Contributors: 36
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Thomas Gleixner |
1037 |
39.64% |
16 |
14.68% |
Borislav Petkov |
506 |
19.34% |
26 |
23.85% |
Ashok Raj |
148 |
5.66% |
6 |
5.50% |
Jann Horn |
135 |
5.16% |
1 |
0.92% |
Dmitry Adamushko |
114 |
4.36% |
5 |
4.59% |
Fenghua Yu |
101 |
3.86% |
4 |
3.67% |
Shaohua Li |
90 |
3.44% |
3 |
2.75% |
Linus Torvalds (pre-git) |
85 |
3.25% |
7 |
6.42% |
Peter Oruba |
71 |
2.71% |
5 |
4.59% |
jia zhang |
67 |
2.56% |
3 |
2.75% |
Jithu Joseph |
54 |
2.06% |
5 |
4.59% |
Tigran Aivazian |
43 |
1.64% |
1 |
0.92% |
Andi Kleen |
31 |
1.19% |
1 |
0.92% |
Dimitri Sivanich |
26 |
0.99% |
1 |
0.92% |
Srivatsa S. Bhat |
18 |
0.69% |
1 |
0.92% |
Ingo Molnar |
13 |
0.50% |
2 |
1.83% |
Quentin Casasnovas |
11 |
0.42% |
1 |
0.92% |
Prarit Bhargava |
9 |
0.34% |
1 |
0.92% |
Joe Perches |
9 |
0.34% |
1 |
0.92% |
Dave Jones |
9 |
0.34% |
2 |
1.83% |
Jan Beulich |
7 |
0.27% |
1 |
0.92% |
Filippo Sironi |
7 |
0.27% |
1 |
0.92% |
Brian Gerst |
3 |
0.11% |
1 |
0.92% |
Tony Luck |
3 |
0.11% |
1 |
0.92% |
Jaswinder Singh Rajput |
3 |
0.11% |
1 |
0.92% |
Mike Travis |
2 |
0.08% |
1 |
0.92% |
Gustavo A. R. Silva |
2 |
0.08% |
2 |
1.83% |
Jun'ichi Nomura |
2 |
0.08% |
1 |
0.92% |
Tom Rini |
2 |
0.08% |
1 |
0.92% |
Colin Ian King |
2 |
0.08% |
1 |
0.92% |
Hannes Eder |
1 |
0.04% |
1 |
0.92% |
Henrique de Moraes Holschuh |
1 |
0.04% |
1 |
0.92% |
Takashi Iwai |
1 |
0.04% |
1 |
0.92% |
Al Viro |
1 |
0.04% |
1 |
0.92% |
Chris Bainbridge |
1 |
0.04% |
1 |
0.92% |
Chen Yu |
1 |
0.04% |
1 |
0.92% |
Total |
2616 |
|
109 |
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Intel CPU Microcode Update Driver for Linux
*
* Copyright (C) 2000-2006 Tigran Aivazian <aivazian.tigran@gmail.com>
* 2006 Shaohua Li <shaohua.li@intel.com>
*
* Intel CPU microcode early update for Linux
*
* Copyright (C) 2012 Fenghua Yu <fenghua.yu@intel.com>
* H Peter Anvin" <hpa@zytor.com>
*/
#define pr_fmt(fmt) "microcode: " fmt
#include <linux/earlycpio.h>
#include <linux/firmware.h>
#include <linux/uaccess.h>
#include <linux/initrd.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/uio.h>
#include <linux/mm.h>
#include <asm/cpu_device_id.h>
#include <asm/processor.h>
#include <asm/tlbflush.h>
#include <asm/setup.h>
#include <asm/msr.h>
#include "internal.h"
static const char ucode_path[] = "kernel/x86/microcode/GenuineIntel.bin";
#define UCODE_BSP_LOADED ((struct microcode_intel *)0x1UL)
/* Current microcode patch used in early patching on the APs. */
static struct microcode_intel *ucode_patch_va __read_mostly;
static struct microcode_intel *ucode_patch_late __read_mostly;
/* last level cache size per core */
static unsigned int llc_size_per_core __ro_after_init;
/* microcode format is extended from prescott processors */
struct extended_signature {
unsigned int sig;
unsigned int pf;
unsigned int cksum;
};
struct extended_sigtable {
unsigned int count;
unsigned int cksum;
unsigned int reserved[3];
struct extended_signature sigs[];
};
#define DEFAULT_UCODE_TOTALSIZE (DEFAULT_UCODE_DATASIZE + MC_HEADER_SIZE)
#define EXT_HEADER_SIZE (sizeof(struct extended_sigtable))
#define EXT_SIGNATURE_SIZE (sizeof(struct extended_signature))
static inline unsigned int get_totalsize(struct microcode_header_intel *hdr)
{
return hdr->datasize ? hdr->totalsize : DEFAULT_UCODE_TOTALSIZE;
}
static inline unsigned int exttable_size(struct extended_sigtable *et)
{
return et->count * EXT_SIGNATURE_SIZE + EXT_HEADER_SIZE;
}
void intel_collect_cpu_info(struct cpu_signature *sig)
{
sig->sig = cpuid_eax(1);
sig->pf = 0;
sig->rev = intel_get_microcode_revision();
if (x86_model(sig->sig) >= 5 || x86_family(sig->sig) > 6) {
unsigned int val[2];
/* get processor flags from MSR 0x17 */
native_rdmsr(MSR_IA32_PLATFORM_ID, val[0], val[1]);
sig->pf = 1 << ((val[1] >> 18) & 7);
}
}
EXPORT_SYMBOL_GPL(intel_collect_cpu_info);
static inline bool cpu_signatures_match(struct cpu_signature *s1, unsigned int sig2,
unsigned int pf2)
{
if (s1->sig != sig2)
return false;
/* Processor flags are either both 0 or they intersect. */
return ((!s1->pf && !pf2) || (s1->pf & pf2));
}
bool intel_find_matching_signature(void *mc, struct cpu_signature *sig)
{
struct microcode_header_intel *mc_hdr = mc;
struct extended_signature *ext_sig;
struct extended_sigtable *ext_hdr;
int i;
if (cpu_signatures_match(sig, mc_hdr->sig, mc_hdr->pf))
return true;
/* Look for ext. headers: */
if (get_totalsize(mc_hdr) <= intel_microcode_get_datasize(mc_hdr) + MC_HEADER_SIZE)
return false;
ext_hdr = mc + intel_microcode_get_datasize(mc_hdr) + MC_HEADER_SIZE;
ext_sig = (void *)ext_hdr + EXT_HEADER_SIZE;
for (i = 0; i < ext_hdr->count; i++) {
if (cpu_signatures_match(sig, ext_sig->sig, ext_sig->pf))
return true;
ext_sig++;
}
return 0;
}
EXPORT_SYMBOL_GPL(intel_find_matching_signature);
/**
* intel_microcode_sanity_check() - Sanity check microcode file.
* @mc: Pointer to the microcode file contents.
* @print_err: Display failure reason if true, silent if false.
* @hdr_type: Type of file, i.e. normal microcode file or In Field Scan file.
* Validate if the microcode header type matches with the type
* specified here.
*
* Validate certain header fields and verify if computed checksum matches
* with the one specified in the header.
*
* Return: 0 if the file passes all the checks, -EINVAL if any of the checks
* fail.
*/
int intel_microcode_sanity_check(void *mc, bool print_err, int hdr_type)
{
unsigned long total_size, data_size, ext_table_size;
struct microcode_header_intel *mc_header = mc;
struct extended_sigtable *ext_header = NULL;
u32 sum, orig_sum, ext_sigcount = 0, i;
struct extended_signature *ext_sig;
total_size = get_totalsize(mc_header);
data_size = intel_microcode_get_datasize(mc_header);
if (data_size + MC_HEADER_SIZE > total_size) {
if (print_err)
pr_err("Error: bad microcode data file size.\n");
return -EINVAL;
}
if (mc_header->ldrver != 1 || mc_header->hdrver != hdr_type) {
if (print_err)
pr_err("Error: invalid/unknown microcode update format. Header type %d\n",
mc_header->hdrver);
return -EINVAL;
}
ext_table_size = total_size - (MC_HEADER_SIZE + data_size);
if (ext_table_size) {
u32 ext_table_sum = 0;
u32 *ext_tablep;
if (ext_table_size < EXT_HEADER_SIZE ||
((ext_table_size - EXT_HEADER_SIZE) % EXT_SIGNATURE_SIZE)) {
if (print_err)
pr_err("Error: truncated extended signature table.\n");
return -EINVAL;
}
ext_header = mc + MC_HEADER_SIZE + data_size;
if (ext_table_size != exttable_size(ext_header)) {
if (print_err)
pr_err("Error: extended signature table size mismatch.\n");
return -EFAULT;
}
ext_sigcount = ext_header->count;
/*
* Check extended table checksum: the sum of all dwords that
* comprise a valid table must be 0.
*/
ext_tablep = (u32 *)ext_header;
i = ext_table_size / sizeof(u32);
while (i--)
ext_table_sum += ext_tablep[i];
if (ext_table_sum) {
if (print_err)
pr_warn("Bad extended signature table checksum, aborting.\n");
return -EINVAL;
}
}
/*
* Calculate the checksum of update data and header. The checksum of
* valid update data and header including the extended signature table
* must be 0.
*/
orig_sum = 0;
i = (MC_HEADER_SIZE + data_size) / sizeof(u32);
while (i--)
orig_sum += ((u32 *)mc)[i];
if (orig_sum) {
if (print_err)
pr_err("Bad microcode data checksum, aborting.\n");
return -EINVAL;
}
if (!ext_table_size)
return 0;
/*
* Check extended signature checksum: 0 => valid.
*/
for (i = 0; i < ext_sigcount; i++) {
ext_sig = (void *)ext_header + EXT_HEADER_SIZE +
EXT_SIGNATURE_SIZE * i;
sum = (mc_header->sig + mc_header->pf + mc_header->cksum) -
(ext_sig->sig + ext_sig->pf + ext_sig->cksum);
if (sum) {
if (print_err)
pr_err("Bad extended signature checksum, aborting.\n");
return -EINVAL;
}
}
return 0;
}
EXPORT_SYMBOL_GPL(intel_microcode_sanity_check);
static void update_ucode_pointer(struct microcode_intel *mc)
{
kvfree(ucode_patch_va);
/*
* Save the virtual address for early loading and for eventual free
* on late loading.
*/
ucode_patch_va = mc;
}
static void save_microcode_patch(struct microcode_intel *patch)
{
unsigned int size = get_totalsize(&patch->hdr);
struct microcode_intel *mc;
mc = kvmemdup(patch, size, GFP_KERNEL);
if (mc)
update_ucode_pointer(mc);
else
pr_err("Unable to allocate microcode memory size: %u\n", size);
}
/* Scan blob for microcode matching the boot CPUs family, model, stepping */
static __init struct microcode_intel *scan_microcode(void *data, size_t size,
struct ucode_cpu_info *uci,
bool save)
{
struct microcode_header_intel *mc_header;
struct microcode_intel *patch = NULL;
u32 cur_rev = uci->cpu_sig.rev;
unsigned int mc_size;
for (; size >= sizeof(struct microcode_header_intel); size -= mc_size, data += mc_size) {
mc_header = (struct microcode_header_intel *)data;
mc_size = get_totalsize(mc_header);
if (!mc_size || mc_size > size ||
intel_microcode_sanity_check(data, false, MC_HEADER_TYPE_MICROCODE) < 0)
break;
if (!intel_find_matching_signature(data, &uci->cpu_sig))
continue;
/*
* For saving the early microcode, find the matching revision which
* was loaded on the BSP.
*
* On the BSP during early boot, find a newer revision than
* actually loaded in the CPU.
*/
if (save) {
if (cur_rev != mc_header->rev)
continue;
} else if (cur_rev >= mc_header->rev) {
continue;
}
patch = data;
cur_rev = mc_header->rev;
}
return size ? NULL : patch;
}
static enum ucode_state __apply_microcode(struct ucode_cpu_info *uci,
struct microcode_intel *mc,
u32 *cur_rev)
{
u32 rev;
if (!mc)
return UCODE_NFOUND;
/*
* Save us the MSR write below - which is a particular expensive
* operation - when the other hyperthread has updated the microcode
* already.
*/
*cur_rev = intel_get_microcode_revision();
if (*cur_rev >= mc->hdr.rev) {
uci->cpu_sig.rev = *cur_rev;
return UCODE_OK;
}
/*
* Writeback and invalidate caches before updating microcode to avoid
* internal issues depending on what the microcode is updating.
*/
native_wbinvd();
/* write microcode via MSR 0x79 */
native_wrmsrl(MSR_IA32_UCODE_WRITE, (unsigned long)mc->bits);
rev = intel_get_microcode_revision();
if (rev != mc->hdr.rev)
return UCODE_ERROR;
uci->cpu_sig.rev = rev;
return UCODE_UPDATED;
}
static enum ucode_state apply_microcode_early(struct ucode_cpu_info *uci)
{
struct microcode_intel *mc = uci->mc;
u32 cur_rev;
return __apply_microcode(uci, mc, &cur_rev);
}
static __init bool load_builtin_intel_microcode(struct cpio_data *cp)
{
unsigned int eax = 1, ebx, ecx = 0, edx;
struct firmware fw;
char name[30];
if (IS_ENABLED(CONFIG_X86_32))
return false;
native_cpuid(&eax, &ebx, &ecx, &edx);
sprintf(name, "intel-ucode/%02x-%02x-%02x",
x86_family(eax), x86_model(eax), x86_stepping(eax));
if (firmware_request_builtin(&fw, name)) {
cp->size = fw.size;
cp->data = (void *)fw.data;
return true;
}
return false;
}
static __init struct microcode_intel *get_microcode_blob(struct ucode_cpu_info *uci, bool save)
{
struct cpio_data cp;
intel_collect_cpu_info(&uci->cpu_sig);
if (!load_builtin_intel_microcode(&cp))
cp = find_microcode_in_initrd(ucode_path);
if (!(cp.data && cp.size))
return NULL;
return scan_microcode(cp.data, cp.size, uci, save);
}
/*
* Invoked from an early init call to save the microcode blob which was
* selected during early boot when mm was not usable. The microcode must be
* saved because initrd is going away. It's an early init call so the APs
* just can use the pointer and do not have to scan initrd/builtin firmware
* again.
*/
static int __init save_builtin_microcode(void)
{
struct ucode_cpu_info uci;
if (xchg(&ucode_patch_va, NULL) != UCODE_BSP_LOADED)
return 0;
if (dis_ucode_ldr || boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
return 0;
uci.mc = get_microcode_blob(&uci, true);
if (uci.mc)
save_microcode_patch(uci.mc);
return 0;
}
early_initcall(save_builtin_microcode);
/* Load microcode on BSP from initrd or builtin blobs */
void __init load_ucode_intel_bsp(struct early_load_data *ed)
{
struct ucode_cpu_info uci;
uci.mc = get_microcode_blob(&uci, false);
ed->old_rev = uci.cpu_sig.rev;
if (uci.mc && apply_microcode_early(&uci) == UCODE_UPDATED) {
ucode_patch_va = UCODE_BSP_LOADED;
ed->new_rev = uci.cpu_sig.rev;
}
}
void load_ucode_intel_ap(void)
{
struct ucode_cpu_info uci;
uci.mc = ucode_patch_va;
if (uci.mc)
apply_microcode_early(&uci);
}
/* Reload microcode on resume */
void reload_ucode_intel(void)
{
struct ucode_cpu_info uci = { .mc = ucode_patch_va, };
if (uci.mc)
apply_microcode_early(&uci);
}
static int collect_cpu_info(int cpu_num, struct cpu_signature *csig)
{
intel_collect_cpu_info(csig);
return 0;
}
static enum ucode_state apply_microcode_late(int cpu)
{
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
struct microcode_intel *mc = ucode_patch_late;
enum ucode_state ret;
u32 cur_rev;
if (WARN_ON_ONCE(smp_processor_id() != cpu))
return UCODE_ERROR;
ret = __apply_microcode(uci, mc, &cur_rev);
if (ret != UCODE_UPDATED && ret != UCODE_OK)
return ret;
cpu_data(cpu).microcode = uci->cpu_sig.rev;
if (!cpu)
boot_cpu_data.microcode = uci->cpu_sig.rev;
return ret;
}
static bool ucode_validate_minrev(struct microcode_header_intel *mc_header)
{
int cur_rev = boot_cpu_data.microcode;
/*
* When late-loading, ensure the header declares a minimum revision
* required to perform a late-load. The previously reserved field
* is 0 in older microcode blobs.
*/
if (!mc_header->min_req_ver) {
pr_info("Unsafe microcode update: Microcode header does not specify a required min version\n");
return false;
}
/*
* Check whether the current revision is either greater or equal to
* to the minimum revision specified in the header.
*/
if (cur_rev < mc_header->min_req_ver) {
pr_info("Unsafe microcode update: Current revision 0x%x too old\n", cur_rev);
pr_info("Current should be at 0x%x or higher. Use early loading instead\n", mc_header->min_req_ver);
return false;
}
return true;
}
static enum ucode_state parse_microcode_blobs(int cpu, struct iov_iter *iter)
{
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
bool is_safe, new_is_safe = false;
int cur_rev = uci->cpu_sig.rev;
unsigned int curr_mc_size = 0;
u8 *new_mc = NULL, *mc = NULL;
while (iov_iter_count(iter)) {
struct microcode_header_intel mc_header;
unsigned int mc_size, data_size;
u8 *data;
if (!copy_from_iter_full(&mc_header, sizeof(mc_header), iter)) {
pr_err("error! Truncated or inaccessible header in microcode data file\n");
goto fail;
}
mc_size = get_totalsize(&mc_header);
if (mc_size < sizeof(mc_header)) {
pr_err("error! Bad data in microcode data file (totalsize too small)\n");
goto fail;
}
data_size = mc_size - sizeof(mc_header);
if (data_size > iov_iter_count(iter)) {
pr_err("error! Bad data in microcode data file (truncated file?)\n");
goto fail;
}
/* For performance reasons, reuse mc area when possible */
if (!mc || mc_size > curr_mc_size) {
kvfree(mc);
mc = kvmalloc(mc_size, GFP_KERNEL);
if (!mc)
goto fail;
curr_mc_size = mc_size;
}
memcpy(mc, &mc_header, sizeof(mc_header));
data = mc + sizeof(mc_header);
if (!copy_from_iter_full(data, data_size, iter) ||
intel_microcode_sanity_check(mc, true, MC_HEADER_TYPE_MICROCODE) < 0)
goto fail;
if (cur_rev >= mc_header.rev)
continue;
if (!intel_find_matching_signature(mc, &uci->cpu_sig))
continue;
is_safe = ucode_validate_minrev(&mc_header);
if (force_minrev && !is_safe)
continue;
kvfree(new_mc);
cur_rev = mc_header.rev;
new_mc = mc;
new_is_safe = is_safe;
mc = NULL;
}
if (iov_iter_count(iter))
goto fail;
kvfree(mc);
if (!new_mc)
return UCODE_NFOUND;
ucode_patch_late = (struct microcode_intel *)new_mc;
return new_is_safe ? UCODE_NEW_SAFE : UCODE_NEW;
fail:
kvfree(mc);
kvfree(new_mc);
return UCODE_ERROR;
}
static bool is_blacklisted(unsigned int cpu)
{
struct cpuinfo_x86 *c = &cpu_data(cpu);
/*
* Late loading on model 79 with microcode revision less than 0x0b000021
* and LLC size per core bigger than 2.5MB may result in a system hang.
* This behavior is documented in item BDF90, #334165 (Intel Xeon
* Processor E7-8800/4800 v4 Product Family).
*/
if (c->x86_vfm == INTEL_BROADWELL_X &&
c->x86_stepping == 0x01 &&
llc_size_per_core > 2621440 &&
c->microcode < 0x0b000021) {
pr_err_once("Erratum BDF90: late loading with revision < 0x0b000021 (0x%x) disabled.\n", c->microcode);
pr_err_once("Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
return true;
}
return false;
}
static enum ucode_state request_microcode_fw(int cpu, struct device *device)
{
struct cpuinfo_x86 *c = &cpu_data(cpu);
const struct firmware *firmware;
struct iov_iter iter;
enum ucode_state ret;
struct kvec kvec;
char name[30];
if (is_blacklisted(cpu))
return UCODE_NFOUND;
sprintf(name, "intel-ucode/%02x-%02x-%02x",
c->x86, c->x86_model, c->x86_stepping);
if (request_firmware_direct(&firmware, name, device)) {
pr_debug("data file %s load failed\n", name);
return UCODE_NFOUND;
}
kvec.iov_base = (void *)firmware->data;
kvec.iov_len = firmware->size;
iov_iter_kvec(&iter, ITER_SOURCE, &kvec, 1, firmware->size);
ret = parse_microcode_blobs(cpu, &iter);
release_firmware(firmware);
return ret;
}
static void finalize_late_load(int result)
{
if (!result)
update_ucode_pointer(ucode_patch_late);
else
kvfree(ucode_patch_late);
ucode_patch_late = NULL;
}
static struct microcode_ops microcode_intel_ops = {
.request_microcode_fw = request_microcode_fw,
.collect_cpu_info = collect_cpu_info,
.apply_microcode = apply_microcode_late,
.finalize_late_load = finalize_late_load,
.use_nmi = IS_ENABLED(CONFIG_X86_64),
};
static __init void calc_llc_size_per_core(struct cpuinfo_x86 *c)
{
u64 llc_size = c->x86_cache_size * 1024ULL;
do_div(llc_size, topology_num_cores_per_package());
llc_size_per_core = (unsigned int)llc_size;
}
struct microcode_ops * __init init_intel_microcode(void)
{
struct cpuinfo_x86 *c = &boot_cpu_data;
if (c->x86_vendor != X86_VENDOR_INTEL || c->x86 < 6 ||
cpu_has(c, X86_FEATURE_IA64)) {
pr_err("Intel CPU family 0x%x not supported\n", c->x86);
return NULL;
}
calc_llc_size_per_core(c);
return µcode_intel_ops;
}