Contributors: 40
Author Tokens Token Proportion Commits Commit Proportion
Juergen Gross 1758 39.95% 12 13.64%
Dave Jones 632 14.36% 2 2.27%
Linus Torvalds (pre-git) 372 8.45% 10 11.36%
Yinghai Lu 354 8.05% 7 7.95%
Patrick Mochel 300 6.82% 1 1.14%
Jan Beulich 290 6.59% 2 2.27%
Bernhard Kaindl 152 3.45% 2 2.27%
Venkatesh Pallipadi 116 2.64% 3 3.41%
Andreas Herrmann 72 1.64% 1 1.14%
Jaswinder Singh Rajput 63 1.43% 6 6.82%
Shaohua Li 55 1.25% 1 1.14%
Toshi Kani 52 1.18% 3 3.41%
Andi Kleen 48 1.09% 2 2.27%
Ingo Molnar 18 0.41% 5 5.68%
Linus Torvalds 15 0.34% 1 1.14%
Chen Yucong 15 0.34% 1 1.14%
Luis R. Rodriguez 12 0.27% 1 1.14%
Paul Jimenez 9 0.20% 1 1.14%
Sheng Yang 9 0.20% 1 1.14%
Borislav Petkov 8 0.18% 3 3.41%
Ashish Kalra 6 0.14% 1 1.14%
Alan Cox 6 0.14% 2 2.27%
Rusty Russell 6 0.14% 2 2.27%
Prarit Bhargava 5 0.11% 1 1.14%
Andrew Morton 5 0.11% 2 2.27%
Alok N Kataria 3 0.07% 1 1.14%
Jordan Borgner 2 0.05% 1 1.14%
Sam Ravnborg 2 0.05% 1 1.14%
Andreas Mohr 2 0.05% 1 1.14%
Brijesh Singh 2 0.05% 1 1.14%
Andres Salomon 2 0.05% 1 1.14%
Adam Buchbinder 1 0.02% 1 1.14%
jia zhang 1 0.02% 1 1.14%
Randy Dunlap 1 0.02% 1 1.14%
Thomas Gleixner 1 0.02% 1 1.14%
Adrian Bunk 1 0.02% 1 1.14%
Emese Revfy 1 0.02% 1 1.14%
Andries E. Brouwer 1 0.02% 1 1.14%
Paul Gortmaker 1 0.02% 1 1.14%
Lucas De Marchi 1 0.02% 1 1.14%
Total 4400 88


// SPDX-License-Identifier: GPL-2.0-only
/*
 * This only handles 32bit MTRR on 32bit hosts. This is strictly wrong
 * because MTRRs can span up to 40 bits (36bits on most modern x86)
 */

#include <linux/export.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/mm.h>
#include <linux/cc_platform.h>
#include <asm/processor-flags.h>
#include <asm/cacheinfo.h>
#include <asm/cpufeature.h>
#include <asm/hypervisor.h>
#include <asm/mshyperv.h>
#include <asm/tlbflush.h>
#include <asm/mtrr.h>
#include <asm/msr.h>
#include <asm/memtype.h>

#include "mtrr.h"

struct fixed_range_block {
	int base_msr;		/* start address of an MTRR block */
	int ranges;		/* number of MTRRs in this block  */
};

static struct fixed_range_block fixed_range_blocks[] = {
	{ MSR_MTRRfix64K_00000, 1 }, /* one   64k MTRR  */
	{ MSR_MTRRfix16K_80000, 2 }, /* two   16k MTRRs */
	{ MSR_MTRRfix4K_C0000,  8 }, /* eight  4k MTRRs */
	{}
};

struct cache_map {
	u64 start;
	u64 end;
	u64 flags;
	u64 type:8;
	u64 fixed:1;
};

bool mtrr_debug;

static int __init mtrr_param_setup(char *str)
{
	int rc = 0;

	if (!str)
		return -EINVAL;
	if (!strcmp(str, "debug"))
		mtrr_debug = true;
	else
		rc = -EINVAL;

	return rc;
}
early_param("mtrr", mtrr_param_setup);

/*
 * CACHE_MAP_MAX is the maximum number of memory ranges in cache_map, where
 * no 2 adjacent ranges have the same cache mode (those would be merged).
 * The number is based on the worst case:
 * - no two adjacent fixed MTRRs share the same cache mode
 * - one variable MTRR is spanning a huge area with mode WB
 * - 255 variable MTRRs with mode UC all overlap with the WB MTRR, creating 2
 *   additional ranges each (result like "ababababa...aba" with a = WB, b = UC),
 *   accounting for MTRR_MAX_VAR_RANGES * 2 - 1 range entries
 * - a TOP_MEM2 area (even with overlapping an UC MTRR can't add 2 range entries
 *   to the possible maximum, as it always starts at 4GB, thus it can't be in
 *   the middle of that MTRR, unless that MTRR starts at 0, which would remove
 *   the initial "a" from the "abababa" pattern above)
 * The map won't contain ranges with no matching MTRR (those fall back to the
 * default cache mode).
 */
#define CACHE_MAP_MAX	(MTRR_NUM_FIXED_RANGES + MTRR_MAX_VAR_RANGES * 2)

static struct cache_map init_cache_map[CACHE_MAP_MAX] __initdata;
static struct cache_map *cache_map __refdata = init_cache_map;
static unsigned int cache_map_size = CACHE_MAP_MAX;
static unsigned int cache_map_n;
static unsigned int cache_map_fixed;

static unsigned long smp_changes_mask;
static int mtrr_state_set;
u64 mtrr_tom2;

struct mtrr_state_type mtrr_state;
EXPORT_SYMBOL_GPL(mtrr_state);

/* Reserved bits in the high portion of the MTRRphysBaseN MSR. */
u32 phys_hi_rsvd;

/*
 * BIOS is expected to clear MtrrFixDramModEn bit, see for example
 * "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
 * Opteron Processors" (26094 Rev. 3.30 February 2006), section
 * "13.2.1.2 SYSCFG Register": "The MtrrFixDramModEn bit should be set
 * to 1 during BIOS initialization of the fixed MTRRs, then cleared to
 * 0 for operation."
 */
static inline void k8_check_syscfg_dram_mod_en(void)
{
	u32 lo, hi;

	if (!((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) &&
	      (boot_cpu_data.x86 >= 0x0f)))
		return;

	if (cc_platform_has(CC_ATTR_HOST_SEV_SNP))
		return;

	rdmsr(MSR_AMD64_SYSCFG, lo, hi);
	if (lo & K8_MTRRFIXRANGE_DRAM_MODIFY) {
		pr_err(FW_WARN "MTRR: CPU %u: SYSCFG[MtrrFixDramModEn]"
		       " not cleared by BIOS, clearing this bit\n",
		       smp_processor_id());
		lo &= ~K8_MTRRFIXRANGE_DRAM_MODIFY;
		mtrr_wrmsr(MSR_AMD64_SYSCFG, lo, hi);
	}
}

/* Get the size of contiguous MTRR range */
static u64 get_mtrr_size(u64 mask)
{
	u64 size;

	mask |= (u64)phys_hi_rsvd << 32;
	size = -mask;

	return size;
}

static u8 get_var_mtrr_state(unsigned int reg, u64 *start, u64 *size)
{
	struct mtrr_var_range *mtrr = mtrr_state.var_ranges + reg;

	if (!(mtrr->mask_lo & MTRR_PHYSMASK_V))
		return MTRR_TYPE_INVALID;

	*start = (((u64)mtrr->base_hi) << 32) + (mtrr->base_lo & PAGE_MASK);
	*size = get_mtrr_size((((u64)mtrr->mask_hi) << 32) +
			      (mtrr->mask_lo & PAGE_MASK));

	return mtrr->base_lo & MTRR_PHYSBASE_TYPE;
}

static u8 get_effective_type(u8 type1, u8 type2)
{
	if (type1 == MTRR_TYPE_UNCACHABLE || type2 == MTRR_TYPE_UNCACHABLE)
		return MTRR_TYPE_UNCACHABLE;

	if ((type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH) ||
	    (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK))
		return MTRR_TYPE_WRTHROUGH;

	if (type1 != type2)
		return MTRR_TYPE_UNCACHABLE;

	return type1;
}

static void rm_map_entry_at(int idx)
{
	cache_map_n--;
	if (cache_map_n > idx) {
		memmove(cache_map + idx, cache_map + idx + 1,
			sizeof(*cache_map) * (cache_map_n - idx));
	}
}

/*
 * Add an entry into cache_map at a specific index.  Merges adjacent entries if
 * appropriate.  Return the number of merges for correcting the scan index
 * (this is needed as merging will reduce the number of entries, which will
 * result in skipping entries in future iterations if the scan index isn't
 * corrected).
 * Note that the corrected index can never go below -1 (resulting in being 0 in
 * the next scan iteration), as "2" is returned only if the current index is
 * larger than zero.
 */
static int add_map_entry_at(u64 start, u64 end, u8 type, int idx)
{
	bool merge_prev = false, merge_next = false;

	if (start >= end)
		return 0;

	if (idx > 0) {
		struct cache_map *prev = cache_map + idx - 1;

		if (!prev->fixed && start == prev->end && type == prev->type)
			merge_prev = true;
	}

	if (idx < cache_map_n) {
		struct cache_map *next = cache_map + idx;

		if (!next->fixed && end == next->start && type == next->type)
			merge_next = true;
	}

	if (merge_prev && merge_next) {
		cache_map[idx - 1].end = cache_map[idx].end;
		rm_map_entry_at(idx);
		return 2;
	}
	if (merge_prev) {
		cache_map[idx - 1].end = end;
		return 1;
	}
	if (merge_next) {
		cache_map[idx].start = start;
		return 1;
	}

	/* Sanity check: the array should NEVER be too small! */
	if (cache_map_n == cache_map_size) {
		WARN(1, "MTRR cache mode memory map exhausted!\n");
		cache_map_n = cache_map_fixed;
		return 0;
	}

	if (cache_map_n > idx) {
		memmove(cache_map + idx + 1, cache_map + idx,
			sizeof(*cache_map) * (cache_map_n - idx));
	}

	cache_map[idx].start = start;
	cache_map[idx].end = end;
	cache_map[idx].type = type;
	cache_map[idx].fixed = 0;
	cache_map_n++;

	return 0;
}

/* Clear a part of an entry. Return 1 if start of entry is still valid. */
static int clr_map_range_at(u64 start, u64 end, int idx)
{
	int ret = start != cache_map[idx].start;
	u64 tmp;

	if (start == cache_map[idx].start && end == cache_map[idx].end) {
		rm_map_entry_at(idx);
	} else if (start == cache_map[idx].start) {
		cache_map[idx].start = end;
	} else if (end == cache_map[idx].end) {
		cache_map[idx].end = start;
	} else {
		tmp = cache_map[idx].end;
		cache_map[idx].end = start;
		add_map_entry_at(end, tmp, cache_map[idx].type, idx + 1);
	}

	return ret;
}

/*
 * Add MTRR to the map.  The current map is scanned and each part of the MTRR
 * either overlapping with an existing entry or with a hole in the map is
 * handled separately.
 */
static void add_map_entry(u64 start, u64 end, u8 type)
{
	u8 new_type, old_type;
	u64 tmp;
	int i;

	for (i = 0; i < cache_map_n && start < end; i++) {
		if (start >= cache_map[i].end)
			continue;

		if (start < cache_map[i].start) {
			/* Region start has no overlap. */
			tmp = min(end, cache_map[i].start);
			i -= add_map_entry_at(start, tmp,  type, i);
			start = tmp;
			continue;
		}

		new_type = get_effective_type(type, cache_map[i].type);
		old_type = cache_map[i].type;

		if (cache_map[i].fixed || new_type == old_type) {
			/* Cut off start of new entry. */
			start = cache_map[i].end;
			continue;
		}

		/* Handle only overlapping part of region. */
		tmp = min(end, cache_map[i].end);
		i += clr_map_range_at(start, tmp, i);
		i -= add_map_entry_at(start, tmp, new_type, i);
		start = tmp;
	}

	/* Add rest of region after last map entry (rest might be empty). */
	add_map_entry_at(start, end, type, i);
}

/* Add variable MTRRs to cache map. */
static void map_add_var(void)
{
	u64 start, size;
	unsigned int i;
	u8 type;

	/*
	 * Add AMD TOP_MEM2 area.  Can't be added in mtrr_build_map(), as it
	 * needs to be added again when rebuilding the map due to potentially
	 * having moved as a result of variable MTRRs for memory below 4GB.
	 */
	if (mtrr_tom2) {
		add_map_entry(BIT_ULL(32), mtrr_tom2, MTRR_TYPE_WRBACK);
		cache_map[cache_map_n - 1].fixed = 1;
	}

	for (i = 0; i < num_var_ranges; i++) {
		type = get_var_mtrr_state(i, &start, &size);
		if (type != MTRR_TYPE_INVALID)
			add_map_entry(start, start + size, type);
	}
}

/*
 * Rebuild map by replacing variable entries.  Needs to be called when MTRR
 * registers are being changed after boot, as such changes could include
 * removals of registers, which are complicated to handle without rebuild of
 * the map.
 */
void generic_rebuild_map(void)
{
	if (mtrr_if != &generic_mtrr_ops)
		return;

	cache_map_n = cache_map_fixed;

	map_add_var();
}

static unsigned int __init get_cache_map_size(void)
{
	return cache_map_fixed + 2 * num_var_ranges + (mtrr_tom2 != 0);
}

/* Build the cache_map containing the cache modes per memory range. */
void __init mtrr_build_map(void)
{
	u64 start, end, size;
	unsigned int i;
	u8 type;

	/* Add fixed MTRRs, optimize for adjacent entries with same type. */
	if (mtrr_state.enabled & MTRR_STATE_MTRR_FIXED_ENABLED) {
		/*
		 * Start with 64k size fixed entries, preset 1st one (hence the
		 * loop below is starting with index 1).
		 */
		start = 0;
		end = size = 0x10000;
		type = mtrr_state.fixed_ranges[0];

		for (i = 1; i < MTRR_NUM_FIXED_RANGES; i++) {
			/* 8 64k entries, then 16 16k ones, rest 4k. */
			if (i == 8 || i == 24)
				size >>= 2;

			if (mtrr_state.fixed_ranges[i] != type) {
				add_map_entry(start, end, type);
				start = end;
				type = mtrr_state.fixed_ranges[i];
			}
			end += size;
		}
		add_map_entry(start, end, type);
	}

	/* Mark fixed, they take precedence. */
	for (i = 0; i < cache_map_n; i++)
		cache_map[i].fixed = 1;
	cache_map_fixed = cache_map_n;

	map_add_var();

	pr_info("MTRR map: %u entries (%u fixed + %u variable; max %u), built from %u variable MTRRs\n",
		cache_map_n, cache_map_fixed, cache_map_n - cache_map_fixed,
		get_cache_map_size(), num_var_ranges + (mtrr_tom2 != 0));

	if (mtrr_debug) {
		for (i = 0; i < cache_map_n; i++) {
			pr_info("%3u: %016llx-%016llx %s\n", i,
				cache_map[i].start, cache_map[i].end - 1,
				mtrr_attrib_to_str(cache_map[i].type));
		}
	}
}

/* Copy the cache_map from __initdata memory to dynamically allocated one. */
void __init mtrr_copy_map(void)
{
	unsigned int new_size = get_cache_map_size();

	if (!mtrr_state.enabled || !new_size) {
		cache_map = NULL;
		return;
	}

	mutex_lock(&mtrr_mutex);

	cache_map = kcalloc(new_size, sizeof(*cache_map), GFP_KERNEL);
	if (cache_map) {
		memmove(cache_map, init_cache_map,
			cache_map_n * sizeof(*cache_map));
		cache_map_size = new_size;
	} else {
		mtrr_state.enabled = 0;
		pr_err("MTRRs disabled due to allocation failure for lookup map.\n");
	}

	mutex_unlock(&mtrr_mutex);
}

/**
 * mtrr_overwrite_state - set static MTRR state
 *
 * Used to set MTRR state via different means (e.g. with data obtained from
 * a hypervisor).
 * Is allowed only for special cases when running virtualized. Must be called
 * from the x86_init.hyper.init_platform() hook.  It can be called only once.
 * The MTRR state can't be changed afterwards.  To ensure that, X86_FEATURE_MTRR
 * is cleared.
 *
 * @var: MTRR variable range array to use
 * @num_var: length of the @var array
 * @def_type: default caching type
 */
void mtrr_overwrite_state(struct mtrr_var_range *var, unsigned int num_var,
			  mtrr_type def_type)
{
	unsigned int i;

	/* Only allowed to be called once before mtrr_bp_init(). */
	if (WARN_ON_ONCE(mtrr_state_set))
		return;

	/* Only allowed when running virtualized. */
	if (!cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
		return;

	/*
	 * Only allowed for special virtualization cases:
	 * - when running as Hyper-V, SEV-SNP guest using vTOM
	 * - when running as Xen PV guest
	 * - when running as SEV-SNP or TDX guest to avoid unnecessary
	 *   VMM communication/Virtualization exceptions (#VC, #VE)
	 */
	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP) &&
	    !hv_is_isolation_supported() &&
	    !cpu_feature_enabled(X86_FEATURE_XENPV) &&
	    !cpu_feature_enabled(X86_FEATURE_TDX_GUEST))
		return;

	/* Disable MTRR in order to disable MTRR modifications. */
	setup_clear_cpu_cap(X86_FEATURE_MTRR);

	if (var) {
		if (num_var > MTRR_MAX_VAR_RANGES) {
			pr_warn("Trying to overwrite MTRR state with %u variable entries\n",
				num_var);
			num_var = MTRR_MAX_VAR_RANGES;
		}
		for (i = 0; i < num_var; i++)
			mtrr_state.var_ranges[i] = var[i];
		num_var_ranges = num_var;
	}

	mtrr_state.def_type = def_type;
	mtrr_state.enabled |= MTRR_STATE_MTRR_ENABLED;

	mtrr_state_set = 1;
}

static u8 type_merge(u8 type, u8 new_type, u8 *uniform)
{
	u8 effective_type;

	if (type == MTRR_TYPE_INVALID)
		return new_type;

	effective_type = get_effective_type(type, new_type);
	if (type != effective_type)
		*uniform = 0;

	return effective_type;
}

/**
 * mtrr_type_lookup - look up memory type in MTRR
 *
 * @start: Begin of the physical address range
 * @end: End of the physical address range
 * @uniform: output argument:
 *  - 1: the returned MTRR type is valid for the whole region
 *  - 0: otherwise
 *
 * Return Values:
 * MTRR_TYPE_(type)  - The effective MTRR type for the region
 * MTRR_TYPE_INVALID - MTRR is disabled
 */
u8 mtrr_type_lookup(u64 start, u64 end, u8 *uniform)
{
	u8 type = MTRR_TYPE_INVALID;
	unsigned int i;

	if (!mtrr_state_set) {
		/* Uniformity is unknown. */
		*uniform = 0;
		return MTRR_TYPE_UNCACHABLE;
	}

	*uniform = 1;

	if (!(mtrr_state.enabled & MTRR_STATE_MTRR_ENABLED))
		return MTRR_TYPE_UNCACHABLE;

	for (i = 0; i < cache_map_n && start < end; i++) {
		/* Region after current map entry? -> continue with next one. */
		if (start >= cache_map[i].end)
			continue;

		/* Start of region not covered by current map entry? */
		if (start < cache_map[i].start) {
			/* At least some part of region has default type. */
			type = type_merge(type, mtrr_state.def_type, uniform);
			/* End of region not covered, too? -> lookup done. */
			if (end <= cache_map[i].start)
				return type;
		}

		/* At least part of region covered by map entry. */
		type = type_merge(type, cache_map[i].type, uniform);

		start = cache_map[i].end;
	}

	/* End of region past last entry in map? -> use default type. */
	if (start < end)
		type = type_merge(type, mtrr_state.def_type, uniform);

	return type;
}

/* Get the MSR pair relating to a var range */
static void
get_mtrr_var_range(unsigned int index, struct mtrr_var_range *vr)
{
	rdmsr(MTRRphysBase_MSR(index), vr->base_lo, vr->base_hi);
	rdmsr(MTRRphysMask_MSR(index), vr->mask_lo, vr->mask_hi);
}

/* Fill the MSR pair relating to a var range */
void fill_mtrr_var_range(unsigned int index,
		u32 base_lo, u32 base_hi, u32 mask_lo, u32 mask_hi)
{
	struct mtrr_var_range *vr;

	vr = mtrr_state.var_ranges;

	vr[index].base_lo = base_lo;
	vr[index].base_hi = base_hi;
	vr[index].mask_lo = mask_lo;
	vr[index].mask_hi = mask_hi;
}

static void get_fixed_ranges(mtrr_type *frs)
{
	unsigned int *p = (unsigned int *)frs;
	int i;

	k8_check_syscfg_dram_mod_en();

	rdmsr(MSR_MTRRfix64K_00000, p[0], p[1]);

	for (i = 0; i < 2; i++)
		rdmsr(MSR_MTRRfix16K_80000 + i, p[2 + i * 2], p[3 + i * 2]);
	for (i = 0; i < 8; i++)
		rdmsr(MSR_MTRRfix4K_C0000 + i, p[6 + i * 2], p[7 + i * 2]);
}

void mtrr_save_fixed_ranges(void *info)
{
	if (boot_cpu_has(X86_FEATURE_MTRR))
		get_fixed_ranges(mtrr_state.fixed_ranges);
}

static unsigned __initdata last_fixed_start;
static unsigned __initdata last_fixed_end;
static mtrr_type __initdata last_fixed_type;

static void __init print_fixed_last(void)
{
	if (!last_fixed_end)
		return;

	pr_info("  %05X-%05X %s\n", last_fixed_start,
		last_fixed_end - 1, mtrr_attrib_to_str(last_fixed_type));

	last_fixed_end = 0;
}

static void __init update_fixed_last(unsigned base, unsigned end,
				     mtrr_type type)
{
	last_fixed_start = base;
	last_fixed_end = end;
	last_fixed_type = type;
}

static void __init
print_fixed(unsigned base, unsigned step, const mtrr_type *types)
{
	unsigned i;

	for (i = 0; i < 8; ++i, ++types, base += step) {
		if (last_fixed_end == 0) {
			update_fixed_last(base, base + step, *types);
			continue;
		}
		if (last_fixed_end == base && last_fixed_type == *types) {
			last_fixed_end = base + step;
			continue;
		}
		/* new segments: gap or different type */
		print_fixed_last();
		update_fixed_last(base, base + step, *types);
	}
}

static void __init print_mtrr_state(void)
{
	unsigned int i;
	int high_width;

	pr_info("MTRR default type: %s\n",
		mtrr_attrib_to_str(mtrr_state.def_type));
	if (mtrr_state.have_fixed) {
		pr_info("MTRR fixed ranges %sabled:\n",
			((mtrr_state.enabled & MTRR_STATE_MTRR_ENABLED) &&
			 (mtrr_state.enabled & MTRR_STATE_MTRR_FIXED_ENABLED)) ?
			 "en" : "dis");
		print_fixed(0x00000, 0x10000, mtrr_state.fixed_ranges + 0);
		for (i = 0; i < 2; ++i)
			print_fixed(0x80000 + i * 0x20000, 0x04000,
				    mtrr_state.fixed_ranges + (i + 1) * 8);
		for (i = 0; i < 8; ++i)
			print_fixed(0xC0000 + i * 0x08000, 0x01000,
				    mtrr_state.fixed_ranges + (i + 3) * 8);

		/* tail */
		print_fixed_last();
	}
	pr_info("MTRR variable ranges %sabled:\n",
		mtrr_state.enabled & MTRR_STATE_MTRR_ENABLED ? "en" : "dis");
	high_width = (boot_cpu_data.x86_phys_bits - (32 - PAGE_SHIFT) + 3) / 4;

	for (i = 0; i < num_var_ranges; ++i) {
		if (mtrr_state.var_ranges[i].mask_lo & MTRR_PHYSMASK_V)
			pr_info("  %u base %0*X%05X000 mask %0*X%05X000 %s\n",
				i,
				high_width,
				mtrr_state.var_ranges[i].base_hi,
				mtrr_state.var_ranges[i].base_lo >> 12,
				high_width,
				mtrr_state.var_ranges[i].mask_hi,
				mtrr_state.var_ranges[i].mask_lo >> 12,
				mtrr_attrib_to_str(mtrr_state.var_ranges[i].base_lo &
						    MTRR_PHYSBASE_TYPE));
		else
			pr_info("  %u disabled\n", i);
	}
	if (mtrr_tom2)
		pr_info("TOM2: %016llx aka %lldM\n", mtrr_tom2, mtrr_tom2>>20);
}

/* Grab all of the MTRR state for this CPU into *state */
bool __init get_mtrr_state(void)
{
	struct mtrr_var_range *vrs;
	unsigned lo, dummy;
	unsigned int i;

	vrs = mtrr_state.var_ranges;

	rdmsr(MSR_MTRRcap, lo, dummy);
	mtrr_state.have_fixed = lo & MTRR_CAP_FIX;

	for (i = 0; i < num_var_ranges; i++)
		get_mtrr_var_range(i, &vrs[i]);
	if (mtrr_state.have_fixed)
		get_fixed_ranges(mtrr_state.fixed_ranges);

	rdmsr(MSR_MTRRdefType, lo, dummy);
	mtrr_state.def_type = lo & MTRR_DEF_TYPE_TYPE;
	mtrr_state.enabled = (lo & MTRR_DEF_TYPE_ENABLE) >> MTRR_STATE_SHIFT;

	if (amd_special_default_mtrr()) {
		unsigned low, high;

		/* TOP_MEM2 */
		rdmsr(MSR_K8_TOP_MEM2, low, high);
		mtrr_tom2 = high;
		mtrr_tom2 <<= 32;
		mtrr_tom2 |= low;
		mtrr_tom2 &= 0xffffff800000ULL;
	}

	if (mtrr_debug)
		print_mtrr_state();

	mtrr_state_set = 1;

	return !!(mtrr_state.enabled & MTRR_STATE_MTRR_ENABLED);
}

/* Some BIOS's are messed up and don't set all MTRRs the same! */
void __init mtrr_state_warn(void)
{
	unsigned long mask = smp_changes_mask;

	if (!mask)
		return;
	if (mask & MTRR_CHANGE_MASK_FIXED)
		pr_warn("mtrr: your CPUs had inconsistent fixed MTRR settings\n");
	if (mask & MTRR_CHANGE_MASK_VARIABLE)
		pr_warn("mtrr: your CPUs had inconsistent variable MTRR settings\n");
	if (mask & MTRR_CHANGE_MASK_DEFTYPE)
		pr_warn("mtrr: your CPUs had inconsistent MTRRdefType settings\n");

	pr_info("mtrr: probably your BIOS does not setup all CPUs.\n");
	pr_info("mtrr: corrected configuration.\n");
}

/*
 * Doesn't attempt to pass an error out to MTRR users
 * because it's quite complicated in some cases and probably not
 * worth it because the best error handling is to ignore it.
 */
void mtrr_wrmsr(unsigned msr, unsigned a, unsigned b)
{
	if (wrmsr_safe(msr, a, b) < 0) {
		pr_err("MTRR: CPU %u: Writing MSR %x to %x:%x failed\n",
			smp_processor_id(), msr, a, b);
	}
}

/**
 * set_fixed_range - checks & updates a fixed-range MTRR if it
 *		     differs from the value it should have
 * @msr: MSR address of the MTTR which should be checked and updated
 * @changed: pointer which indicates whether the MTRR needed to be changed
 * @msrwords: pointer to the MSR values which the MSR should have
 */
static void set_fixed_range(int msr, bool *changed, unsigned int *msrwords)
{
	unsigned lo, hi;

	rdmsr(msr, lo, hi);

	if (lo != msrwords[0] || hi != msrwords[1]) {
		mtrr_wrmsr(msr, msrwords[0], msrwords[1]);
		*changed = true;
	}
}

/**
 * generic_get_free_region - Get a free MTRR.
 * @base: The starting (base) address of the region.
 * @size: The size (in bytes) of the region.
 * @replace_reg: mtrr index to be replaced; set to invalid value if none.
 *
 * Returns: The index of the region on success, else negative on error.
 */
int
generic_get_free_region(unsigned long base, unsigned long size, int replace_reg)
{
	unsigned long lbase, lsize;
	mtrr_type ltype;
	int i, max;

	max = num_var_ranges;
	if (replace_reg >= 0 && replace_reg < max)
		return replace_reg;

	for (i = 0; i < max; ++i) {
		mtrr_if->get(i, &lbase, &lsize, &ltype);
		if (lsize == 0)
			return i;
	}

	return -ENOSPC;
}

static void generic_get_mtrr(unsigned int reg, unsigned long *base,
			     unsigned long *size, mtrr_type *type)
{
	u32 mask_lo, mask_hi, base_lo, base_hi;
	unsigned int hi;
	u64 tmp, mask;

	/*
	 * get_mtrr doesn't need to update mtrr_state, also it could be called
	 * from any cpu, so try to print it out directly.
	 */
	get_cpu();

	rdmsr(MTRRphysMask_MSR(reg), mask_lo, mask_hi);

	if (!(mask_lo & MTRR_PHYSMASK_V)) {
		/*  Invalid (i.e. free) range */
		*base = 0;
		*size = 0;
		*type = 0;
		goto out_put_cpu;
	}

	rdmsr(MTRRphysBase_MSR(reg), base_lo, base_hi);

	/* Work out the shifted address mask: */
	tmp = (u64)mask_hi << 32 | (mask_lo & PAGE_MASK);
	mask = (u64)phys_hi_rsvd << 32 | tmp;

	/* Expand tmp with high bits to all 1s: */
	hi = fls64(tmp);
	if (hi > 0) {
		tmp |= ~((1ULL<<(hi - 1)) - 1);

		if (tmp != mask) {
			pr_warn("mtrr: your BIOS has configured an incorrect mask, fixing it.\n");
			add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
			mask = tmp;
		}
	}

	/*
	 * This works correctly if size is a power of two, i.e. a
	 * contiguous range:
	 */
	*size = -mask >> PAGE_SHIFT;
	*base = (u64)base_hi << (32 - PAGE_SHIFT) | base_lo >> PAGE_SHIFT;
	*type = base_lo & MTRR_PHYSBASE_TYPE;

out_put_cpu:
	put_cpu();
}

/**
 * set_fixed_ranges - checks & updates the fixed-range MTRRs if they
 *		      differ from the saved set
 * @frs: pointer to fixed-range MTRR values, saved by get_fixed_ranges()
 */
static int set_fixed_ranges(mtrr_type *frs)
{
	unsigned long long *saved = (unsigned long long *)frs;
	bool changed = false;
	int block = -1, range;

	k8_check_syscfg_dram_mod_en();

	while (fixed_range_blocks[++block].ranges) {
		for (range = 0; range < fixed_range_blocks[block].ranges; range++)
			set_fixed_range(fixed_range_blocks[block].base_msr + range,
					&changed, (unsigned int *)saved++);
	}

	return changed;
}

/*
 * Set the MSR pair relating to a var range.
 * Returns true if changes are made.
 */
static bool set_mtrr_var_ranges(unsigned int index, struct mtrr_var_range *vr)
{
	unsigned int lo, hi;
	bool changed = false;

	rdmsr(MTRRphysBase_MSR(index), lo, hi);
	if ((vr->base_lo & ~MTRR_PHYSBASE_RSVD) != (lo & ~MTRR_PHYSBASE_RSVD)
	    || (vr->base_hi & ~phys_hi_rsvd) != (hi & ~phys_hi_rsvd)) {

		mtrr_wrmsr(MTRRphysBase_MSR(index), vr->base_lo, vr->base_hi);
		changed = true;
	}

	rdmsr(MTRRphysMask_MSR(index), lo, hi);

	if ((vr->mask_lo & ~MTRR_PHYSMASK_RSVD) != (lo & ~MTRR_PHYSMASK_RSVD)
	    || (vr->mask_hi & ~phys_hi_rsvd) != (hi & ~phys_hi_rsvd)) {
		mtrr_wrmsr(MTRRphysMask_MSR(index), vr->mask_lo, vr->mask_hi);
		changed = true;
	}
	return changed;
}

static u32 deftype_lo, deftype_hi;

/**
 * set_mtrr_state - Set the MTRR state for this CPU.
 *
 * NOTE: The CPU must already be in a safe state for MTRR changes, including
 *       measures that only a single CPU can be active in set_mtrr_state() in
 *       order to not be subject to races for usage of deftype_lo. This is
 *       accomplished by taking cache_disable_lock.
 * RETURNS: 0 if no changes made, else a mask indicating what was changed.
 */
static unsigned long set_mtrr_state(void)
{
	unsigned long change_mask = 0;
	unsigned int i;

	for (i = 0; i < num_var_ranges; i++) {
		if (set_mtrr_var_ranges(i, &mtrr_state.var_ranges[i]))
			change_mask |= MTRR_CHANGE_MASK_VARIABLE;
	}

	if (mtrr_state.have_fixed && set_fixed_ranges(mtrr_state.fixed_ranges))
		change_mask |= MTRR_CHANGE_MASK_FIXED;

	/*
	 * Set_mtrr_restore restores the old value of MTRRdefType,
	 * so to set it we fiddle with the saved value:
	 */
	if ((deftype_lo & MTRR_DEF_TYPE_TYPE) != mtrr_state.def_type ||
	    ((deftype_lo & MTRR_DEF_TYPE_ENABLE) >> MTRR_STATE_SHIFT) != mtrr_state.enabled) {

		deftype_lo = (deftype_lo & MTRR_DEF_TYPE_DISABLE) |
			     mtrr_state.def_type |
			     (mtrr_state.enabled << MTRR_STATE_SHIFT);
		change_mask |= MTRR_CHANGE_MASK_DEFTYPE;
	}

	return change_mask;
}

void mtrr_disable(void)
{
	/* Save MTRR state */
	rdmsr(MSR_MTRRdefType, deftype_lo, deftype_hi);

	/* Disable MTRRs, and set the default type to uncached */
	mtrr_wrmsr(MSR_MTRRdefType, deftype_lo & MTRR_DEF_TYPE_DISABLE, deftype_hi);
}

void mtrr_enable(void)
{
	/* Intel (P6) standard MTRRs */
	mtrr_wrmsr(MSR_MTRRdefType, deftype_lo, deftype_hi);
}

void mtrr_generic_set_state(void)
{
	unsigned long mask, count;

	/* Actually set the state */
	mask = set_mtrr_state();

	/* Use the atomic bitops to update the global mask */
	for (count = 0; count < sizeof(mask) * 8; ++count) {
		if (mask & 0x01)
			set_bit(count, &smp_changes_mask);
		mask >>= 1;
	}
}

/**
 * generic_set_mtrr - set variable MTRR register on the local CPU.
 *
 * @reg: The register to set.
 * @base: The base address of the region.
 * @size: The size of the region. If this is 0 the region is disabled.
 * @type: The type of the region.
 *
 * Returns nothing.
 */
static void generic_set_mtrr(unsigned int reg, unsigned long base,
			     unsigned long size, mtrr_type type)
{
	unsigned long flags;
	struct mtrr_var_range *vr;

	vr = &mtrr_state.var_ranges[reg];

	local_irq_save(flags);
	cache_disable();

	if (size == 0) {
		/*
		 * The invalid bit is kept in the mask, so we simply
		 * clear the relevant mask register to disable a range.
		 */
		mtrr_wrmsr(MTRRphysMask_MSR(reg), 0, 0);
		memset(vr, 0, sizeof(struct mtrr_var_range));
	} else {
		vr->base_lo = base << PAGE_SHIFT | type;
		vr->base_hi = (base >> (32 - PAGE_SHIFT)) & ~phys_hi_rsvd;
		vr->mask_lo = -size << PAGE_SHIFT | MTRR_PHYSMASK_V;
		vr->mask_hi = (-size >> (32 - PAGE_SHIFT)) & ~phys_hi_rsvd;

		mtrr_wrmsr(MTRRphysBase_MSR(reg), vr->base_lo, vr->base_hi);
		mtrr_wrmsr(MTRRphysMask_MSR(reg), vr->mask_lo, vr->mask_hi);
	}

	cache_enable();
	local_irq_restore(flags);
}

int generic_validate_add_page(unsigned long base, unsigned long size,
			      unsigned int type)
{
	unsigned long lbase, last;

	/*
	 * For Intel PPro stepping <= 7
	 * must be 4 MiB aligned and not touch 0x70000000 -> 0x7003FFFF
	 */
	if (mtrr_if == &generic_mtrr_ops && boot_cpu_data.x86 == 6 &&
	    boot_cpu_data.x86_model == 1 &&
	    boot_cpu_data.x86_stepping <= 7) {
		if (base & ((1 << (22 - PAGE_SHIFT)) - 1)) {
			pr_warn("mtrr: base(0x%lx000) is not 4 MiB aligned\n", base);
			return -EINVAL;
		}
		if (!(base + size < 0x70000 || base > 0x7003F) &&
		    (type == MTRR_TYPE_WRCOMB
		     || type == MTRR_TYPE_WRBACK)) {
			pr_warn("mtrr: writable mtrr between 0x70000000 and 0x7003FFFF may hang the CPU.\n");
			return -EINVAL;
		}
	}

	/*
	 * Check upper bits of base and last are equal and lower bits are 0
	 * for base and 1 for last
	 */
	last = base + size - 1;
	for (lbase = base; !(lbase & 1) && (last & 1);
	     lbase = lbase >> 1, last = last >> 1)
		;
	if (lbase != last) {
		pr_warn("mtrr: base(0x%lx000) is not aligned on a size(0x%lx000) boundary\n", base, size);
		return -EINVAL;
	}
	return 0;
}

static int generic_have_wrcomb(void)
{
	unsigned long config, dummy;
	rdmsr(MSR_MTRRcap, config, dummy);
	return config & MTRR_CAP_WC;
}

int positive_have_wrcomb(void)
{
	return 1;
}

/*
 * Generic structure...
 */
const struct mtrr_ops generic_mtrr_ops = {
	.get			= generic_get_mtrr,
	.get_free_region	= generic_get_free_region,
	.set			= generic_set_mtrr,
	.validate_add_page	= generic_validate_add_page,
	.have_wrcomb		= generic_have_wrcomb,
};