Contributors: 17
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Avi Kivity |
316 |
30.41% |
11 |
25.00% |
Sean Christopherson |
236 |
22.71% |
10 |
22.73% |
Marcelo Tosatti |
187 |
18.00% |
1 |
2.27% |
Joerg Roedel |
48 |
4.62% |
2 |
4.55% |
Binbin Wu |
48 |
4.62% |
1 |
2.27% |
Jason Baron |
30 |
2.89% |
1 |
2.27% |
Dexuan Cui |
30 |
2.89% |
1 |
2.27% |
Liran Alon |
25 |
2.41% |
1 |
2.27% |
Xiantao Zhang |
24 |
2.31% |
4 |
9.09% |
Lai Jiangshan |
23 |
2.21% |
4 |
9.09% |
Paolo Bonzini |
21 |
2.02% |
2 |
4.55% |
Krish Sadhukhan |
16 |
1.54% |
1 |
2.27% |
Maxim Levitsky |
13 |
1.25% |
1 |
2.27% |
Wei Wang |
10 |
0.96% |
1 |
2.27% |
Hollis Blanchard |
10 |
0.96% |
1 |
2.27% |
Greg Kroah-Hartman |
1 |
0.10% |
1 |
2.27% |
Mathias Krause |
1 |
0.10% |
1 |
2.27% |
Total |
1039 |
|
44 |
|
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef ASM_KVM_CACHE_REGS_H
#define ASM_KVM_CACHE_REGS_H
#include <linux/kvm_host.h>
#define KVM_POSSIBLE_CR0_GUEST_BITS (X86_CR0_TS | X86_CR0_WP)
#define KVM_POSSIBLE_CR4_GUEST_BITS \
(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
| X86_CR4_OSXMMEXCPT | X86_CR4_PGE | X86_CR4_TSD | X86_CR4_FSGSBASE)
#define X86_CR0_PDPTR_BITS (X86_CR0_CD | X86_CR0_NW | X86_CR0_PG)
#define X86_CR4_TLBFLUSH_BITS (X86_CR4_PGE | X86_CR4_PCIDE | X86_CR4_PAE | X86_CR4_SMEP)
#define X86_CR4_PDPTR_BITS (X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_SMEP)
static_assert(!(KVM_POSSIBLE_CR0_GUEST_BITS & X86_CR0_PDPTR_BITS));
#define BUILD_KVM_GPR_ACCESSORS(lname, uname) \
static __always_inline unsigned long kvm_##lname##_read(struct kvm_vcpu *vcpu)\
{ \
return vcpu->arch.regs[VCPU_REGS_##uname]; \
} \
static __always_inline void kvm_##lname##_write(struct kvm_vcpu *vcpu, \
unsigned long val) \
{ \
vcpu->arch.regs[VCPU_REGS_##uname] = val; \
}
BUILD_KVM_GPR_ACCESSORS(rax, RAX)
BUILD_KVM_GPR_ACCESSORS(rbx, RBX)
BUILD_KVM_GPR_ACCESSORS(rcx, RCX)
BUILD_KVM_GPR_ACCESSORS(rdx, RDX)
BUILD_KVM_GPR_ACCESSORS(rbp, RBP)
BUILD_KVM_GPR_ACCESSORS(rsi, RSI)
BUILD_KVM_GPR_ACCESSORS(rdi, RDI)
#ifdef CONFIG_X86_64
BUILD_KVM_GPR_ACCESSORS(r8, R8)
BUILD_KVM_GPR_ACCESSORS(r9, R9)
BUILD_KVM_GPR_ACCESSORS(r10, R10)
BUILD_KVM_GPR_ACCESSORS(r11, R11)
BUILD_KVM_GPR_ACCESSORS(r12, R12)
BUILD_KVM_GPR_ACCESSORS(r13, R13)
BUILD_KVM_GPR_ACCESSORS(r14, R14)
BUILD_KVM_GPR_ACCESSORS(r15, R15)
#endif
/*
* avail dirty
* 0 0 register in VMCS/VMCB
* 0 1 *INVALID*
* 1 0 register in vcpu->arch
* 1 1 register in vcpu->arch, needs to be stored back
*/
static inline bool kvm_register_is_available(struct kvm_vcpu *vcpu,
enum kvm_reg reg)
{
return test_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
}
static inline bool kvm_register_is_dirty(struct kvm_vcpu *vcpu,
enum kvm_reg reg)
{
return test_bit(reg, (unsigned long *)&vcpu->arch.regs_dirty);
}
static inline void kvm_register_mark_available(struct kvm_vcpu *vcpu,
enum kvm_reg reg)
{
__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
}
static inline void kvm_register_mark_dirty(struct kvm_vcpu *vcpu,
enum kvm_reg reg)
{
__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
__set_bit(reg, (unsigned long *)&vcpu->arch.regs_dirty);
}
/*
* kvm_register_test_and_mark_available() is a special snowflake that uses an
* arch bitop directly to avoid the explicit instrumentation that comes with
* the generic bitops. This allows code that cannot be instrumented (noinstr
* functions), e.g. the low level VM-Enter/VM-Exit paths, to cache registers.
*/
static __always_inline bool kvm_register_test_and_mark_available(struct kvm_vcpu *vcpu,
enum kvm_reg reg)
{
return arch___test_and_set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
}
/*
* The "raw" register helpers are only for cases where the full 64 bits of a
* register are read/written irrespective of current vCPU mode. In other words,
* odds are good you shouldn't be using the raw variants.
*/
static inline unsigned long kvm_register_read_raw(struct kvm_vcpu *vcpu, int reg)
{
if (WARN_ON_ONCE((unsigned int)reg >= NR_VCPU_REGS))
return 0;
if (!kvm_register_is_available(vcpu, reg))
kvm_x86_call(cache_reg)(vcpu, reg);
return vcpu->arch.regs[reg];
}
static inline void kvm_register_write_raw(struct kvm_vcpu *vcpu, int reg,
unsigned long val)
{
if (WARN_ON_ONCE((unsigned int)reg >= NR_VCPU_REGS))
return;
vcpu->arch.regs[reg] = val;
kvm_register_mark_dirty(vcpu, reg);
}
static inline unsigned long kvm_rip_read(struct kvm_vcpu *vcpu)
{
return kvm_register_read_raw(vcpu, VCPU_REGS_RIP);
}
static inline void kvm_rip_write(struct kvm_vcpu *vcpu, unsigned long val)
{
kvm_register_write_raw(vcpu, VCPU_REGS_RIP, val);
}
static inline unsigned long kvm_rsp_read(struct kvm_vcpu *vcpu)
{
return kvm_register_read_raw(vcpu, VCPU_REGS_RSP);
}
static inline void kvm_rsp_write(struct kvm_vcpu *vcpu, unsigned long val)
{
kvm_register_write_raw(vcpu, VCPU_REGS_RSP, val);
}
static inline u64 kvm_pdptr_read(struct kvm_vcpu *vcpu, int index)
{
might_sleep(); /* on svm */
if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
kvm_x86_call(cache_reg)(vcpu, VCPU_EXREG_PDPTR);
return vcpu->arch.walk_mmu->pdptrs[index];
}
static inline void kvm_pdptr_write(struct kvm_vcpu *vcpu, int index, u64 value)
{
vcpu->arch.walk_mmu->pdptrs[index] = value;
}
static inline ulong kvm_read_cr0_bits(struct kvm_vcpu *vcpu, ulong mask)
{
ulong tmask = mask & KVM_POSSIBLE_CR0_GUEST_BITS;
if ((tmask & vcpu->arch.cr0_guest_owned_bits) &&
!kvm_register_is_available(vcpu, VCPU_EXREG_CR0))
kvm_x86_call(cache_reg)(vcpu, VCPU_EXREG_CR0);
return vcpu->arch.cr0 & mask;
}
static __always_inline bool kvm_is_cr0_bit_set(struct kvm_vcpu *vcpu,
unsigned long cr0_bit)
{
BUILD_BUG_ON(!is_power_of_2(cr0_bit));
return !!kvm_read_cr0_bits(vcpu, cr0_bit);
}
static inline ulong kvm_read_cr0(struct kvm_vcpu *vcpu)
{
return kvm_read_cr0_bits(vcpu, ~0UL);
}
static inline ulong kvm_read_cr4_bits(struct kvm_vcpu *vcpu, ulong mask)
{
ulong tmask = mask & KVM_POSSIBLE_CR4_GUEST_BITS;
if ((tmask & vcpu->arch.cr4_guest_owned_bits) &&
!kvm_register_is_available(vcpu, VCPU_EXREG_CR4))
kvm_x86_call(cache_reg)(vcpu, VCPU_EXREG_CR4);
return vcpu->arch.cr4 & mask;
}
static __always_inline bool kvm_is_cr4_bit_set(struct kvm_vcpu *vcpu,
unsigned long cr4_bit)
{
BUILD_BUG_ON(!is_power_of_2(cr4_bit));
return !!kvm_read_cr4_bits(vcpu, cr4_bit);
}
static inline ulong kvm_read_cr3(struct kvm_vcpu *vcpu)
{
if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
kvm_x86_call(cache_reg)(vcpu, VCPU_EXREG_CR3);
return vcpu->arch.cr3;
}
static inline ulong kvm_read_cr4(struct kvm_vcpu *vcpu)
{
return kvm_read_cr4_bits(vcpu, ~0UL);
}
static inline u64 kvm_read_edx_eax(struct kvm_vcpu *vcpu)
{
return (kvm_rax_read(vcpu) & -1u)
| ((u64)(kvm_rdx_read(vcpu) & -1u) << 32);
}
static inline void enter_guest_mode(struct kvm_vcpu *vcpu)
{
vcpu->arch.hflags |= HF_GUEST_MASK;
vcpu->stat.guest_mode = 1;
}
static inline void leave_guest_mode(struct kvm_vcpu *vcpu)
{
vcpu->arch.hflags &= ~HF_GUEST_MASK;
if (vcpu->arch.load_eoi_exitmap_pending) {
vcpu->arch.load_eoi_exitmap_pending = false;
kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
}
vcpu->stat.guest_mode = 0;
}
static inline bool is_guest_mode(struct kvm_vcpu *vcpu)
{
return vcpu->arch.hflags & HF_GUEST_MASK;
}
#endif