Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Andrew Lutomirski | 783 | 15.00% | 30 | 11.45% |
Andi Kleen | 747 | 14.31% | 20 | 7.63% |
Ingo Molnar | 609 | 11.67% | 22 | 8.40% |
Nicholas Piggin | 450 | 8.62% | 2 | 0.76% |
Harvey Harrison | 264 | 5.06% | 15 | 5.73% |
Dave Hansen | 239 | 4.58% | 12 | 4.58% |
Joerg Roedel | 165 | 3.16% | 6 | 2.29% |
Jan Beulich | 143 | 2.74% | 8 | 3.05% |
Thomas Gleixner | 134 | 2.57% | 9 | 3.44% |
Sean Christopherson | 133 | 2.55% | 5 | 1.91% |
Kirill A. Shutemov | 127 | 2.43% | 1 | 0.38% |
Akinobu Mita | 127 | 2.43% | 1 | 0.38% |
Suren Baghdasaryan | 124 | 2.38% | 3 | 1.15% |
Peter Zijlstra | 102 | 1.95% | 8 | 3.05% |
Seiji Aguchi | 73 | 1.40% | 2 | 0.76% |
Eric W. Biedermann | 70 | 1.34% | 7 | 2.67% |
Rick Edgecombe | 66 | 1.26% | 1 | 0.38% |
Linus Torvalds | 62 | 1.19% | 6 | 2.29% |
Jeremy Fitzhardinge | 58 | 1.11% | 2 | 0.76% |
Peter Xu | 49 | 0.94% | 8 | 3.05% |
H. Peter Anvin | 48 | 0.92% | 4 | 1.53% |
Frédéric Weisbecker | 46 | 0.88% | 4 | 1.53% |
Pekka Paalanen | 45 | 0.86% | 3 | 1.15% |
Linus Torvalds (pre-git) | 44 | 0.84% | 5 | 1.91% |
Kefeng Wang | 35 | 0.67% | 1 | 0.38% |
Jiri Kosina | 34 | 0.65% | 1 | 0.38% |
Borislav Petkov | 31 | 0.59% | 3 | 1.15% |
Rik Van Riel | 26 | 0.50% | 1 | 0.38% |
Matt Fleming | 24 | 0.46% | 1 | 0.38% |
Alexander Potapenko | 21 | 0.40% | 2 | 0.76% |
Ricardo Neri | 21 | 0.40% | 1 | 0.38% |
Juergen Gross | 19 | 0.36% | 1 | 0.38% |
Jiashuo Liang | 17 | 0.33% | 2 | 0.76% |
Michel Lespinasse | 17 | 0.33% | 5 | 1.91% |
Motohiro Kosaki | 16 | 0.31% | 2 | 0.76% |
Jiri Olsa | 15 | 0.29% | 1 | 0.38% |
Michael Roth | 15 | 0.29% | 1 | 0.38% |
Masami Hiramatsu | 13 | 0.25% | 1 | 0.38% |
Christoph Lameter | 12 | 0.23% | 1 | 0.38% |
Sai Praneeth | 11 | 0.21% | 1 | 0.38% |
Andrew Morton | 10 | 0.19% | 4 | 1.53% |
Christoph Hellwig | 10 | 0.19% | 2 | 0.76% |
Heiko Carstens | 10 | 0.19% | 1 | 0.38% |
Anshuman Khandual | 9 | 0.17% | 2 | 0.76% |
David Vrabel | 9 | 0.17% | 1 | 0.38% |
Alexander van Heukelum | 8 | 0.15% | 1 | 0.38% |
Hiroshi Shimamoto | 8 | 0.15% | 1 | 0.38% |
Brijesh Singh | 8 | 0.15% | 1 | 0.38% |
Vegard Nossum | 8 | 0.15% | 1 | 0.38% |
Kees Cook | 7 | 0.13% | 2 | 0.76% |
Johannes Weiner | 7 | 0.13% | 2 | 0.76% |
Huang Ying | 6 | 0.11% | 1 | 0.38% |
Lukas Bulwahn | 6 | 0.11% | 1 | 0.38% |
Marco Elver | 6 | 0.11% | 2 | 0.76% |
Andrea Arcangeli | 5 | 0.10% | 2 | 0.76% |
Mel Gorman | 5 | 0.10% | 1 | 0.38% |
Steven Rostedt | 4 | 0.08% | 1 | 0.38% |
Colin Ian King | 4 | 0.08% | 1 | 0.38% |
Vincent Hanquez | 4 | 0.08% | 1 | 0.38% |
Eric Sandeen | 4 | 0.08% | 1 | 0.38% |
Chuck Ebbert | 4 | 0.08% | 1 | 0.38% |
Dmitriy Vyukov | 4 | 0.08% | 2 | 0.76% |
Laurent Dufour | 3 | 0.06% | 1 | 0.38% |
David Hildenbrand | 3 | 0.06% | 1 | 0.38% |
Guan Xuetao | 3 | 0.06% | 1 | 0.38% |
Arnd Bergmann | 3 | 0.06% | 1 | 0.38% |
Arjan van de Ven | 3 | 0.06% | 1 | 0.38% |
Glauber de Oliveira Costa | 3 | 0.06% | 1 | 0.38% |
Masoud Asgharifard Sharbiani | 2 | 0.04% | 1 | 0.38% |
Souptick Joarder | 2 | 0.04% | 2 | 0.76% |
David Howells | 2 | 0.04% | 1 | 0.38% |
Prarit Bhargava | 2 | 0.04% | 1 | 0.38% |
Adrian Bunk | 2 | 0.04% | 1 | 0.38% |
Martin Schwidefsky | 2 | 0.04% | 1 | 0.38% |
Brian Gerst | 1 | 0.02% | 1 | 0.38% |
Greg Kroah-Hartman | 1 | 0.02% | 1 | 0.38% |
Pavel Emelyanov | 1 | 0.02% | 1 | 0.38% |
Tony Luck | 1 | 0.02% | 1 | 0.38% |
Mike Rapoport | 1 | 0.02% | 1 | 0.38% |
Aaron Tomlin | 1 | 0.02% | 1 | 0.38% |
Al Viro | 1 | 0.02% | 1 | 0.38% |
Paul Gortmaker | 1 | 0.02% | 1 | 0.38% |
Total | 5219 | 262 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 1995 Linus Torvalds * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs. * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar */ #include <linux/sched.h> /* test_thread_flag(), ... */ #include <linux/sched/task_stack.h> /* task_stack_*(), ... */ #include <linux/kdebug.h> /* oops_begin/end, ... */ #include <linux/extable.h> /* search_exception_tables */ #include <linux/memblock.h> /* max_low_pfn */ #include <linux/kfence.h> /* kfence_handle_page_fault */ #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */ #include <linux/mmiotrace.h> /* kmmio_handler, ... */ #include <linux/perf_event.h> /* perf_sw_event */ #include <linux/hugetlb.h> /* hstate_index_to_shift */ #include <linux/prefetch.h> /* prefetchw */ #include <linux/context_tracking.h> /* exception_enter(), ... */ #include <linux/uaccess.h> /* faulthandler_disabled() */ #include <linux/efi.h> /* efi_crash_gracefully_on_page_fault()*/ #include <linux/mm_types.h> #include <linux/mm.h> /* find_and_lock_vma() */ #include <linux/vmalloc.h> #include <asm/cpufeature.h> /* boot_cpu_has, ... */ #include <asm/traps.h> /* dotraplinkage, ... */ #include <asm/fixmap.h> /* VSYSCALL_ADDR */ #include <asm/vsyscall.h> /* emulate_vsyscall */ #include <asm/vm86.h> /* struct vm86 */ #include <asm/mmu_context.h> /* vma_pkey() */ #include <asm/efi.h> /* efi_crash_gracefully_on_page_fault()*/ #include <asm/desc.h> /* store_idt(), ... */ #include <asm/cpu_entry_area.h> /* exception stack */ #include <asm/pgtable_areas.h> /* VMALLOC_START, ... */ #include <asm/kvm_para.h> /* kvm_handle_async_pf */ #include <asm/vdso.h> /* fixup_vdso_exception() */ #include <asm/irq_stack.h> #include <asm/fred.h> #include <asm/sev.h> /* snp_dump_hva_rmpentry() */ #define CREATE_TRACE_POINTS #include <asm/trace/exceptions.h> /* * Returns 0 if mmiotrace is disabled, or if the fault is not * handled by mmiotrace: */ static nokprobe_inline int kmmio_fault(struct pt_regs *regs, unsigned long addr) { if (unlikely(is_kmmio_active())) if (kmmio_handler(regs, addr) == 1) return -1; return 0; } /* * Prefetch quirks: * * 32-bit mode: * * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. * Check that here and ignore it. This is AMD erratum #91. * * 64-bit mode: * * Sometimes the CPU reports invalid exceptions on prefetch. * Check that here and ignore it. * * Opcode checker based on code by Richard Brunner. */ static inline int check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr, unsigned char opcode, int *prefetch) { unsigned char instr_hi = opcode & 0xf0; unsigned char instr_lo = opcode & 0x0f; switch (instr_hi) { case 0x20: case 0x30: /* * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. * In X86_64 long mode, the CPU will signal invalid * opcode if some of these prefixes are present so * X86_64 will never get here anyway */ return ((instr_lo & 7) == 0x6); #ifdef CONFIG_X86_64 case 0x40: /* * In 64-bit mode 0x40..0x4F are valid REX prefixes */ return (!user_mode(regs) || user_64bit_mode(regs)); #endif case 0x60: /* 0x64 thru 0x67 are valid prefixes in all modes. */ return (instr_lo & 0xC) == 0x4; case 0xF0: /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */ return !instr_lo || (instr_lo>>1) == 1; case 0x00: /* Prefetch instruction is 0x0F0D or 0x0F18 */ if (get_kernel_nofault(opcode, instr)) return 0; *prefetch = (instr_lo == 0xF) && (opcode == 0x0D || opcode == 0x18); return 0; default: return 0; } } static bool is_amd_k8_pre_npt(void) { struct cpuinfo_x86 *c = &boot_cpu_data; return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) && c->x86_vendor == X86_VENDOR_AMD && c->x86 == 0xf && c->x86_model < 0x40); } static int is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr) { unsigned char *max_instr; unsigned char *instr; int prefetch = 0; /* Erratum #91 affects AMD K8, pre-NPT CPUs */ if (!is_amd_k8_pre_npt()) return 0; /* * If it was a exec (instruction fetch) fault on NX page, then * do not ignore the fault: */ if (error_code & X86_PF_INSTR) return 0; instr = (void *)convert_ip_to_linear(current, regs); max_instr = instr + 15; /* * This code has historically always bailed out if IP points to a * not-present page (e.g. due to a race). No one has ever * complained about this. */ pagefault_disable(); while (instr < max_instr) { unsigned char opcode; if (user_mode(regs)) { if (get_user(opcode, (unsigned char __user *) instr)) break; } else { if (get_kernel_nofault(opcode, instr)) break; } instr++; if (!check_prefetch_opcode(regs, instr, opcode, &prefetch)) break; } pagefault_enable(); return prefetch; } DEFINE_SPINLOCK(pgd_lock); LIST_HEAD(pgd_list); #ifdef CONFIG_X86_32 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) { unsigned index = pgd_index(address); pgd_t *pgd_k; p4d_t *p4d, *p4d_k; pud_t *pud, *pud_k; pmd_t *pmd, *pmd_k; pgd += index; pgd_k = init_mm.pgd + index; if (!pgd_present(*pgd_k)) return NULL; /* * set_pgd(pgd, *pgd_k); here would be useless on PAE * and redundant with the set_pmd() on non-PAE. As would * set_p4d/set_pud. */ p4d = p4d_offset(pgd, address); p4d_k = p4d_offset(pgd_k, address); if (!p4d_present(*p4d_k)) return NULL; pud = pud_offset(p4d, address); pud_k = pud_offset(p4d_k, address); if (!pud_present(*pud_k)) return NULL; pmd = pmd_offset(pud, address); pmd_k = pmd_offset(pud_k, address); if (pmd_present(*pmd) != pmd_present(*pmd_k)) set_pmd(pmd, *pmd_k); if (!pmd_present(*pmd_k)) return NULL; else BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k)); return pmd_k; } /* * Handle a fault on the vmalloc or module mapping area * * This is needed because there is a race condition between the time * when the vmalloc mapping code updates the PMD to the point in time * where it synchronizes this update with the other page-tables in the * system. * * In this race window another thread/CPU can map an area on the same * PMD, finds it already present and does not synchronize it with the * rest of the system yet. As a result v[mz]alloc might return areas * which are not mapped in every page-table in the system, causing an * unhandled page-fault when they are accessed. */ static noinline int vmalloc_fault(unsigned long address) { unsigned long pgd_paddr; pmd_t *pmd_k; pte_t *pte_k; /* Make sure we are in vmalloc area: */ if (!(address >= VMALLOC_START && address < VMALLOC_END)) return -1; /* * Synchronize this task's top level page-table * with the 'reference' page table. * * Do _not_ use "current" here. We might be inside * an interrupt in the middle of a task switch.. */ pgd_paddr = read_cr3_pa(); pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); if (!pmd_k) return -1; if (pmd_leaf(*pmd_k)) return 0; pte_k = pte_offset_kernel(pmd_k, address); if (!pte_present(*pte_k)) return -1; return 0; } NOKPROBE_SYMBOL(vmalloc_fault); void arch_sync_kernel_mappings(unsigned long start, unsigned long end) { unsigned long addr; for (addr = start & PMD_MASK; addr >= TASK_SIZE_MAX && addr < VMALLOC_END; addr += PMD_SIZE) { struct page *page; spin_lock(&pgd_lock); list_for_each_entry(page, &pgd_list, lru) { spinlock_t *pgt_lock; /* the pgt_lock only for Xen */ pgt_lock = &pgd_page_get_mm(page)->page_table_lock; spin_lock(pgt_lock); vmalloc_sync_one(page_address(page), addr); spin_unlock(pgt_lock); } spin_unlock(&pgd_lock); } } static bool low_pfn(unsigned long pfn) { return pfn < max_low_pfn; } static void dump_pagetable(unsigned long address) { pgd_t *base = __va(read_cr3_pa()); pgd_t *pgd = &base[pgd_index(address)]; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *pte; #ifdef CONFIG_X86_PAE pr_info("*pdpt = %016Lx ", pgd_val(*pgd)); if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd)) goto out; #define pr_pde pr_cont #else #define pr_pde pr_info #endif p4d = p4d_offset(pgd, address); pud = pud_offset(p4d, address); pmd = pmd_offset(pud, address); pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd)); #undef pr_pde /* * We must not directly access the pte in the highpte * case if the page table is located in highmem. * And let's rather not kmap-atomic the pte, just in case * it's allocated already: */ if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_leaf(*pmd)) goto out; pte = pte_offset_kernel(pmd, address); pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte)); out: pr_cont("\n"); } #else /* CONFIG_X86_64: */ #ifdef CONFIG_CPU_SUP_AMD static const char errata93_warning[] = KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n" "******* Working around it, but it may cause SEGVs or burn power.\n" "******* Please consider a BIOS update.\n" "******* Disabling USB legacy in the BIOS may also help.\n"; #endif static int bad_address(void *p) { unsigned long dummy; return get_kernel_nofault(dummy, (unsigned long *)p); } static void dump_pagetable(unsigned long address) { pgd_t *base = __va(read_cr3_pa()); pgd_t *pgd = base + pgd_index(address); p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *pte; if (bad_address(pgd)) goto bad; pr_info("PGD %lx ", pgd_val(*pgd)); if (!pgd_present(*pgd)) goto out; p4d = p4d_offset(pgd, address); if (bad_address(p4d)) goto bad; pr_cont("P4D %lx ", p4d_val(*p4d)); if (!p4d_present(*p4d) || p4d_leaf(*p4d)) goto out; pud = pud_offset(p4d, address); if (bad_address(pud)) goto bad; pr_cont("PUD %lx ", pud_val(*pud)); if (!pud_present(*pud) || pud_leaf(*pud)) goto out; pmd = pmd_offset(pud, address); if (bad_address(pmd)) goto bad; pr_cont("PMD %lx ", pmd_val(*pmd)); if (!pmd_present(*pmd) || pmd_leaf(*pmd)) goto out; pte = pte_offset_kernel(pmd, address); if (bad_address(pte)) goto bad; pr_cont("PTE %lx", pte_val(*pte)); out: pr_cont("\n"); return; bad: pr_info("BAD\n"); } #endif /* CONFIG_X86_64 */ /* * Workaround for K8 erratum #93 & buggy BIOS. * * BIOS SMM functions are required to use a specific workaround * to avoid corruption of the 64bit RIP register on C stepping K8. * * A lot of BIOS that didn't get tested properly miss this. * * The OS sees this as a page fault with the upper 32bits of RIP cleared. * Try to work around it here. * * Note we only handle faults in kernel here. * Does nothing on 32-bit. */ static int is_errata93(struct pt_regs *regs, unsigned long address) { #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD) if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD || boot_cpu_data.x86 != 0xf) return 0; if (user_mode(regs)) return 0; if (address != regs->ip) return 0; if ((address >> 32) != 0) return 0; address |= 0xffffffffUL << 32; if ((address >= (u64)_stext && address <= (u64)_etext) || (address >= MODULES_VADDR && address <= MODULES_END)) { printk_once(errata93_warning); regs->ip = address; return 1; } #endif return 0; } /* * Work around K8 erratum #100 K8 in compat mode occasionally jumps * to illegal addresses >4GB. * * We catch this in the page fault handler because these addresses * are not reachable. Just detect this case and return. Any code * segment in LDT is compatibility mode. */ static int is_errata100(struct pt_regs *regs, unsigned long address) { #ifdef CONFIG_X86_64 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32)) return 1; #endif return 0; } /* Pentium F0 0F C7 C8 bug workaround: */ static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code, unsigned long address) { #ifdef CONFIG_X86_F00F_BUG if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) && idt_is_f00f_address(address)) { handle_invalid_op(regs); return 1; } #endif return 0; } static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index) { u32 offset = (index >> 3) * sizeof(struct desc_struct); unsigned long addr; struct ldttss_desc desc; if (index == 0) { pr_alert("%s: NULL\n", name); return; } if (offset + sizeof(struct ldttss_desc) >= gdt->size) { pr_alert("%s: 0x%hx -- out of bounds\n", name, index); return; } if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset), sizeof(struct ldttss_desc))) { pr_alert("%s: 0x%hx -- GDT entry is not readable\n", name, index); return; } addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24); #ifdef CONFIG_X86_64 addr |= ((u64)desc.base3 << 32); #endif pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n", name, index, addr, (desc.limit0 | (desc.limit1 << 16))); } static void show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address) { if (!oops_may_print()) return; if (error_code & X86_PF_INSTR) { unsigned int level; bool nx, rw; pgd_t *pgd; pte_t *pte; pgd = __va(read_cr3_pa()); pgd += pgd_index(address); pte = lookup_address_in_pgd_attr(pgd, address, &level, &nx, &rw); if (pte && pte_present(*pte) && (!pte_exec(*pte) || nx)) pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n", from_kuid(&init_user_ns, current_uid())); if (pte && pte_present(*pte) && pte_exec(*pte) && !nx && (pgd_flags(*pgd) & _PAGE_USER) && (__read_cr4() & X86_CR4_SMEP)) pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n", from_kuid(&init_user_ns, current_uid())); } if (address < PAGE_SIZE && !user_mode(regs)) pr_alert("BUG: kernel NULL pointer dereference, address: %px\n", (void *)address); else pr_alert("BUG: unable to handle page fault for address: %px\n", (void *)address); pr_alert("#PF: %s %s in %s mode\n", (error_code & X86_PF_USER) ? "user" : "supervisor", (error_code & X86_PF_INSTR) ? "instruction fetch" : (error_code & X86_PF_WRITE) ? "write access" : "read access", user_mode(regs) ? "user" : "kernel"); pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code, !(error_code & X86_PF_PROT) ? "not-present page" : (error_code & X86_PF_RSVD) ? "reserved bit violation" : (error_code & X86_PF_PK) ? "protection keys violation" : (error_code & X86_PF_RMP) ? "RMP violation" : "permissions violation"); if (!(error_code & X86_PF_USER) && user_mode(regs)) { struct desc_ptr idt, gdt; u16 ldtr, tr; /* * This can happen for quite a few reasons. The more obvious * ones are faults accessing the GDT, or LDT. Perhaps * surprisingly, if the CPU tries to deliver a benign or * contributory exception from user code and gets a page fault * during delivery, the page fault can be delivered as though * it originated directly from user code. This could happen * due to wrong permissions on the IDT, GDT, LDT, TSS, or * kernel or IST stack. */ store_idt(&idt); /* Usable even on Xen PV -- it's just slow. */ native_store_gdt(&gdt); pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n", idt.address, idt.size, gdt.address, gdt.size); store_ldt(ldtr); show_ldttss(&gdt, "LDTR", ldtr); store_tr(tr); show_ldttss(&gdt, "TR", tr); } dump_pagetable(address); if (error_code & X86_PF_RMP) snp_dump_hva_rmpentry(address); } static noinline void pgtable_bad(struct pt_regs *regs, unsigned long error_code, unsigned long address) { struct task_struct *tsk; unsigned long flags; int sig; flags = oops_begin(); tsk = current; sig = SIGKILL; printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", tsk->comm, address); dump_pagetable(address); if (__die("Bad pagetable", regs, error_code)) sig = 0; oops_end(flags, regs, sig); } static void sanitize_error_code(unsigned long address, unsigned long *error_code) { /* * To avoid leaking information about the kernel page * table layout, pretend that user-mode accesses to * kernel addresses are always protection faults. * * NB: This means that failed vsyscalls with vsyscall=none * will have the PROT bit. This doesn't leak any * information and does not appear to cause any problems. */ if (address >= TASK_SIZE_MAX) *error_code |= X86_PF_PROT; } static void set_signal_archinfo(unsigned long address, unsigned long error_code) { struct task_struct *tsk = current; tsk->thread.trap_nr = X86_TRAP_PF; tsk->thread.error_code = error_code | X86_PF_USER; tsk->thread.cr2 = address; } static noinline void page_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address) { #ifdef CONFIG_VMAP_STACK struct stack_info info; #endif unsigned long flags; int sig; if (user_mode(regs)) { /* * Implicit kernel access from user mode? Skip the stack * overflow and EFI special cases. */ goto oops; } #ifdef CONFIG_VMAP_STACK /* * Stack overflow? During boot, we can fault near the initial * stack in the direct map, but that's not an overflow -- check * that we're in vmalloc space to avoid this. */ if (is_vmalloc_addr((void *)address) && get_stack_guard_info((void *)address, &info)) { /* * We're likely to be running with very little stack space * left. It's plausible that we'd hit this condition but * double-fault even before we get this far, in which case * we're fine: the double-fault handler will deal with it. * * We don't want to make it all the way into the oops code * and then double-fault, though, because we're likely to * break the console driver and lose most of the stack dump. */ call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*), handle_stack_overflow, ASM_CALL_ARG3, , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info)); unreachable(); } #endif /* * Buggy firmware could access regions which might page fault. If * this happens, EFI has a special OOPS path that will try to * avoid hanging the system. */ if (IS_ENABLED(CONFIG_EFI)) efi_crash_gracefully_on_page_fault(address); /* Only not-present faults should be handled by KFENCE. */ if (!(error_code & X86_PF_PROT) && kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs)) return; oops: /* * Oops. The kernel tried to access some bad page. We'll have to * terminate things with extreme prejudice: */ flags = oops_begin(); show_fault_oops(regs, error_code, address); if (task_stack_end_corrupted(current)) printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); sig = SIGKILL; if (__die("Oops", regs, error_code)) sig = 0; /* Executive summary in case the body of the oops scrolled away */ printk(KERN_DEFAULT "CR2: %016lx\n", address); oops_end(flags, regs, sig); } static noinline void kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address, int signal, int si_code, u32 pkey) { WARN_ON_ONCE(user_mode(regs)); /* Are we prepared to handle this kernel fault? */ if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) return; /* * AMD erratum #91 manifests as a spurious page fault on a PREFETCH * instruction. */ if (is_prefetch(regs, error_code, address)) return; page_fault_oops(regs, error_code, address); } /* * Print out info about fatal segfaults, if the show_unhandled_signals * sysctl is set: */ static inline void show_signal_msg(struct pt_regs *regs, unsigned long error_code, unsigned long address, struct task_struct *tsk) { const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG; /* This is a racy snapshot, but it's better than nothing. */ int cpu = raw_smp_processor_id(); if (!unhandled_signal(tsk, SIGSEGV)) return; if (!printk_ratelimit()) return; printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx", loglvl, tsk->comm, task_pid_nr(tsk), address, (void *)regs->ip, (void *)regs->sp, error_code); print_vma_addr(KERN_CONT " in ", regs->ip); /* * Dump the likely CPU where the fatal segfault happened. * This can help identify faulty hardware. */ printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu, topology_core_id(cpu), topology_physical_package_id(cpu)); printk(KERN_CONT "\n"); show_opcodes(regs, loglvl); } static void __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, unsigned long address, u32 pkey, int si_code) { struct task_struct *tsk = current; if (!user_mode(regs)) { kernelmode_fixup_or_oops(regs, error_code, address, SIGSEGV, si_code, pkey); return; } if (!(error_code & X86_PF_USER)) { /* Implicit user access to kernel memory -- just oops */ page_fault_oops(regs, error_code, address); return; } /* * User mode accesses just cause a SIGSEGV. * It's possible to have interrupts off here: */ local_irq_enable(); /* * Valid to do another page fault here because this one came * from user space: */ if (is_prefetch(regs, error_code, address)) return; if (is_errata100(regs, address)) return; sanitize_error_code(address, &error_code); if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address)) return; if (likely(show_unhandled_signals)) show_signal_msg(regs, error_code, address, tsk); set_signal_archinfo(address, error_code); if (si_code == SEGV_PKUERR) force_sig_pkuerr((void __user *)address, pkey); else force_sig_fault(SIGSEGV, si_code, (void __user *)address); local_irq_disable(); } static noinline void bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, unsigned long address) { __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR); } static void __bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address, struct mm_struct *mm, struct vm_area_struct *vma, u32 pkey, int si_code) { /* * Something tried to access memory that isn't in our memory map.. * Fix it, but check if it's kernel or user first.. */ if (mm) mmap_read_unlock(mm); else vma_end_read(vma); __bad_area_nosemaphore(regs, error_code, address, pkey, si_code); } static inline bool bad_area_access_from_pkeys(unsigned long error_code, struct vm_area_struct *vma) { /* This code is always called on the current mm */ bool foreign = false; if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) return false; if (error_code & X86_PF_PK) return true; /* this checks permission keys on the VMA: */ if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), (error_code & X86_PF_INSTR), foreign)) return true; return false; } static noinline void bad_area_access_error(struct pt_regs *regs, unsigned long error_code, unsigned long address, struct mm_struct *mm, struct vm_area_struct *vma) { /* * This OSPKE check is not strictly necessary at runtime. * But, doing it this way allows compiler optimizations * if pkeys are compiled out. */ if (bad_area_access_from_pkeys(error_code, vma)) { /* * A protection key fault means that the PKRU value did not allow * access to some PTE. Userspace can figure out what PKRU was * from the XSAVE state. This function captures the pkey from * the vma and passes it to userspace so userspace can discover * which protection key was set on the PTE. * * If we get here, we know that the hardware signaled a X86_PF_PK * fault and that there was a VMA once we got in the fault * handler. It does *not* guarantee that the VMA we find here * was the one that we faulted on. * * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4); * 2. T1 : set PKRU to deny access to pkey=4, touches page * 3. T1 : faults... * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5); * 5. T1 : enters fault handler, takes mmap_lock, etc... * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really * faulted on a pte with its pkey=4. */ u32 pkey = vma_pkey(vma); __bad_area(regs, error_code, address, mm, vma, pkey, SEGV_PKUERR); } else { __bad_area(regs, error_code, address, mm, vma, 0, SEGV_ACCERR); } } static void do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address, vm_fault_t fault) { /* Kernel mode? Handle exceptions or die: */ if (!user_mode(regs)) { kernelmode_fixup_or_oops(regs, error_code, address, SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY); return; } /* User-space => ok to do another page fault: */ if (is_prefetch(regs, error_code, address)) return; sanitize_error_code(address, &error_code); if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address)) return; set_signal_archinfo(address, error_code); #ifdef CONFIG_MEMORY_FAILURE if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { struct task_struct *tsk = current; unsigned lsb = 0; pr_err( "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", tsk->comm, tsk->pid, address); if (fault & VM_FAULT_HWPOISON_LARGE) lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); if (fault & VM_FAULT_HWPOISON) lsb = PAGE_SHIFT; force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb); return; } #endif force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address); } static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte) { if ((error_code & X86_PF_WRITE) && !pte_write(*pte)) return 0; if ((error_code & X86_PF_INSTR) && !pte_exec(*pte)) return 0; return 1; } /* * Handle a spurious fault caused by a stale TLB entry. * * This allows us to lazily refresh the TLB when increasing the * permissions of a kernel page (RO -> RW or NX -> X). Doing it * eagerly is very expensive since that implies doing a full * cross-processor TLB flush, even if no stale TLB entries exist * on other processors. * * Spurious faults may only occur if the TLB contains an entry with * fewer permission than the page table entry. Non-present (P = 0) * and reserved bit (R = 1) faults are never spurious. * * There are no security implications to leaving a stale TLB when * increasing the permissions on a page. * * Returns non-zero if a spurious fault was handled, zero otherwise. * * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3 * (Optional Invalidation). */ static noinline int spurious_kernel_fault(unsigned long error_code, unsigned long address) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *pte; int ret; /* * Only writes to RO or instruction fetches from NX may cause * spurious faults. * * These could be from user or supervisor accesses but the TLB * is only lazily flushed after a kernel mapping protection * change, so user accesses are not expected to cause spurious * faults. */ if (error_code != (X86_PF_WRITE | X86_PF_PROT) && error_code != (X86_PF_INSTR | X86_PF_PROT)) return 0; pgd = init_mm.pgd + pgd_index(address); if (!pgd_present(*pgd)) return 0; p4d = p4d_offset(pgd, address); if (!p4d_present(*p4d)) return 0; if (p4d_leaf(*p4d)) return spurious_kernel_fault_check(error_code, (pte_t *) p4d); pud = pud_offset(p4d, address); if (!pud_present(*pud)) return 0; if (pud_leaf(*pud)) return spurious_kernel_fault_check(error_code, (pte_t *) pud); pmd = pmd_offset(pud, address); if (!pmd_present(*pmd)) return 0; if (pmd_leaf(*pmd)) return spurious_kernel_fault_check(error_code, (pte_t *) pmd); pte = pte_offset_kernel(pmd, address); if (!pte_present(*pte)) return 0; ret = spurious_kernel_fault_check(error_code, pte); if (!ret) return 0; /* * Make sure we have permissions in PMD. * If not, then there's a bug in the page tables: */ ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd); WARN_ONCE(!ret, "PMD has incorrect permission bits\n"); return ret; } NOKPROBE_SYMBOL(spurious_kernel_fault); int show_unhandled_signals = 1; static inline int access_error(unsigned long error_code, struct vm_area_struct *vma) { /* This is only called for the current mm, so: */ bool foreign = false; /* * Read or write was blocked by protection keys. This is * always an unconditional error and can never result in * a follow-up action to resolve the fault, like a COW. */ if (error_code & X86_PF_PK) return 1; /* * SGX hardware blocked the access. This usually happens * when the enclave memory contents have been destroyed, like * after a suspend/resume cycle. In any case, the kernel can't * fix the cause of the fault. Handle the fault as an access * error even in cases where no actual access violation * occurred. This allows userspace to rebuild the enclave in * response to the signal. */ if (unlikely(error_code & X86_PF_SGX)) return 1; /* * Make sure to check the VMA so that we do not perform * faults just to hit a X86_PF_PK as soon as we fill in a * page. */ if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), (error_code & X86_PF_INSTR), foreign)) return 1; /* * Shadow stack accesses (PF_SHSTK=1) are only permitted to * shadow stack VMAs. All other accesses result in an error. */ if (error_code & X86_PF_SHSTK) { if (unlikely(!(vma->vm_flags & VM_SHADOW_STACK))) return 1; if (unlikely(!(vma->vm_flags & VM_WRITE))) return 1; return 0; } if (error_code & X86_PF_WRITE) { /* write, present and write, not present: */ if (unlikely(vma->vm_flags & VM_SHADOW_STACK)) return 1; if (unlikely(!(vma->vm_flags & VM_WRITE))) return 1; return 0; } /* read, present: */ if (unlikely(error_code & X86_PF_PROT)) return 1; /* read, not present: */ if (unlikely(!vma_is_accessible(vma))) return 1; return 0; } bool fault_in_kernel_space(unsigned long address) { /* * On 64-bit systems, the vsyscall page is at an address above * TASK_SIZE_MAX, but is not considered part of the kernel * address space. */ if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address)) return false; return address >= TASK_SIZE_MAX; } /* * Called for all faults where 'address' is part of the kernel address * space. Might get called for faults that originate from *code* that * ran in userspace or the kernel. */ static void do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code, unsigned long address) { /* * Protection keys exceptions only happen on user pages. We * have no user pages in the kernel portion of the address * space, so do not expect them here. */ WARN_ON_ONCE(hw_error_code & X86_PF_PK); #ifdef CONFIG_X86_32 /* * We can fault-in kernel-space virtual memory on-demand. The * 'reference' page table is init_mm.pgd. * * NOTE! We MUST NOT take any locks for this case. We may * be in an interrupt or a critical region, and should * only copy the information from the master page table, * nothing more. * * Before doing this on-demand faulting, ensure that the * fault is not any of the following: * 1. A fault on a PTE with a reserved bit set. * 2. A fault caused by a user-mode access. (Do not demand- * fault kernel memory due to user-mode accesses). * 3. A fault caused by a page-level protection violation. * (A demand fault would be on a non-present page which * would have X86_PF_PROT==0). * * This is only needed to close a race condition on x86-32 in * the vmalloc mapping/unmapping code. See the comment above * vmalloc_fault() for details. On x86-64 the race does not * exist as the vmalloc mappings don't need to be synchronized * there. */ if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) { if (vmalloc_fault(address) >= 0) return; } #endif if (is_f00f_bug(regs, hw_error_code, address)) return; /* Was the fault spurious, caused by lazy TLB invalidation? */ if (spurious_kernel_fault(hw_error_code, address)) return; /* kprobes don't want to hook the spurious faults: */ if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF))) return; /* * Note, despite being a "bad area", there are quite a few * acceptable reasons to get here, such as erratum fixups * and handling kernel code that can fault, like get_user(). * * Don't take the mm semaphore here. If we fixup a prefetch * fault we could otherwise deadlock: */ bad_area_nosemaphore(regs, hw_error_code, address); } NOKPROBE_SYMBOL(do_kern_addr_fault); /* * Handle faults in the user portion of the address space. Nothing in here * should check X86_PF_USER without a specific justification: for almost * all purposes, we should treat a normal kernel access to user memory * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction. * The one exception is AC flag handling, which is, per the x86 * architecture, special for WRUSS. */ static inline void do_user_addr_fault(struct pt_regs *regs, unsigned long error_code, unsigned long address) { struct vm_area_struct *vma; struct task_struct *tsk; struct mm_struct *mm; vm_fault_t fault; unsigned int flags = FAULT_FLAG_DEFAULT; tsk = current; mm = tsk->mm; if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) { /* * Whoops, this is kernel mode code trying to execute from * user memory. Unless this is AMD erratum #93, which * corrupts RIP such that it looks like a user address, * this is unrecoverable. Don't even try to look up the * VMA or look for extable entries. */ if (is_errata93(regs, address)) return; page_fault_oops(regs, error_code, address); return; } /* kprobes don't want to hook the spurious faults: */ if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF))) return; /* * Reserved bits are never expected to be set on * entries in the user portion of the page tables. */ if (unlikely(error_code & X86_PF_RSVD)) pgtable_bad(regs, error_code, address); /* * If SMAP is on, check for invalid kernel (supervisor) access to user * pages in the user address space. The odd case here is WRUSS, * which, according to the preliminary documentation, does not respect * SMAP and will have the USER bit set so, in all cases, SMAP * enforcement appears to be consistent with the USER bit. */ if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) && !(error_code & X86_PF_USER) && !(regs->flags & X86_EFLAGS_AC))) { /* * No extable entry here. This was a kernel access to an * invalid pointer. get_kernel_nofault() will not get here. */ page_fault_oops(regs, error_code, address); return; } /* * If we're in an interrupt, have no user context or are running * in a region with pagefaults disabled then we must not take the fault */ if (unlikely(faulthandler_disabled() || !mm)) { bad_area_nosemaphore(regs, error_code, address); return; } /* Legacy check - remove this after verifying that it doesn't trigger */ if (WARN_ON_ONCE(!(regs->flags & X86_EFLAGS_IF))) { bad_area_nosemaphore(regs, error_code, address); return; } local_irq_enable(); perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); /* * Read-only permissions can not be expressed in shadow stack PTEs. * Treat all shadow stack accesses as WRITE faults. This ensures * that the MM will prepare everything (e.g., break COW) such that * maybe_mkwrite() can create a proper shadow stack PTE. */ if (error_code & X86_PF_SHSTK) flags |= FAULT_FLAG_WRITE; if (error_code & X86_PF_WRITE) flags |= FAULT_FLAG_WRITE; if (error_code & X86_PF_INSTR) flags |= FAULT_FLAG_INSTRUCTION; /* * We set FAULT_FLAG_USER based on the register state, not * based on X86_PF_USER. User space accesses that cause * system page faults are still user accesses. */ if (user_mode(regs)) flags |= FAULT_FLAG_USER; #ifdef CONFIG_X86_64 /* * Faults in the vsyscall page might need emulation. The * vsyscall page is at a high address (>PAGE_OFFSET), but is * considered to be part of the user address space. * * The vsyscall page does not have a "real" VMA, so do this * emulation before we go searching for VMAs. * * PKRU never rejects instruction fetches, so we don't need * to consider the PF_PK bit. */ if (is_vsyscall_vaddr(address)) { if (emulate_vsyscall(error_code, regs, address)) return; } #endif if (!(flags & FAULT_FLAG_USER)) goto lock_mmap; vma = lock_vma_under_rcu(mm, address); if (!vma) goto lock_mmap; if (unlikely(access_error(error_code, vma))) { bad_area_access_error(regs, error_code, address, NULL, vma); count_vm_vma_lock_event(VMA_LOCK_SUCCESS); return; } fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs); if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED))) vma_end_read(vma); if (!(fault & VM_FAULT_RETRY)) { count_vm_vma_lock_event(VMA_LOCK_SUCCESS); goto done; } count_vm_vma_lock_event(VMA_LOCK_RETRY); if (fault & VM_FAULT_MAJOR) flags |= FAULT_FLAG_TRIED; /* Quick path to respond to signals */ if (fault_signal_pending(fault, regs)) { if (!user_mode(regs)) kernelmode_fixup_or_oops(regs, error_code, address, SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY); return; } lock_mmap: retry: vma = lock_mm_and_find_vma(mm, address, regs); if (unlikely(!vma)) { bad_area_nosemaphore(regs, error_code, address); return; } /* * Ok, we have a good vm_area for this memory access, so * we can handle it.. */ if (unlikely(access_error(error_code, vma))) { bad_area_access_error(regs, error_code, address, mm, vma); return; } /* * If for any reason at all we couldn't handle the fault, * make sure we exit gracefully rather than endlessly redo * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked. * * Note that handle_userfault() may also release and reacquire mmap_lock * (and not return with VM_FAULT_RETRY), when returning to userland to * repeat the page fault later with a VM_FAULT_NOPAGE retval * (potentially after handling any pending signal during the return to * userland). The return to userland is identified whenever * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags. */ fault = handle_mm_fault(vma, address, flags, regs); if (fault_signal_pending(fault, regs)) { /* * Quick path to respond to signals. The core mm code * has unlocked the mm for us if we get here. */ if (!user_mode(regs)) kernelmode_fixup_or_oops(regs, error_code, address, SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY); return; } /* The fault is fully completed (including releasing mmap lock) */ if (fault & VM_FAULT_COMPLETED) return; /* * If we need to retry the mmap_lock has already been released, * and if there is a fatal signal pending there is no guarantee * that we made any progress. Handle this case first. */ if (unlikely(fault & VM_FAULT_RETRY)) { flags |= FAULT_FLAG_TRIED; goto retry; } mmap_read_unlock(mm); done: if (likely(!(fault & VM_FAULT_ERROR))) return; if (fatal_signal_pending(current) && !user_mode(regs)) { kernelmode_fixup_or_oops(regs, error_code, address, 0, 0, ARCH_DEFAULT_PKEY); return; } if (fault & VM_FAULT_OOM) { /* Kernel mode? Handle exceptions or die: */ if (!user_mode(regs)) { kernelmode_fixup_or_oops(regs, error_code, address, SIGSEGV, SEGV_MAPERR, ARCH_DEFAULT_PKEY); return; } /* * We ran out of memory, call the OOM killer, and return the * userspace (which will retry the fault, or kill us if we got * oom-killed): */ pagefault_out_of_memory(); } else { if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| VM_FAULT_HWPOISON_LARGE)) do_sigbus(regs, error_code, address, fault); else if (fault & VM_FAULT_SIGSEGV) bad_area_nosemaphore(regs, error_code, address); else BUG(); } } NOKPROBE_SYMBOL(do_user_addr_fault); static __always_inline void trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code, unsigned long address) { if (!trace_pagefault_enabled()) return; if (user_mode(regs)) trace_page_fault_user(address, regs, error_code); else trace_page_fault_kernel(address, regs, error_code); } static __always_inline void handle_page_fault(struct pt_regs *regs, unsigned long error_code, unsigned long address) { trace_page_fault_entries(regs, error_code, address); if (unlikely(kmmio_fault(regs, address))) return; /* Was the fault on kernel-controlled part of the address space? */ if (unlikely(fault_in_kernel_space(address))) { do_kern_addr_fault(regs, error_code, address); } else { do_user_addr_fault(regs, error_code, address); /* * User address page fault handling might have reenabled * interrupts. Fixing up all potential exit points of * do_user_addr_fault() and its leaf functions is just not * doable w/o creating an unholy mess or turning the code * upside down. */ local_irq_disable(); } } DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault) { irqentry_state_t state; unsigned long address; address = cpu_feature_enabled(X86_FEATURE_FRED) ? fred_event_data(regs) : read_cr2(); prefetchw(¤t->mm->mmap_lock); /* * KVM uses #PF vector to deliver 'page not present' events to guests * (asynchronous page fault mechanism). The event happens when a * userspace task is trying to access some valid (from guest's point of * view) memory which is not currently mapped by the host (e.g. the * memory is swapped out). Note, the corresponding "page ready" event * which is injected when the memory becomes available, is delivered via * an interrupt mechanism and not a #PF exception * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()). * * We are relying on the interrupted context being sane (valid RSP, * relevant locks not held, etc.), which is fine as long as the * interrupted context had IF=1. We are also relying on the KVM * async pf type field and CR2 being read consistently instead of * getting values from real and async page faults mixed up. * * Fingers crossed. * * The async #PF handling code takes care of idtentry handling * itself. */ if (kvm_handle_async_pf(regs, (u32)address)) return; /* * Entry handling for valid #PF from kernel mode is slightly * different: RCU is already watching and ct_irq_enter() must not * be invoked because a kernel fault on a user space address might * sleep. * * In case the fault hit a RCU idle region the conditional entry * code reenabled RCU to avoid subsequent wreckage which helps * debuggability. */ state = irqentry_enter(regs); instrumentation_begin(); handle_page_fault(regs, error_code, address); instrumentation_end(); irqentry_exit(regs, state); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1