cache */ if ((num_cache_leaves == 0 || c->x86 == 15) && c->cpuid_level > 1) { /* supports eax=2 call */ int j, n; unsigned int regs[4]; unsigned char *dp = (unsigned char *)regs; int only_trace = 0; if (num_cache_leaves != 0 && c->x86 == 15) only_trace = 1; /* Number of times to iterate */ n = cpuid_eax(2) & 0xFF; for (i = 0 ; i < n ; i++) { cpuid(2, ®s[0], ®s[1], ®s[2], ®s[3]); /* If bit 31 is set, this is an unknown format */ for (j = 0 ; j < 3 ; j++) if (regs[j] & (1 << 31)) regs[j] = 0; /* Byte 0 is level count, not a descriptor */ for (j = 1 ; j < 16 ; j++) { unsigned char des = dp[j]; unsigned char k = 0; /* look up this descriptor in the table */ while (cache_table[k].descriptor != 0) { if (cache_table[k].descriptor == des) { if (only_trace && cache_table[k].cache_type != LVL_TRACE) break; switch (cache_table[k].cache_type) { case LVL_1_INST: l1i += cache_table[k].size; break; case LVL_1_DATA: l1d += cache_table[k].size; break; case LVL_2: l2 += cache_table[k].size; break; case LVL_3: l3 += cache_table[k].size; break; } break; } k++; } } } } if (new_l1d) l1d = new_l1d; if (new_l1i) l1i = new_l1i; if (new_l2) { l2 = new_l2; c->topo.llc_id = l2_id; c->topo.l2c_id = l2_id; } if (new_l3) { l3 = new_l3; c->topo.llc_id = l3_id; } /* * If llc_id is not yet set, this means cpuid_level < 4 which in * turns means that the only possibility is SMT (as indicated in * cpuid1). Since cpuid2 doesn't specify shared caches, and we know * that SMT shares all caches, we can unconditionally set cpu_llc_id to * c->topo.pkg_id. */ if (c->topo.llc_id == BAD_APICID) c->topo.llc_id = c->topo.pkg_id; c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d)); if (!l2) cpu_detect_cache_sizes(c); } static int __cache_amd_cpumap_setup(unsigned int cpu, int index, struct _cpuid4_info_regs *base) { struct cpu_cacheinfo *this_cpu_ci; struct cacheinfo *this_leaf; int i, sibling; /* * For L3, always use the pre-calculated cpu_llc_shared_mask * to derive shared_cpu_map. */ if (index == 3) { for_each_cpu(i, cpu_llc_shared_mask(cpu)) { this_cpu_ci = get_cpu_cacheinfo(i); if (!this_cpu_ci->info_list) continue; this_leaf = this_cpu_ci->info_list + index; for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) { if (!cpu_online(sibling)) continue; cpumask_set_cpu(sibling, &this_leaf->shared_cpu_map); } } } else if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { unsigned int apicid, nshared, first, last; nshared = base->eax.split.num_threads_sharing + 1; apicid = cpu_data(cpu).topo.apicid; first = apicid - (apicid % nshared); last = first + nshared - 1; for_each_online_cpu(i) { this_cpu_ci = get_cpu_cacheinfo(i); if (!this_cpu_ci->info_list) continue; apicid = cpu_data(i).topo.apicid; if ((apicid < first) || (apicid > last)) continue; this_leaf = this_cpu_ci->info_list + index; for_each_online_cpu(sibling) { apicid = cpu_data(sibling).topo.apicid; if ((apicid < first) || (apicid > last)) continue; cpumask_set_cpu(sibling, &this_leaf->shared_cpu_map); } } } else return 0; return 1; } static void __cache_cpumap_setup(unsigned int cpu, int index, struct _cpuid4_info_regs *base) { struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); struct cacheinfo *this_leaf, *sibling_leaf; unsigned long num_threads_sharing; int index_msb, i; struct cpuinfo_x86 *c = &cpu_data(cpu); if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) { if (__cache_amd_cpumap_setup(cpu, index, base)) return; } this_leaf = this_cpu_ci->info_list + index; num_threads_sharing = 1 + base->eax.split.num_threads_sharing; cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map); if (num_threads_sharing == 1) return; index_msb = get_count_order(num_threads_sharing); for_each_online_cpu(i) if (cpu_data(i).topo.apicid >> index_msb == c->topo.apicid >> index_msb) { struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i); if (i == cpu || !sib_cpu_ci->info_list) continue;/* skip if itself or no cacheinfo */ sibling_leaf = sib_cpu_ci->info_list + index; cpumask_set_cpu(i, &this_leaf->shared_cpu_map); cpumask_set_cpu(cpu, &sibling_leaf->shared_cpu_map); } } static void ci_leaf_init(struct cacheinfo *this_leaf, struct _cpuid4_info_regs *base) { this_leaf->id = base->id; this_leaf->attributes = CACHE_ID; this_leaf->level = base->eax.split.level; this_leaf->type = cache_type_map[base->eax.split.type]; this_leaf->coherency_line_size = base->ebx.split.coherency_line_size + 1; this_leaf->ways_of_associativity = base->ebx.split.ways_of_associativity + 1; this_leaf->size = base->size; this_leaf->number_of_sets = base->ecx.split.number_of_sets + 1; this_leaf->physical_line_partition = base->ebx.split.physical_line_partition + 1; this_leaf->priv = base->nb; } int init_cache_level(unsigned int cpu) { struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); if (!num_cache_leaves) return -ENOENT; if (!this_cpu_ci) return -EINVAL; this_cpu_ci->num_levels = 3; this_cpu_ci->num_leaves = num_cache_leaves; return 0; } /* * The max shared threads number comes from CPUID.4:EAX[25-14] with input * ECX as cache index. Then right shift apicid by the number's order to get * cache id for this cache node. */ static void get_cache_id(int cpu, struct _cpuid4_info_regs *id4_regs) { struct cpuinfo_x86 *c = &cpu_data(cpu); unsigned long num_threads_sharing; int index_msb; num_threads_sharing = 1 + id4_regs->eax.split.num_threads_sharing; index_msb = get_count_order(num_threads_sharing); id4_regs->id = c->topo.apicid >> index_msb; } int populate_cache_leaves(unsigned int cpu) { unsigned int idx, ret; struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); struct cacheinfo *this_leaf = this_cpu_ci->info_list; struct _cpuid4_info_regs id4_regs = {}; for (idx = 0; idx < this_cpu_ci->num_leaves; idx++) { ret = cpuid4_cache_lookup_regs(idx, &id4_regs); if (ret) return ret; get_cache_id(cpu, &id4_regs); ci_leaf_init(this_leaf++, &id4_regs); __cache_cpumap_setup(cpu, idx, &id4_regs); } this_cpu_ci->cpu_map_populated = true; return 0; } /* * Disable and enable caches. Needed for changing MTRRs and the PAT MSR. * * Since we are disabling the cache don't allow any interrupts, * they would run extremely slow and would only increase the pain. * * The caller must ensure that local interrupts are disabled and * are reenabled after cache_enable() has been called. */ static unsigned long saved_cr4; static DEFINE_RAW_SPINLOCK(cache_disable_lock); void cache_disable(void) __acquires(cache_disable_lock) { unsigned long cr0; /* * Note that this is not ideal * since the cache is only flushed/disabled for this CPU while the * MTRRs are changed, but changing this requires more invasive * changes to the way the kernel boots */ raw_spin_lock(&cache_disable_lock); /* Enter the no-fill (CD=1, NW=0) cache mode and flush caches. */ cr0 = read_cr0() | X86_CR0_CD; write_cr0(cr0); /* * Cache flushing is the most time-consuming step when programming * the MTRRs. Fortunately, as per the Intel Software Development * Manual, we can skip it if the processor supports cache self- * snooping. */ if (!static_cpu_has(X86_FEATURE_SELFSNOOP)) wbinvd(); /* Save value of CR4 and clear Page Global Enable (bit 7) */ if (cpu_feature_enabled(X86_FEATURE_PGE)) { saved_cr4 = __read_cr4(); __write_cr4(saved_cr4 & ~X86_CR4_PGE); } /* Flush all TLBs via a mov %cr3, %reg; mov %reg, %cr3 */ count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); flush_tlb_local(); if (cpu_feature_enabled(X86_FEATURE_MTRR)) mtrr_disable(); /* Again, only flush caches if we have to. */ if (!static_cpu_has(X86_FEATURE_SELFSNOOP)) wbinvd(); } void cache_enable(void) __releases(cache_disable_lock) { /* Flush TLBs (no need to flush caches - they are disabled) */ count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); flush_tlb_local(); if (cpu_feature_enabled(X86_FEATURE_MTRR)) mtrr_enable(); /* Enable caches */ write_cr0(read_cr0() & ~X86_CR0_CD); /* Restore value of CR4 */ if (cpu_feature_enabled(X86_FEATURE_PGE)) __write_cr4(saved_cr4); raw_spin_unlock(&cache_disable_lock); } static void cache_cpu_init(void) { unsigned long flags; local_irq_save(flags); if (memory_caching_control & CACHE_MTRR) { cache_disable(); mtrr_generic_set_state(); cache_enable(); } if (memory_caching_control & CACHE_PAT) pat_cpu_init(); local_irq_restore(flags); } static bool cache_aps_delayed_init = true; void set_cache_aps_delayed_init(bool val) { cache_aps_delayed_init = val; } bool get_cache_aps_delayed_init(void) { return cache_aps_delayed_init; } static int cache_rendezvous_handler(void *unused) { if (get_cache_aps_delayed_init() || !cpu_online(smp_processor_id())) cache_cpu_init(); return 0; } void __init cache_bp_init(void) { mtrr_bp_init(); pat_bp_init(); if (memory_caching_control) cache_cpu_init(); } void cache_bp_restore(void) { if (memory_caching_control) cache_cpu_init(); } static int cache_ap_online(unsigned int cpu) { cpumask_set_cpu(cpu, cpu_cacheinfo_mask); if (!memory_caching_control || get_cache_aps_delayed_init()) return 0; /* * Ideally we should hold mtrr_mutex here to avoid MTRR entries * changed, but this routine will be called in CPU boot time, * holding the lock breaks it. * * This routine is called in two cases: * * 1. very early time of software resume, when there absolutely * isn't MTRR entry changes; * * 2. CPU hotadd time. We let mtrr_add/del_page hold cpuhotplug * lock to prevent MTRR entry changes */ stop_machine_from_inactive_cpu(cache_rendezvous_handler, NULL, cpu_cacheinfo_mask); return 0; } static int cache_ap_offline(unsigned int cpu) { cpumask_clear_cpu(cpu, cpu_cacheinfo_mask); return 0; } /* * Delayed cache initialization for all AP's */ void cache_aps_init(void) { if (!memory_caching_control || !get_cache_aps_delayed_init()) return; stop_machine(cache_rendezvous_handler, NULL, cpu_online_mask); set_cache_aps_delayed_init(false); } static int __init cache_ap_register(void) { zalloc_cpumask_var(&cpu_cacheinfo_mask, GFP_KERNEL); cpumask_set_cpu(smp_processor_id(), cpu_cacheinfo_mask); cpuhp_setup_state_nocalls(CPUHP_AP_CACHECTRL_STARTING, "x86/cachectrl:starting", cache_ap_online, cache_ap_offline); return 0; } early_initcall(cache_ap_register);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1