Contributors: 50
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Thomas Gleixner |
1228 |
43.61% |
54 |
27.84% |
Ingo Molnar |
369 |
13.10% |
48 |
24.74% |
Rik Van Riel |
143 |
5.08% |
4 |
2.06% |
Andrew Lutomirski |
120 |
4.26% |
5 |
2.58% |
Rick Edgecombe |
111 |
3.94% |
3 |
1.55% |
Linus Torvalds |
92 |
3.27% |
3 |
1.55% |
Borislav Petkov |
88 |
3.12% |
7 |
3.61% |
Chang S. Bae |
77 |
2.73% |
5 |
2.58% |
Sean Christopherson |
75 |
2.66% |
3 |
1.55% |
Fenghua Yu |
58 |
2.06% |
2 |
1.03% |
Kevin Tian |
50 |
1.78% |
1 |
0.52% |
H. Peter Anvin |
41 |
1.46% |
1 |
0.52% |
Suresh B. Siddha |
37 |
1.31% |
6 |
3.09% |
Brian Gerst |
35 |
1.24% |
4 |
2.06% |
Oleg Nesterov |
33 |
1.17% |
3 |
1.55% |
Dave Hansen |
33 |
1.17% |
3 |
1.55% |
Aubrey Li |
32 |
1.14% |
1 |
0.52% |
Petteri Aimonen |
18 |
0.64% |
1 |
0.52% |
Kan Liang |
17 |
0.60% |
1 |
0.52% |
Yu-cheng Yu |
17 |
0.60% |
4 |
2.06% |
Christoph Hellwig |
15 |
0.53% |
2 |
1.03% |
noah |
14 |
0.50% |
1 |
0.52% |
Linus Torvalds (pre-git) |
14 |
0.50% |
3 |
1.55% |
Jing Liu |
13 |
0.46% |
1 |
0.52% |
Kyle Huey |
10 |
0.36% |
3 |
1.55% |
Andi Kleen |
8 |
0.28% |
1 |
0.52% |
Tom Lendacky |
5 |
0.18% |
1 |
0.52% |
Peter Zijlstra |
5 |
0.18% |
1 |
0.52% |
Marcelo Tosatti |
5 |
0.18% |
1 |
0.52% |
Avi Kivity |
4 |
0.14% |
1 |
0.52% |
Sheng Yang |
4 |
0.14% |
1 |
0.52% |
Jan Kiszka |
4 |
0.14% |
1 |
0.52% |
Eric W. Biedermann |
4 |
0.14% |
1 |
0.52% |
James Bottomley |
3 |
0.11% |
1 |
0.52% |
Jens Axboe |
3 |
0.11% |
1 |
0.52% |
Mel Gorman |
3 |
0.11% |
1 |
0.52% |
Nicolai Stange |
3 |
0.11% |
1 |
0.52% |
Paolo Bonzini |
3 |
0.11% |
1 |
0.52% |
Stephen Rothwell |
3 |
0.11% |
1 |
0.52% |
Eric Biggers |
3 |
0.11% |
1 |
0.52% |
Alexey Dobriyan |
2 |
0.07% |
1 |
0.52% |
Jan Beulich |
2 |
0.07% |
1 |
0.52% |
Roland McGrath |
2 |
0.07% |
1 |
0.52% |
Sebastian Andrzej Siewior |
2 |
0.07% |
1 |
0.52% |
Uros Bizjak |
2 |
0.07% |
1 |
0.52% |
Chuck Ebbert |
2 |
0.07% |
1 |
0.52% |
Michael Christie |
1 |
0.04% |
1 |
0.52% |
Alexander van Heukelum |
1 |
0.04% |
1 |
0.52% |
Dave Jones |
1 |
0.04% |
1 |
0.52% |
Björn Helgaas |
1 |
0.04% |
1 |
0.52% |
Total |
2816 |
|
194 |
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 1994 Linus Torvalds
*
* Pentium III FXSR, SSE support
* General FPU state handling cleanups
* Gareth Hughes <gareth@valinux.com>, May 2000
*/
#include <asm/fpu/api.h>
#include <asm/fpu/regset.h>
#include <asm/fpu/sched.h>
#include <asm/fpu/signal.h>
#include <asm/fpu/types.h>
#include <asm/traps.h>
#include <asm/irq_regs.h>
#include <uapi/asm/kvm.h>
#include <linux/hardirq.h>
#include <linux/pkeys.h>
#include <linux/vmalloc.h>
#include "context.h"
#include "internal.h"
#include "legacy.h"
#include "xstate.h"
#define CREATE_TRACE_POINTS
#include <asm/trace/fpu.h>
#ifdef CONFIG_X86_64
DEFINE_STATIC_KEY_FALSE(__fpu_state_size_dynamic);
DEFINE_PER_CPU(u64, xfd_state);
#endif
/* The FPU state configuration data for kernel and user space */
struct fpu_state_config fpu_kernel_cfg __ro_after_init;
struct fpu_state_config fpu_user_cfg __ro_after_init;
/*
* Represents the initial FPU state. It's mostly (but not completely) zeroes,
* depending on the FPU hardware format:
*/
struct fpstate init_fpstate __ro_after_init;
/* Track in-kernel FPU usage */
static DEFINE_PER_CPU(bool, in_kernel_fpu);
/*
* Track which context is using the FPU on the CPU:
*/
DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
/*
* Can we use the FPU in kernel mode with the
* whole "kernel_fpu_begin/end()" sequence?
*/
bool irq_fpu_usable(void)
{
if (WARN_ON_ONCE(in_nmi()))
return false;
/* In kernel FPU usage already active? */
if (this_cpu_read(in_kernel_fpu))
return false;
/*
* When not in NMI or hard interrupt context, FPU can be used in:
*
* - Task context except from within fpregs_lock()'ed critical
* regions.
*
* - Soft interrupt processing context which cannot happen
* while in a fpregs_lock()'ed critical region.
*/
if (!in_hardirq())
return true;
/*
* In hard interrupt context it's safe when soft interrupts
* are enabled, which means the interrupt did not hit in
* a fpregs_lock()'ed critical region.
*/
return !softirq_count();
}
EXPORT_SYMBOL(irq_fpu_usable);
/*
* Track AVX512 state use because it is known to slow the max clock
* speed of the core.
*/
static void update_avx_timestamp(struct fpu *fpu)
{
#define AVX512_TRACKING_MASK (XFEATURE_MASK_ZMM_Hi256 | XFEATURE_MASK_Hi16_ZMM)
if (fpu->fpstate->regs.xsave.header.xfeatures & AVX512_TRACKING_MASK)
fpu->avx512_timestamp = jiffies;
}
/*
* Save the FPU register state in fpu->fpstate->regs. The register state is
* preserved.
*
* Must be called with fpregs_lock() held.
*
* The legacy FNSAVE instruction clears all FPU state unconditionally, so
* register state has to be reloaded. That might be a pointless exercise
* when the FPU is going to be used by another task right after that. But
* this only affects 20+ years old 32bit systems and avoids conditionals all
* over the place.
*
* FXSAVE and all XSAVE variants preserve the FPU register state.
*/
void save_fpregs_to_fpstate(struct fpu *fpu)
{
if (likely(use_xsave())) {
os_xsave(fpu->fpstate);
update_avx_timestamp(fpu);
return;
}
if (likely(use_fxsr())) {
fxsave(&fpu->fpstate->regs.fxsave);
return;
}
/*
* Legacy FPU register saving, FNSAVE always clears FPU registers,
* so we have to reload them from the memory state.
*/
asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->fpstate->regs.fsave));
frstor(&fpu->fpstate->regs.fsave);
}
void restore_fpregs_from_fpstate(struct fpstate *fpstate, u64 mask)
{
/*
* AMD K7/K8 and later CPUs up to Zen don't save/restore
* FDP/FIP/FOP unless an exception is pending. Clear the x87 state
* here by setting it to fixed values. "m" is a random variable
* that should be in L1.
*/
if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) {
asm volatile(
"fnclex\n\t"
"emms\n\t"
"fildl %[addr]" /* set F?P to defined value */
: : [addr] "m" (*fpstate));
}
if (use_xsave()) {
/*
* Dynamically enabled features are enabled in XCR0, but
* usage requires also that the corresponding bits in XFD
* are cleared. If the bits are set then using a related
* instruction will raise #NM. This allows to do the
* allocation of the larger FPU buffer lazy from #NM or if
* the task has no permission to kill it which would happen
* via #UD if the feature is disabled in XCR0.
*
* XFD state is following the same life time rules as
* XSTATE and to restore state correctly XFD has to be
* updated before XRSTORS otherwise the component would
* stay in or go into init state even if the bits are set
* in fpstate::regs::xsave::xfeatures.
*/
xfd_update_state(fpstate);
/*
* Restoring state always needs to modify all features
* which are in @mask even if the current task cannot use
* extended features.
*
* So fpstate->xfeatures cannot be used here, because then
* a feature for which the task has no permission but was
* used by the previous task would not go into init state.
*/
mask = fpu_kernel_cfg.max_features & mask;
os_xrstor(fpstate, mask);
} else {
if (use_fxsr())
fxrstor(&fpstate->regs.fxsave);
else
frstor(&fpstate->regs.fsave);
}
}
void fpu_reset_from_exception_fixup(void)
{
restore_fpregs_from_fpstate(&init_fpstate, XFEATURE_MASK_FPSTATE);
}
#if IS_ENABLED(CONFIG_KVM)
static void __fpstate_reset(struct fpstate *fpstate, u64 xfd);
static void fpu_init_guest_permissions(struct fpu_guest *gfpu)
{
struct fpu_state_perm *fpuperm;
u64 perm;
if (!IS_ENABLED(CONFIG_X86_64))
return;
spin_lock_irq(¤t->sighand->siglock);
fpuperm = ¤t->group_leader->thread.fpu.guest_perm;
perm = fpuperm->__state_perm;
/* First fpstate allocation locks down permissions. */
WRITE_ONCE(fpuperm->__state_perm, perm | FPU_GUEST_PERM_LOCKED);
spin_unlock_irq(¤t->sighand->siglock);
gfpu->perm = perm & ~FPU_GUEST_PERM_LOCKED;
}
bool fpu_alloc_guest_fpstate(struct fpu_guest *gfpu)
{
struct fpstate *fpstate;
unsigned int size;
size = fpu_user_cfg.default_size + ALIGN(offsetof(struct fpstate, regs), 64);
fpstate = vzalloc(size);
if (!fpstate)
return false;
/* Leave xfd to 0 (the reset value defined by spec) */
__fpstate_reset(fpstate, 0);
fpstate_init_user(fpstate);
fpstate->is_valloc = true;
fpstate->is_guest = true;
gfpu->fpstate = fpstate;
gfpu->xfeatures = fpu_user_cfg.default_features;
gfpu->perm = fpu_user_cfg.default_features;
/*
* KVM sets the FP+SSE bits in the XSAVE header when copying FPU state
* to userspace, even when XSAVE is unsupported, so that restoring FPU
* state on a different CPU that does support XSAVE can cleanly load
* the incoming state using its natural XSAVE. In other words, KVM's
* uABI size may be larger than this host's default size. Conversely,
* the default size should never be larger than KVM's base uABI size;
* all features that can expand the uABI size must be opt-in.
*/
gfpu->uabi_size = sizeof(struct kvm_xsave);
if (WARN_ON_ONCE(fpu_user_cfg.default_size > gfpu->uabi_size))
gfpu->uabi_size = fpu_user_cfg.default_size;
fpu_init_guest_permissions(gfpu);
return true;
}
EXPORT_SYMBOL_GPL(fpu_alloc_guest_fpstate);
void fpu_free_guest_fpstate(struct fpu_guest *gfpu)
{
struct fpstate *fps = gfpu->fpstate;
if (!fps)
return;
if (WARN_ON_ONCE(!fps->is_valloc || !fps->is_guest || fps->in_use))
return;
gfpu->fpstate = NULL;
vfree(fps);
}
EXPORT_SYMBOL_GPL(fpu_free_guest_fpstate);
/*
* fpu_enable_guest_xfd_features - Check xfeatures against guest perm and enable
* @guest_fpu: Pointer to the guest FPU container
* @xfeatures: Features requested by guest CPUID
*
* Enable all dynamic xfeatures according to guest perm and requested CPUID.
*
* Return: 0 on success, error code otherwise
*/
int fpu_enable_guest_xfd_features(struct fpu_guest *guest_fpu, u64 xfeatures)
{
lockdep_assert_preemption_enabled();
/* Nothing to do if all requested features are already enabled. */
xfeatures &= ~guest_fpu->xfeatures;
if (!xfeatures)
return 0;
return __xfd_enable_feature(xfeatures, guest_fpu);
}
EXPORT_SYMBOL_GPL(fpu_enable_guest_xfd_features);
#ifdef CONFIG_X86_64
void fpu_update_guest_xfd(struct fpu_guest *guest_fpu, u64 xfd)
{
fpregs_lock();
guest_fpu->fpstate->xfd = xfd;
if (guest_fpu->fpstate->in_use)
xfd_update_state(guest_fpu->fpstate);
fpregs_unlock();
}
EXPORT_SYMBOL_GPL(fpu_update_guest_xfd);
/**
* fpu_sync_guest_vmexit_xfd_state - Synchronize XFD MSR and software state
*
* Must be invoked from KVM after a VMEXIT before enabling interrupts when
* XFD write emulation is disabled. This is required because the guest can
* freely modify XFD and the state at VMEXIT is not guaranteed to be the
* same as the state on VMENTER. So software state has to be updated before
* any operation which depends on it can take place.
*
* Note: It can be invoked unconditionally even when write emulation is
* enabled for the price of a then pointless MSR read.
*/
void fpu_sync_guest_vmexit_xfd_state(void)
{
struct fpstate *fps = current->thread.fpu.fpstate;
lockdep_assert_irqs_disabled();
if (fpu_state_size_dynamic()) {
rdmsrl(MSR_IA32_XFD, fps->xfd);
__this_cpu_write(xfd_state, fps->xfd);
}
}
EXPORT_SYMBOL_GPL(fpu_sync_guest_vmexit_xfd_state);
#endif /* CONFIG_X86_64 */
int fpu_swap_kvm_fpstate(struct fpu_guest *guest_fpu, bool enter_guest)
{
struct fpstate *guest_fps = guest_fpu->fpstate;
struct fpu *fpu = ¤t->thread.fpu;
struct fpstate *cur_fps = fpu->fpstate;
fpregs_lock();
if (!cur_fps->is_confidential && !test_thread_flag(TIF_NEED_FPU_LOAD))
save_fpregs_to_fpstate(fpu);
/* Swap fpstate */
if (enter_guest) {
fpu->__task_fpstate = cur_fps;
fpu->fpstate = guest_fps;
guest_fps->in_use = true;
} else {
guest_fps->in_use = false;
fpu->fpstate = fpu->__task_fpstate;
fpu->__task_fpstate = NULL;
}
cur_fps = fpu->fpstate;
if (!cur_fps->is_confidential) {
/* Includes XFD update */
restore_fpregs_from_fpstate(cur_fps, XFEATURE_MASK_FPSTATE);
} else {
/*
* XSTATE is restored by firmware from encrypted
* memory. Make sure XFD state is correct while
* running with guest fpstate
*/
xfd_update_state(cur_fps);
}
fpregs_mark_activate();
fpregs_unlock();
return 0;
}
EXPORT_SYMBOL_GPL(fpu_swap_kvm_fpstate);
void fpu_copy_guest_fpstate_to_uabi(struct fpu_guest *gfpu, void *buf,
unsigned int size, u64 xfeatures, u32 pkru)
{
struct fpstate *kstate = gfpu->fpstate;
union fpregs_state *ustate = buf;
struct membuf mb = { .p = buf, .left = size };
if (cpu_feature_enabled(X86_FEATURE_XSAVE)) {
__copy_xstate_to_uabi_buf(mb, kstate, xfeatures, pkru,
XSTATE_COPY_XSAVE);
} else {
memcpy(&ustate->fxsave, &kstate->regs.fxsave,
sizeof(ustate->fxsave));
/* Make it restorable on a XSAVE enabled host */
ustate->xsave.header.xfeatures = XFEATURE_MASK_FPSSE;
}
}
EXPORT_SYMBOL_GPL(fpu_copy_guest_fpstate_to_uabi);
int fpu_copy_uabi_to_guest_fpstate(struct fpu_guest *gfpu, const void *buf,
u64 xcr0, u32 *vpkru)
{
struct fpstate *kstate = gfpu->fpstate;
const union fpregs_state *ustate = buf;
if (!cpu_feature_enabled(X86_FEATURE_XSAVE)) {
if (ustate->xsave.header.xfeatures & ~XFEATURE_MASK_FPSSE)
return -EINVAL;
if (ustate->fxsave.mxcsr & ~mxcsr_feature_mask)
return -EINVAL;
memcpy(&kstate->regs.fxsave, &ustate->fxsave, sizeof(ustate->fxsave));
return 0;
}
if (ustate->xsave.header.xfeatures & ~xcr0)
return -EINVAL;
/*
* Nullify @vpkru to preserve its current value if PKRU's bit isn't set
* in the header. KVM's odd ABI is to leave PKRU untouched in this
* case (all other components are eventually re-initialized).
*/
if (!(ustate->xsave.header.xfeatures & XFEATURE_MASK_PKRU))
vpkru = NULL;
return copy_uabi_from_kernel_to_xstate(kstate, ustate, vpkru);
}
EXPORT_SYMBOL_GPL(fpu_copy_uabi_to_guest_fpstate);
#endif /* CONFIG_KVM */
void kernel_fpu_begin_mask(unsigned int kfpu_mask)
{
preempt_disable();
WARN_ON_FPU(!irq_fpu_usable());
WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
this_cpu_write(in_kernel_fpu, true);
if (!(current->flags & (PF_KTHREAD | PF_USER_WORKER)) &&
!test_thread_flag(TIF_NEED_FPU_LOAD)) {
set_thread_flag(TIF_NEED_FPU_LOAD);
save_fpregs_to_fpstate(¤t->thread.fpu);
}
__cpu_invalidate_fpregs_state();
/* Put sane initial values into the control registers. */
if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM))
ldmxcsr(MXCSR_DEFAULT);
if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU))
asm volatile ("fninit");
}
EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask);
void kernel_fpu_end(void)
{
WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
this_cpu_write(in_kernel_fpu, false);
preempt_enable();
}
EXPORT_SYMBOL_GPL(kernel_fpu_end);
/*
* Sync the FPU register state to current's memory register state when the
* current task owns the FPU. The hardware register state is preserved.
*/
void fpu_sync_fpstate(struct fpu *fpu)
{
WARN_ON_FPU(fpu != ¤t->thread.fpu);
fpregs_lock();
trace_x86_fpu_before_save(fpu);
if (!test_thread_flag(TIF_NEED_FPU_LOAD))
save_fpregs_to_fpstate(fpu);
trace_x86_fpu_after_save(fpu);
fpregs_unlock();
}
static inline unsigned int init_fpstate_copy_size(void)
{
if (!use_xsave())
return fpu_kernel_cfg.default_size;
/* XSAVE(S) just needs the legacy and the xstate header part */
return sizeof(init_fpstate.regs.xsave);
}
static inline void fpstate_init_fxstate(struct fpstate *fpstate)
{
fpstate->regs.fxsave.cwd = 0x37f;
fpstate->regs.fxsave.mxcsr = MXCSR_DEFAULT;
}
/*
* Legacy x87 fpstate state init:
*/
static inline void fpstate_init_fstate(struct fpstate *fpstate)
{
fpstate->regs.fsave.cwd = 0xffff037fu;
fpstate->regs.fsave.swd = 0xffff0000u;
fpstate->regs.fsave.twd = 0xffffffffu;
fpstate->regs.fsave.fos = 0xffff0000u;
}
/*
* Used in two places:
* 1) Early boot to setup init_fpstate for non XSAVE systems
* 2) fpu_init_fpstate_user() which is invoked from KVM
*/
void fpstate_init_user(struct fpstate *fpstate)
{
if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
fpstate_init_soft(&fpstate->regs.soft);
return;
}
xstate_init_xcomp_bv(&fpstate->regs.xsave, fpstate->xfeatures);
if (cpu_feature_enabled(X86_FEATURE_FXSR))
fpstate_init_fxstate(fpstate);
else
fpstate_init_fstate(fpstate);
}
static void __fpstate_reset(struct fpstate *fpstate, u64 xfd)
{
/* Initialize sizes and feature masks */
fpstate->size = fpu_kernel_cfg.default_size;
fpstate->user_size = fpu_user_cfg.default_size;
fpstate->xfeatures = fpu_kernel_cfg.default_features;
fpstate->user_xfeatures = fpu_user_cfg.default_features;
fpstate->xfd = xfd;
}
void fpstate_reset(struct fpu *fpu)
{
/* Set the fpstate pointer to the default fpstate */
fpu->fpstate = &fpu->__fpstate;
__fpstate_reset(fpu->fpstate, init_fpstate.xfd);
/* Initialize the permission related info in fpu */
fpu->perm.__state_perm = fpu_kernel_cfg.default_features;
fpu->perm.__state_size = fpu_kernel_cfg.default_size;
fpu->perm.__user_state_size = fpu_user_cfg.default_size;
/* Same defaults for guests */
fpu->guest_perm = fpu->perm;
}
static inline void fpu_inherit_perms(struct fpu *dst_fpu)
{
if (fpu_state_size_dynamic()) {
struct fpu *src_fpu = ¤t->group_leader->thread.fpu;
spin_lock_irq(¤t->sighand->siglock);
/* Fork also inherits the permissions of the parent */
dst_fpu->perm = src_fpu->perm;
dst_fpu->guest_perm = src_fpu->guest_perm;
spin_unlock_irq(¤t->sighand->siglock);
}
}
/* A passed ssp of zero will not cause any update */
static int update_fpu_shstk(struct task_struct *dst, unsigned long ssp)
{
#ifdef CONFIG_X86_USER_SHADOW_STACK
struct cet_user_state *xstate;
/* If ssp update is not needed. */
if (!ssp)
return 0;
xstate = get_xsave_addr(&dst->thread.fpu.fpstate->regs.xsave,
XFEATURE_CET_USER);
/*
* If there is a non-zero ssp, then 'dst' must be configured with a shadow
* stack and the fpu state should be up to date since it was just copied
* from the parent in fpu_clone(). So there must be a valid non-init CET
* state location in the buffer.
*/
if (WARN_ON_ONCE(!xstate))
return 1;
xstate->user_ssp = (u64)ssp;
#endif
return 0;
}
/* Clone current's FPU state on fork */
int fpu_clone(struct task_struct *dst, unsigned long clone_flags, bool minimal,
unsigned long ssp)
{
struct fpu *src_fpu = ¤t->thread.fpu;
struct fpu *dst_fpu = &dst->thread.fpu;
/* The new task's FPU state cannot be valid in the hardware. */
dst_fpu->last_cpu = -1;
fpstate_reset(dst_fpu);
if (!cpu_feature_enabled(X86_FEATURE_FPU))
return 0;
/*
* Enforce reload for user space tasks and prevent kernel threads
* from trying to save the FPU registers on context switch.
*/
set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD);
/*
* No FPU state inheritance for kernel threads and IO
* worker threads.
*/
if (minimal) {
/* Clear out the minimal state */
memcpy(&dst_fpu->fpstate->regs, &init_fpstate.regs,
init_fpstate_copy_size());
return 0;
}
/*
* If a new feature is added, ensure all dynamic features are
* caller-saved from here!
*/
BUILD_BUG_ON(XFEATURE_MASK_USER_DYNAMIC != XFEATURE_MASK_XTILE_DATA);
/*
* Save the default portion of the current FPU state into the
* clone. Assume all dynamic features to be defined as caller-
* saved, which enables skipping both the expansion of fpstate
* and the copying of any dynamic state.
*
* Do not use memcpy() when TIF_NEED_FPU_LOAD is set because
* copying is not valid when current uses non-default states.
*/
fpregs_lock();
if (test_thread_flag(TIF_NEED_FPU_LOAD))
fpregs_restore_userregs();
save_fpregs_to_fpstate(dst_fpu);
fpregs_unlock();
if (!(clone_flags & CLONE_THREAD))
fpu_inherit_perms(dst_fpu);
/*
* Children never inherit PASID state.
* Force it to have its init value:
*/
if (use_xsave())
dst_fpu->fpstate->regs.xsave.header.xfeatures &= ~XFEATURE_MASK_PASID;
/*
* Update shadow stack pointer, in case it changed during clone.
*/
if (update_fpu_shstk(dst, ssp))
return 1;
trace_x86_fpu_copy_src(src_fpu);
trace_x86_fpu_copy_dst(dst_fpu);
return 0;
}
/*
* Whitelist the FPU register state embedded into task_struct for hardened
* usercopy.
*/
void fpu_thread_struct_whitelist(unsigned long *offset, unsigned long *size)
{
*offset = offsetof(struct thread_struct, fpu.__fpstate.regs);
*size = fpu_kernel_cfg.default_size;
}
/*
* Drops current FPU state: deactivates the fpregs and
* the fpstate. NOTE: it still leaves previous contents
* in the fpregs in the eager-FPU case.
*
* This function can be used in cases where we know that
* a state-restore is coming: either an explicit one,
* or a reschedule.
*/
void fpu__drop(struct fpu *fpu)
{
preempt_disable();
if (fpu == ¤t->thread.fpu) {
/* Ignore delayed exceptions from user space */
asm volatile("1: fwait\n"
"2:\n"
_ASM_EXTABLE(1b, 2b));
fpregs_deactivate(fpu);
}
trace_x86_fpu_dropped(fpu);
preempt_enable();
}
/*
* Clear FPU registers by setting them up from the init fpstate.
* Caller must do fpregs_[un]lock() around it.
*/
static inline void restore_fpregs_from_init_fpstate(u64 features_mask)
{
if (use_xsave())
os_xrstor(&init_fpstate, features_mask);
else if (use_fxsr())
fxrstor(&init_fpstate.regs.fxsave);
else
frstor(&init_fpstate.regs.fsave);
pkru_write_default();
}
/*
* Reset current->fpu memory state to the init values.
*/
static void fpu_reset_fpregs(void)
{
struct fpu *fpu = ¤t->thread.fpu;
fpregs_lock();
__fpu_invalidate_fpregs_state(fpu);
/*
* This does not change the actual hardware registers. It just
* resets the memory image and sets TIF_NEED_FPU_LOAD so a
* subsequent return to usermode will reload the registers from the
* task's memory image.
*
* Do not use fpstate_init() here. Just copy init_fpstate which has
* the correct content already except for PKRU.
*
* PKRU handling does not rely on the xstate when restoring for
* user space as PKRU is eagerly written in switch_to() and
* flush_thread().
*/
memcpy(&fpu->fpstate->regs, &init_fpstate.regs, init_fpstate_copy_size());
set_thread_flag(TIF_NEED_FPU_LOAD);
fpregs_unlock();
}
/*
* Reset current's user FPU states to the init states. current's
* supervisor states, if any, are not modified by this function. The
* caller guarantees that the XSTATE header in memory is intact.
*/
void fpu__clear_user_states(struct fpu *fpu)
{
WARN_ON_FPU(fpu != ¤t->thread.fpu);
fpregs_lock();
if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
fpu_reset_fpregs();
fpregs_unlock();
return;
}
/*
* Ensure that current's supervisor states are loaded into their
* corresponding registers.
*/
if (xfeatures_mask_supervisor() &&
!fpregs_state_valid(fpu, smp_processor_id()))
os_xrstor_supervisor(fpu->fpstate);
/* Reset user states in registers. */
restore_fpregs_from_init_fpstate(XFEATURE_MASK_USER_RESTORE);
/*
* Now all FPU registers have their desired values. Inform the FPU
* state machine that current's FPU registers are in the hardware
* registers. The memory image does not need to be updated because
* any operation relying on it has to save the registers first when
* current's FPU is marked active.
*/
fpregs_mark_activate();
fpregs_unlock();
}
void fpu_flush_thread(void)
{
fpstate_reset(¤t->thread.fpu);
fpu_reset_fpregs();
}
/*
* Load FPU context before returning to userspace.
*/
void switch_fpu_return(void)
{
if (!static_cpu_has(X86_FEATURE_FPU))
return;
fpregs_restore_userregs();
}
EXPORT_SYMBOL_GPL(switch_fpu_return);
void fpregs_lock_and_load(void)
{
/*
* fpregs_lock() only disables preemption (mostly). So modifying state
* in an interrupt could screw up some in progress fpregs operation.
* Warn about it.
*/
WARN_ON_ONCE(!irq_fpu_usable());
WARN_ON_ONCE(current->flags & PF_KTHREAD);
fpregs_lock();
fpregs_assert_state_consistent();
if (test_thread_flag(TIF_NEED_FPU_LOAD))
fpregs_restore_userregs();
}
#ifdef CONFIG_X86_DEBUG_FPU
/*
* If current FPU state according to its tracking (loaded FPU context on this
* CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is
* loaded on return to userland.
*/
void fpregs_assert_state_consistent(void)
{
struct fpu *fpu = ¤t->thread.fpu;
if (test_thread_flag(TIF_NEED_FPU_LOAD))
return;
WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id()));
}
EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent);
#endif
void fpregs_mark_activate(void)
{
struct fpu *fpu = ¤t->thread.fpu;
fpregs_activate(fpu);
fpu->last_cpu = smp_processor_id();
clear_thread_flag(TIF_NEED_FPU_LOAD);
}
/*
* x87 math exception handling:
*/
int fpu__exception_code(struct fpu *fpu, int trap_nr)
{
int err;
if (trap_nr == X86_TRAP_MF) {
unsigned short cwd, swd;
/*
* (~cwd & swd) will mask out exceptions that are not set to unmasked
* status. 0x3f is the exception bits in these regs, 0x200 is the
* C1 reg you need in case of a stack fault, 0x040 is the stack
* fault bit. We should only be taking one exception at a time,
* so if this combination doesn't produce any single exception,
* then we have a bad program that isn't synchronizing its FPU usage
* and it will suffer the consequences since we won't be able to
* fully reproduce the context of the exception.
*/
if (boot_cpu_has(X86_FEATURE_FXSR)) {
cwd = fpu->fpstate->regs.fxsave.cwd;
swd = fpu->fpstate->regs.fxsave.swd;
} else {
cwd = (unsigned short)fpu->fpstate->regs.fsave.cwd;
swd = (unsigned short)fpu->fpstate->regs.fsave.swd;
}
err = swd & ~cwd;
} else {
/*
* The SIMD FPU exceptions are handled a little differently, as there
* is only a single status/control register. Thus, to determine which
* unmasked exception was caught we must mask the exception mask bits
* at 0x1f80, and then use these to mask the exception bits at 0x3f.
*/
unsigned short mxcsr = MXCSR_DEFAULT;
if (boot_cpu_has(X86_FEATURE_XMM))
mxcsr = fpu->fpstate->regs.fxsave.mxcsr;
err = ~(mxcsr >> 7) & mxcsr;
}
if (err & 0x001) { /* Invalid op */
/*
* swd & 0x240 == 0x040: Stack Underflow
* swd & 0x240 == 0x240: Stack Overflow
* User must clear the SF bit (0x40) if set
*/
return FPE_FLTINV;
} else if (err & 0x004) { /* Divide by Zero */
return FPE_FLTDIV;
} else if (err & 0x008) { /* Overflow */
return FPE_FLTOVF;
} else if (err & 0x012) { /* Denormal, Underflow */
return FPE_FLTUND;
} else if (err & 0x020) { /* Precision */
return FPE_FLTRES;
}
/*
* If we're using IRQ 13, or supposedly even some trap
* X86_TRAP_MF implementations, it's possible
* we get a spurious trap, which is not an error.
*/
return 0;
}
/*
* Initialize register state that may prevent from entering low-power idle.
* This function will be invoked from the cpuidle driver only when needed.
*/
noinstr void fpu_idle_fpregs(void)
{
/* Note: AMX_TILE being enabled implies XGETBV1 support */
if (cpu_feature_enabled(X86_FEATURE_AMX_TILE) &&
(xfeatures_in_use() & XFEATURE_MASK_XTILE)) {
tile_release();
__this_cpu_write(fpu_fpregs_owner_ctx, NULL);
}
}