Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Venkatesh Pallipadi | 1910 | 45.64% | 28 | 17.95% |
Juergen Gross | 417 | 9.96% | 7 | 4.49% |
Suresh B. Siddha | 349 | 8.34% | 6 | 3.85% |
Toshi Kani | 152 | 3.63% | 11 | 7.05% |
John Dykstra | 146 | 3.49% | 1 | 0.64% |
David Hildenbrand | 116 | 2.77% | 1 | 0.64% |
Christoph Hellwig | 114 | 2.72% | 2 | 1.28% |
Ingo Molnar | 112 | 2.68% | 14 | 8.97% |
Dan J Williams | 103 | 2.46% | 5 | 3.21% |
Robin Holt | 72 | 1.72% | 1 | 0.64% |
Borislav Petkov | 55 | 1.31% | 3 | 1.92% |
Thomas Gleixner | 55 | 1.31% | 6 | 3.85% |
Luis R. Rodriguez | 53 | 1.27% | 3 | 1.92% |
Dave Airlie | 50 | 1.19% | 1 | 0.64% |
Konstantin Khlebnikov | 44 | 1.05% | 1 | 0.64% |
Björn Helgaas | 43 | 1.03% | 3 | 1.92% |
Andreas Herrmann | 39 | 0.93% | 7 | 4.49% |
Jeremy Fitzhardinge | 34 | 0.81% | 4 | 2.56% |
Haozhong Zhang | 31 | 0.74% | 1 | 0.64% |
Suren Baghdasaryan | 29 | 0.69% | 2 | 1.28% |
H. Peter Anvin | 26 | 0.62% | 3 | 1.92% |
Tom Lendacky | 21 | 0.50% | 2 | 1.28% |
Pranith Kumar | 19 | 0.45% | 1 | 0.64% |
Dave Hansen | 19 | 0.45% | 2 | 1.28% |
Xiaotian Feng | 19 | 0.45% | 2 | 1.28% |
Linus Torvalds (pre-git) | 17 | 0.41% | 4 | 2.56% |
Linus Torvalds | 17 | 0.41% | 3 | 1.92% |
Jack Steiner | 12 | 0.29% | 1 | 0.64% |
Neil Brown | 10 | 0.24% | 1 | 0.64% |
Ravikiran G. Thirumalai | 9 | 0.22% | 1 | 0.64% |
Hugh Dickins | 9 | 0.22% | 1 | 0.64% |
Mikulas Patocka | 8 | 0.19% | 1 | 0.64% |
Uros Bizjak | 8 | 0.19% | 1 | 0.64% |
Andrew Morton | 7 | 0.17% | 3 | 1.92% |
Tejun Heo | 7 | 0.17% | 2 | 1.28% |
Jan Beulich | 7 | 0.17% | 1 | 0.64% |
Rik Van Riel | 5 | 0.12% | 1 | 0.64% |
Jeff Moyer | 5 | 0.12% | 1 | 0.64% |
Davidlohr Bueso A | 4 | 0.10% | 1 | 0.64% |
Matthew Wilcox | 4 | 0.10% | 1 | 0.64% |
Kirill A. Shutemov | 4 | 0.10% | 1 | 0.64% |
Steven Rostedt | 3 | 0.07% | 1 | 0.64% |
Suravee Suthikulpanit | 3 | 0.07% | 1 | 0.64% |
Cristian Stoica | 2 | 0.05% | 1 | 0.64% |
Ma Wupeng | 2 | 0.05% | 1 | 0.64% |
Patrick Mochel | 2 | 0.05% | 1 | 0.64% |
Jan Kiszka | 2 | 0.05% | 1 | 0.64% |
Yasuaki Ishimatsu | 2 | 0.05% | 1 | 0.64% |
Rasmus Villemoes | 1 | 0.02% | 1 | 0.64% |
Adam Buchbinder | 1 | 0.02% | 1 | 0.64% |
Randy Dunlap | 1 | 0.02% | 1 | 0.64% |
Yinghai Lu | 1 | 0.02% | 1 | 0.64% |
Tobias Klauser | 1 | 0.02% | 1 | 0.64% |
Arjan van de Ven | 1 | 0.02% | 1 | 0.64% |
Pavel Machek | 1 | 0.02% | 1 | 0.64% |
Mike Rapoport | 1 | 0.02% | 1 | 0.64% |
Total | 4185 | 156 |
// SPDX-License-Identifier: GPL-2.0-only /* * Page Attribute Table (PAT) support: handle memory caching attributes in page tables. * * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> * Suresh B Siddha <suresh.b.siddha@intel.com> * * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen. * * Basic principles: * * PAT is a CPU feature supported by all modern x86 CPUs, to allow the firmware and * the kernel to set one of a handful of 'caching type' attributes for physical * memory ranges: uncached, write-combining, write-through, write-protected, * and the most commonly used and default attribute: write-back caching. * * PAT support supersedes and augments MTRR support in a compatible fashion: MTRR is * a hardware interface to enumerate a limited number of physical memory ranges * and set their caching attributes explicitly, programmed into the CPU via MSRs. * Even modern CPUs have MTRRs enabled - but these are typically not touched * by the kernel or by user-space (such as the X server), we rely on PAT for any * additional cache attribute logic. * * PAT doesn't work via explicit memory ranges, but uses page table entries to add * cache attribute information to the mapped memory range: there's 3 bits used, * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT), with the 8 possible values mapped by the * CPU to actual cache attributes via an MSR loaded into the CPU (MSR_IA32_CR_PAT). * * ( There's a metric ton of finer details, such as compatibility with CPU quirks * that only support 4 types of PAT entries, and interaction with MTRRs, see * below for details. ) */ #include <linux/seq_file.h> #include <linux/memblock.h> #include <linux/debugfs.h> #include <linux/ioport.h> #include <linux/kernel.h> #include <linux/pfn_t.h> #include <linux/slab.h> #include <linux/mm.h> #include <linux/highmem.h> #include <linux/fs.h> #include <linux/rbtree.h> #include <asm/cacheflush.h> #include <asm/cacheinfo.h> #include <asm/processor.h> #include <asm/tlbflush.h> #include <asm/x86_init.h> #include <asm/fcntl.h> #include <asm/e820/api.h> #include <asm/mtrr.h> #include <asm/page.h> #include <asm/msr.h> #include <asm/memtype.h> #include <asm/io.h> #include "memtype.h" #include "../mm_internal.h" #undef pr_fmt #define pr_fmt(fmt) "" fmt static bool __read_mostly pat_disabled = !IS_ENABLED(CONFIG_X86_PAT); static u64 __ro_after_init pat_msr_val; /* * PAT support is enabled by default, but can be disabled for * various user-requested or hardware-forced reasons: */ static void __init pat_disable(const char *msg_reason) { if (pat_disabled) return; pat_disabled = true; pr_info("x86/PAT: %s\n", msg_reason); memory_caching_control &= ~CACHE_PAT; } static int __init nopat(char *str) { pat_disable("PAT support disabled via boot option."); return 0; } early_param("nopat", nopat); bool pat_enabled(void) { return !pat_disabled; } EXPORT_SYMBOL_GPL(pat_enabled); int pat_debug_enable; static int __init pat_debug_setup(char *str) { pat_debug_enable = 1; return 1; } __setup("debugpat", pat_debug_setup); #ifdef CONFIG_X86_PAT /* * X86 PAT uses page flags arch_1 and uncached together to keep track of * memory type of pages that have backing page struct. * * X86 PAT supports 4 different memory types: * - _PAGE_CACHE_MODE_WB * - _PAGE_CACHE_MODE_WC * - _PAGE_CACHE_MODE_UC_MINUS * - _PAGE_CACHE_MODE_WT * * _PAGE_CACHE_MODE_WB is the default type. */ #define _PGMT_WB 0 #define _PGMT_WC (1UL << PG_arch_1) #define _PGMT_UC_MINUS (1UL << PG_uncached) #define _PGMT_WT (1UL << PG_uncached | 1UL << PG_arch_1) #define _PGMT_MASK (1UL << PG_uncached | 1UL << PG_arch_1) #define _PGMT_CLEAR_MASK (~_PGMT_MASK) static inline enum page_cache_mode get_page_memtype(struct page *pg) { unsigned long pg_flags = pg->flags & _PGMT_MASK; if (pg_flags == _PGMT_WB) return _PAGE_CACHE_MODE_WB; else if (pg_flags == _PGMT_WC) return _PAGE_CACHE_MODE_WC; else if (pg_flags == _PGMT_UC_MINUS) return _PAGE_CACHE_MODE_UC_MINUS; else return _PAGE_CACHE_MODE_WT; } static inline void set_page_memtype(struct page *pg, enum page_cache_mode memtype) { unsigned long memtype_flags; unsigned long old_flags; unsigned long new_flags; switch (memtype) { case _PAGE_CACHE_MODE_WC: memtype_flags = _PGMT_WC; break; case _PAGE_CACHE_MODE_UC_MINUS: memtype_flags = _PGMT_UC_MINUS; break; case _PAGE_CACHE_MODE_WT: memtype_flags = _PGMT_WT; break; case _PAGE_CACHE_MODE_WB: default: memtype_flags = _PGMT_WB; break; } old_flags = READ_ONCE(pg->flags); do { new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags; } while (!try_cmpxchg(&pg->flags, &old_flags, new_flags)); } #else static inline enum page_cache_mode get_page_memtype(struct page *pg) { return -1; } static inline void set_page_memtype(struct page *pg, enum page_cache_mode memtype) { } #endif enum { PAT_UC = 0, /* uncached */ PAT_WC = 1, /* Write combining */ PAT_WT = 4, /* Write Through */ PAT_WP = 5, /* Write Protected */ PAT_WB = 6, /* Write Back (default) */ PAT_UC_MINUS = 7, /* UC, but can be overridden by MTRR */ }; #define CM(c) (_PAGE_CACHE_MODE_ ## c) static enum page_cache_mode __init pat_get_cache_mode(unsigned int pat_val, char *msg) { enum page_cache_mode cache; char *cache_mode; switch (pat_val) { case PAT_UC: cache = CM(UC); cache_mode = "UC "; break; case PAT_WC: cache = CM(WC); cache_mode = "WC "; break; case PAT_WT: cache = CM(WT); cache_mode = "WT "; break; case PAT_WP: cache = CM(WP); cache_mode = "WP "; break; case PAT_WB: cache = CM(WB); cache_mode = "WB "; break; case PAT_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break; default: cache = CM(WB); cache_mode = "WB "; break; } memcpy(msg, cache_mode, 4); return cache; } #undef CM /* * Update the cache mode to pgprot translation tables according to PAT * configuration. * Using lower indices is preferred, so we start with highest index. */ static void __init init_cache_modes(u64 pat) { enum page_cache_mode cache; char pat_msg[33]; int i; pat_msg[32] = 0; for (i = 7; i >= 0; i--) { cache = pat_get_cache_mode((pat >> (i * 8)) & 7, pat_msg + 4 * i); update_cache_mode_entry(i, cache); } pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg); } void pat_cpu_init(void) { if (!boot_cpu_has(X86_FEATURE_PAT)) { /* * If this happens we are on a secondary CPU, but switched to * PAT on the boot CPU. We have no way to undo PAT. */ panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n"); } wrmsrl(MSR_IA32_CR_PAT, pat_msr_val); __flush_tlb_all(); } /** * pat_bp_init - Initialize the PAT MSR value and PAT table * * This function initializes PAT MSR value and PAT table with an OS-defined * value to enable additional cache attributes, WC, WT and WP. * * This function prepares the calls of pat_cpu_init() via cache_cpu_init() * on all CPUs. */ void __init pat_bp_init(void) { struct cpuinfo_x86 *c = &boot_cpu_data; #define PAT(p0, p1, p2, p3, p4, p5, p6, p7) \ (((u64)PAT_ ## p0) | ((u64)PAT_ ## p1 << 8) | \ ((u64)PAT_ ## p2 << 16) | ((u64)PAT_ ## p3 << 24) | \ ((u64)PAT_ ## p4 << 32) | ((u64)PAT_ ## p5 << 40) | \ ((u64)PAT_ ## p6 << 48) | ((u64)PAT_ ## p7 << 56)) if (!IS_ENABLED(CONFIG_X86_PAT)) pr_info_once("x86/PAT: PAT support disabled because CONFIG_X86_PAT is disabled in the kernel.\n"); if (!cpu_feature_enabled(X86_FEATURE_PAT)) pat_disable("PAT not supported by the CPU."); else rdmsrl(MSR_IA32_CR_PAT, pat_msr_val); if (!pat_msr_val) { pat_disable("PAT support disabled by the firmware."); /* * No PAT. Emulate the PAT table that corresponds to the two * cache bits, PWT (Write Through) and PCD (Cache Disable). * This setup is also the same as the BIOS default setup. * * PTE encoding: * * PCD * |PWT PAT * || slot * 00 0 WB : _PAGE_CACHE_MODE_WB * 01 1 WT : _PAGE_CACHE_MODE_WT * 10 2 UC-: _PAGE_CACHE_MODE_UC_MINUS * 11 3 UC : _PAGE_CACHE_MODE_UC * * NOTE: When WC or WP is used, it is redirected to UC- per * the default setup in __cachemode2pte_tbl[]. */ pat_msr_val = PAT(WB, WT, UC_MINUS, UC, WB, WT, UC_MINUS, UC); } /* * Xen PV doesn't allow to set PAT MSR, but all cache modes are * supported. */ if (pat_disabled || cpu_feature_enabled(X86_FEATURE_XENPV)) { init_cache_modes(pat_msr_val); return; } if ((c->x86_vendor == X86_VENDOR_INTEL) && (((c->x86 == 0x6) && (c->x86_model <= 0xd)) || ((c->x86 == 0xf) && (c->x86_model <= 0x6)))) { /* * PAT support with the lower four entries. Intel Pentium 2, * 3, M, and 4 are affected by PAT errata, which makes the * upper four entries unusable. To be on the safe side, we don't * use those. * * PTE encoding: * PAT * |PCD * ||PWT PAT * ||| slot * 000 0 WB : _PAGE_CACHE_MODE_WB * 001 1 WC : _PAGE_CACHE_MODE_WC * 010 2 UC-: _PAGE_CACHE_MODE_UC_MINUS * 011 3 UC : _PAGE_CACHE_MODE_UC * PAT bit unused * * NOTE: When WT or WP is used, it is redirected to UC- per * the default setup in __cachemode2pte_tbl[]. */ pat_msr_val = PAT(WB, WC, UC_MINUS, UC, WB, WC, UC_MINUS, UC); } else { /* * Full PAT support. We put WT in slot 7 to improve * robustness in the presence of errata that might cause * the high PAT bit to be ignored. This way, a buggy slot 7 * access will hit slot 3, and slot 3 is UC, so at worst * we lose performance without causing a correctness issue. * Pentium 4 erratum N46 is an example for such an erratum, * although we try not to use PAT at all on affected CPUs. * * PTE encoding: * PAT * |PCD * ||PWT PAT * ||| slot * 000 0 WB : _PAGE_CACHE_MODE_WB * 001 1 WC : _PAGE_CACHE_MODE_WC * 010 2 UC-: _PAGE_CACHE_MODE_UC_MINUS * 011 3 UC : _PAGE_CACHE_MODE_UC * 100 4 WB : Reserved * 101 5 WP : _PAGE_CACHE_MODE_WP * 110 6 UC-: Reserved * 111 7 WT : _PAGE_CACHE_MODE_WT * * The reserved slots are unused, but mapped to their * corresponding types in the presence of PAT errata. */ pat_msr_val = PAT(WB, WC, UC_MINUS, UC, WB, WP, UC_MINUS, WT); } memory_caching_control |= CACHE_PAT; init_cache_modes(pat_msr_val); #undef PAT } static DEFINE_SPINLOCK(memtype_lock); /* protects memtype accesses */ /* * Does intersection of PAT memory type and MTRR memory type and returns * the resulting memory type as PAT understands it. * (Type in pat and mtrr will not have same value) * The intersection is based on "Effective Memory Type" tables in IA-32 * SDM vol 3a */ static unsigned long pat_x_mtrr_type(u64 start, u64 end, enum page_cache_mode req_type) { /* * Look for MTRR hint to get the effective type in case where PAT * request is for WB. */ if (req_type == _PAGE_CACHE_MODE_WB) { u8 mtrr_type, uniform; mtrr_type = mtrr_type_lookup(start, end, &uniform); if (mtrr_type != MTRR_TYPE_WRBACK) return _PAGE_CACHE_MODE_UC_MINUS; return _PAGE_CACHE_MODE_WB; } return req_type; } struct pagerange_state { unsigned long cur_pfn; int ram; int not_ram; }; static int pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg) { struct pagerange_state *state = arg; state->not_ram |= initial_pfn > state->cur_pfn; state->ram |= total_nr_pages > 0; state->cur_pfn = initial_pfn + total_nr_pages; return state->ram && state->not_ram; } static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end) { int ret = 0; unsigned long start_pfn = start >> PAGE_SHIFT; unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT; struct pagerange_state state = {start_pfn, 0, 0}; /* * For legacy reasons, physical address range in the legacy ISA * region is tracked as non-RAM. This will allow users of * /dev/mem to map portions of legacy ISA region, even when * some of those portions are listed(or not even listed) with * different e820 types(RAM/reserved/..) */ if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT) start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT; if (start_pfn < end_pfn) { ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &state, pagerange_is_ram_callback); } return (ret > 0) ? -1 : (state.ram ? 1 : 0); } /* * For RAM pages, we use page flags to mark the pages with appropriate type. * The page flags are limited to four types, WB (default), WC, WT and UC-. * WP request fails with -EINVAL, and UC gets redirected to UC-. Setting * a new memory type is only allowed for a page mapped with the default WB * type. * * Here we do two passes: * - Find the memtype of all the pages in the range, look for any conflicts. * - In case of no conflicts, set the new memtype for pages in the range. */ static int reserve_ram_pages_type(u64 start, u64 end, enum page_cache_mode req_type, enum page_cache_mode *new_type) { struct page *page; u64 pfn; if (req_type == _PAGE_CACHE_MODE_WP) { if (new_type) *new_type = _PAGE_CACHE_MODE_UC_MINUS; return -EINVAL; } if (req_type == _PAGE_CACHE_MODE_UC) { /* We do not support strong UC */ WARN_ON_ONCE(1); req_type = _PAGE_CACHE_MODE_UC_MINUS; } for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) { enum page_cache_mode type; page = pfn_to_page(pfn); type = get_page_memtype(page); if (type != _PAGE_CACHE_MODE_WB) { pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n", start, end - 1, type, req_type); if (new_type) *new_type = type; return -EBUSY; } } if (new_type) *new_type = req_type; for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) { page = pfn_to_page(pfn); set_page_memtype(page, req_type); } return 0; } static int free_ram_pages_type(u64 start, u64 end) { struct page *page; u64 pfn; for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) { page = pfn_to_page(pfn); set_page_memtype(page, _PAGE_CACHE_MODE_WB); } return 0; } static u64 sanitize_phys(u64 address) { /* * When changing the memtype for pages containing poison allow * for a "decoy" virtual address (bit 63 clear) passed to * set_memory_X(). __pa() on a "decoy" address results in a * physical address with bit 63 set. * * Decoy addresses are not present for 32-bit builds, see * set_mce_nospec(). */ if (IS_ENABLED(CONFIG_X86_64)) return address & __PHYSICAL_MASK; return address; } /* * req_type typically has one of the: * - _PAGE_CACHE_MODE_WB * - _PAGE_CACHE_MODE_WC * - _PAGE_CACHE_MODE_UC_MINUS * - _PAGE_CACHE_MODE_UC * - _PAGE_CACHE_MODE_WT * * If new_type is NULL, function will return an error if it cannot reserve the * region with req_type. If new_type is non-NULL, function will return * available type in new_type in case of no error. In case of any error * it will return a negative return value. */ int memtype_reserve(u64 start, u64 end, enum page_cache_mode req_type, enum page_cache_mode *new_type) { struct memtype *entry_new; enum page_cache_mode actual_type; int is_range_ram; int err = 0; start = sanitize_phys(start); /* * The end address passed into this function is exclusive, but * sanitize_phys() expects an inclusive address. */ end = sanitize_phys(end - 1) + 1; if (start >= end) { WARN(1, "%s failed: [mem %#010Lx-%#010Lx], req %s\n", __func__, start, end - 1, cattr_name(req_type)); return -EINVAL; } if (!pat_enabled()) { /* This is identical to page table setting without PAT */ if (new_type) *new_type = req_type; return 0; } /* Low ISA region is always mapped WB in page table. No need to track */ if (x86_platform.is_untracked_pat_range(start, end)) { if (new_type) *new_type = _PAGE_CACHE_MODE_WB; return 0; } /* * Call mtrr_lookup to get the type hint. This is an * optimization for /dev/mem mmap'ers into WB memory (BIOS * tools and ACPI tools). Use WB request for WB memory and use * UC_MINUS otherwise. */ actual_type = pat_x_mtrr_type(start, end, req_type); if (new_type) *new_type = actual_type; is_range_ram = pat_pagerange_is_ram(start, end); if (is_range_ram == 1) { err = reserve_ram_pages_type(start, end, req_type, new_type); return err; } else if (is_range_ram < 0) { return -EINVAL; } entry_new = kzalloc(sizeof(struct memtype), GFP_KERNEL); if (!entry_new) return -ENOMEM; entry_new->start = start; entry_new->end = end; entry_new->type = actual_type; spin_lock(&memtype_lock); err = memtype_check_insert(entry_new, new_type); if (err) { pr_info("x86/PAT: memtype_reserve failed [mem %#010Lx-%#010Lx], track %s, req %s\n", start, end - 1, cattr_name(entry_new->type), cattr_name(req_type)); kfree(entry_new); spin_unlock(&memtype_lock); return err; } spin_unlock(&memtype_lock); dprintk("memtype_reserve added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n", start, end - 1, cattr_name(entry_new->type), cattr_name(req_type), new_type ? cattr_name(*new_type) : "-"); return err; } int memtype_free(u64 start, u64 end) { int is_range_ram; struct memtype *entry_old; if (!pat_enabled()) return 0; start = sanitize_phys(start); end = sanitize_phys(end); /* Low ISA region is always mapped WB. No need to track */ if (x86_platform.is_untracked_pat_range(start, end)) return 0; is_range_ram = pat_pagerange_is_ram(start, end); if (is_range_ram == 1) return free_ram_pages_type(start, end); if (is_range_ram < 0) return -EINVAL; spin_lock(&memtype_lock); entry_old = memtype_erase(start, end); spin_unlock(&memtype_lock); if (IS_ERR(entry_old)) { pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n", current->comm, current->pid, start, end - 1); return -EINVAL; } kfree(entry_old); dprintk("memtype_free request [mem %#010Lx-%#010Lx]\n", start, end - 1); return 0; } /** * lookup_memtype - Looks up the memory type for a physical address * @paddr: physical address of which memory type needs to be looked up * * Only to be called when PAT is enabled * * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS * or _PAGE_CACHE_MODE_WT. */ static enum page_cache_mode lookup_memtype(u64 paddr) { enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB; struct memtype *entry; if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE)) return rettype; if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) { struct page *page; page = pfn_to_page(paddr >> PAGE_SHIFT); return get_page_memtype(page); } spin_lock(&memtype_lock); entry = memtype_lookup(paddr); if (entry != NULL) rettype = entry->type; else rettype = _PAGE_CACHE_MODE_UC_MINUS; spin_unlock(&memtype_lock); return rettype; } /** * pat_pfn_immune_to_uc_mtrr - Check whether the PAT memory type * of @pfn cannot be overridden by UC MTRR memory type. * * Only to be called when PAT is enabled. * * Returns true, if the PAT memory type of @pfn is UC, UC-, or WC. * Returns false in other cases. */ bool pat_pfn_immune_to_uc_mtrr(unsigned long pfn) { enum page_cache_mode cm = lookup_memtype(PFN_PHYS(pfn)); return cm == _PAGE_CACHE_MODE_UC || cm == _PAGE_CACHE_MODE_UC_MINUS || cm == _PAGE_CACHE_MODE_WC; } EXPORT_SYMBOL_GPL(pat_pfn_immune_to_uc_mtrr); /** * memtype_reserve_io - Request a memory type mapping for a region of memory * @start: start (physical address) of the region * @end: end (physical address) of the region * @type: A pointer to memtype, with requested type. On success, requested * or any other compatible type that was available for the region is returned * * On success, returns 0 * On failure, returns non-zero */ int memtype_reserve_io(resource_size_t start, resource_size_t end, enum page_cache_mode *type) { resource_size_t size = end - start; enum page_cache_mode req_type = *type; enum page_cache_mode new_type; int ret; WARN_ON_ONCE(iomem_map_sanity_check(start, size)); ret = memtype_reserve(start, end, req_type, &new_type); if (ret) goto out_err; if (!is_new_memtype_allowed(start, size, req_type, new_type)) goto out_free; if (memtype_kernel_map_sync(start, size, new_type) < 0) goto out_free; *type = new_type; return 0; out_free: memtype_free(start, end); ret = -EBUSY; out_err: return ret; } /** * memtype_free_io - Release a memory type mapping for a region of memory * @start: start (physical address) of the region * @end: end (physical address) of the region */ void memtype_free_io(resource_size_t start, resource_size_t end) { memtype_free(start, end); } #ifdef CONFIG_X86_PAT int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size) { enum page_cache_mode type = _PAGE_CACHE_MODE_WC; return memtype_reserve_io(start, start + size, &type); } EXPORT_SYMBOL(arch_io_reserve_memtype_wc); void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size) { memtype_free_io(start, start + size); } EXPORT_SYMBOL(arch_io_free_memtype_wc); #endif pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size, pgprot_t vma_prot) { if (!phys_mem_access_encrypted(pfn << PAGE_SHIFT, size)) vma_prot = pgprot_decrypted(vma_prot); return vma_prot; } #ifdef CONFIG_STRICT_DEVMEM /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */ static inline int range_is_allowed(unsigned long pfn, unsigned long size) { return 1; } #else /* This check is needed to avoid cache aliasing when PAT is enabled */ static inline int range_is_allowed(unsigned long pfn, unsigned long size) { u64 from = ((u64)pfn) << PAGE_SHIFT; u64 to = from + size; u64 cursor = from; if (!pat_enabled()) return 1; while (cursor < to) { if (!devmem_is_allowed(pfn)) return 0; cursor += PAGE_SIZE; pfn++; } return 1; } #endif /* CONFIG_STRICT_DEVMEM */ int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, unsigned long size, pgprot_t *vma_prot) { enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB; if (!range_is_allowed(pfn, size)) return 0; if (file->f_flags & O_DSYNC) pcm = _PAGE_CACHE_MODE_UC_MINUS; *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) | cachemode2protval(pcm)); return 1; } /* * Change the memory type for the physical address range in kernel identity * mapping space if that range is a part of identity map. */ int memtype_kernel_map_sync(u64 base, unsigned long size, enum page_cache_mode pcm) { unsigned long id_sz; if (base > __pa(high_memory-1)) return 0; /* * Some areas in the middle of the kernel identity range * are not mapped, for example the PCI space. */ if (!page_is_ram(base >> PAGE_SHIFT)) return 0; id_sz = (__pa(high_memory-1) <= base + size) ? __pa(high_memory) - base : size; if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) { pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n", current->comm, current->pid, cattr_name(pcm), base, (unsigned long long)(base + size-1)); return -EINVAL; } return 0; } /* * Internal interface to reserve a range of physical memory with prot. * Reserved non RAM regions only and after successful memtype_reserve, * this func also keeps identity mapping (if any) in sync with this new prot. */ static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot, int strict_prot) { int is_ram = 0; int ret; enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot); enum page_cache_mode pcm = want_pcm; is_ram = pat_pagerange_is_ram(paddr, paddr + size); /* * reserve_pfn_range() for RAM pages. We do not refcount to keep * track of number of mappings of RAM pages. We can assert that * the type requested matches the type of first page in the range. */ if (is_ram) { if (!pat_enabled()) return 0; pcm = lookup_memtype(paddr); if (want_pcm != pcm) { pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n", current->comm, current->pid, cattr_name(want_pcm), (unsigned long long)paddr, (unsigned long long)(paddr + size - 1), cattr_name(pcm)); *vma_prot = __pgprot((pgprot_val(*vma_prot) & (~_PAGE_CACHE_MASK)) | cachemode2protval(pcm)); } return 0; } ret = memtype_reserve(paddr, paddr + size, want_pcm, &pcm); if (ret) return ret; if (pcm != want_pcm) { if (strict_prot || !is_new_memtype_allowed(paddr, size, want_pcm, pcm)) { memtype_free(paddr, paddr + size); pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n", current->comm, current->pid, cattr_name(want_pcm), (unsigned long long)paddr, (unsigned long long)(paddr + size - 1), cattr_name(pcm)); return -EINVAL; } /* * We allow returning different type than the one requested in * non strict case. */ *vma_prot = __pgprot((pgprot_val(*vma_prot) & (~_PAGE_CACHE_MASK)) | cachemode2protval(pcm)); } if (memtype_kernel_map_sync(paddr, size, pcm) < 0) { memtype_free(paddr, paddr + size); return -EINVAL; } return 0; } /* * Internal interface to free a range of physical memory. * Frees non RAM regions only. */ static void free_pfn_range(u64 paddr, unsigned long size) { int is_ram; is_ram = pat_pagerange_is_ram(paddr, paddr + size); if (is_ram == 0) memtype_free(paddr, paddr + size); } static int follow_phys(struct vm_area_struct *vma, unsigned long *prot, resource_size_t *phys) { pte_t *ptep, pte; spinlock_t *ptl; if (follow_pte(vma, vma->vm_start, &ptep, &ptl)) return -EINVAL; pte = ptep_get(ptep); /* Never return PFNs of anon folios in COW mappings. */ if (vm_normal_folio(vma, vma->vm_start, pte)) { pte_unmap_unlock(ptep, ptl); return -EINVAL; } *prot = pgprot_val(pte_pgprot(pte)); *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; pte_unmap_unlock(ptep, ptl); return 0; } static int get_pat_info(struct vm_area_struct *vma, resource_size_t *paddr, pgprot_t *pgprot) { unsigned long prot; VM_WARN_ON_ONCE(!(vma->vm_flags & VM_PAT)); /* * We need the starting PFN and cachemode used for track_pfn_remap() * that covered the whole VMA. For most mappings, we can obtain that * information from the page tables. For COW mappings, we might now * suddenly have anon folios mapped and follow_phys() will fail. * * Fallback to using vma->vm_pgoff, see remap_pfn_range_notrack(), to * detect the PFN. If we need the cachemode as well, we're out of luck * for now and have to fail fork(). */ if (!follow_phys(vma, &prot, paddr)) { if (pgprot) *pgprot = __pgprot(prot); return 0; } if (is_cow_mapping(vma->vm_flags)) { if (pgprot) return -EINVAL; *paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT; return 0; } WARN_ON_ONCE(1); return -EINVAL; } /* * track_pfn_copy is called when vma that is covering the pfnmap gets * copied through copy_page_range(). * * If the vma has a linear pfn mapping for the entire range, we get the prot * from pte and reserve the entire vma range with single reserve_pfn_range call. */ int track_pfn_copy(struct vm_area_struct *vma) { resource_size_t paddr; unsigned long vma_size = vma->vm_end - vma->vm_start; pgprot_t pgprot; if (vma->vm_flags & VM_PAT) { if (get_pat_info(vma, &paddr, &pgprot)) return -EINVAL; /* reserve the whole chunk covered by vma. */ return reserve_pfn_range(paddr, vma_size, &pgprot, 1); } return 0; } /* * prot is passed in as a parameter for the new mapping. If the vma has * a linear pfn mapping for the entire range, or no vma is provided, * reserve the entire pfn + size range with single reserve_pfn_range * call. */ int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, unsigned long pfn, unsigned long addr, unsigned long size) { resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT; enum page_cache_mode pcm; /* reserve the whole chunk starting from paddr */ if (!vma || (addr == vma->vm_start && size == (vma->vm_end - vma->vm_start))) { int ret; ret = reserve_pfn_range(paddr, size, prot, 0); if (ret == 0 && vma) vm_flags_set(vma, VM_PAT); return ret; } if (!pat_enabled()) return 0; /* * For anything smaller than the vma size we set prot based on the * lookup. */ pcm = lookup_memtype(paddr); /* Check memtype for the remaining pages */ while (size > PAGE_SIZE) { size -= PAGE_SIZE; paddr += PAGE_SIZE; if (pcm != lookup_memtype(paddr)) return -EINVAL; } *prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) | cachemode2protval(pcm)); return 0; } void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn) { enum page_cache_mode pcm; if (!pat_enabled()) return; /* Set prot based on lookup */ pcm = lookup_memtype(pfn_t_to_phys(pfn)); *prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) | cachemode2protval(pcm)); } /* * untrack_pfn is called while unmapping a pfnmap for a region. * untrack can be called for a specific region indicated by pfn and size or * can be for the entire vma (in which case pfn, size are zero). */ void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, unsigned long size, bool mm_wr_locked) { resource_size_t paddr; if (vma && !(vma->vm_flags & VM_PAT)) return; /* free the chunk starting from pfn or the whole chunk */ paddr = (resource_size_t)pfn << PAGE_SHIFT; if (!paddr && !size) { if (get_pat_info(vma, &paddr, NULL)) return; size = vma->vm_end - vma->vm_start; } free_pfn_range(paddr, size); if (vma) { if (mm_wr_locked) vm_flags_clear(vma, VM_PAT); else __vm_flags_mod(vma, 0, VM_PAT); } } /* * untrack_pfn_clear is called if the following situation fits: * * 1) while mremapping a pfnmap for a new region, with the old vma after * its pfnmap page table has been removed. The new vma has a new pfnmap * to the same pfn & cache type with VM_PAT set. * 2) while duplicating vm area, the new vma fails to copy the pgtable from * old vma. */ void untrack_pfn_clear(struct vm_area_struct *vma) { vm_flags_clear(vma, VM_PAT); } pgprot_t pgprot_writecombine(pgprot_t prot) { return __pgprot(pgprot_val(prot) | cachemode2protval(_PAGE_CACHE_MODE_WC)); } EXPORT_SYMBOL_GPL(pgprot_writecombine); pgprot_t pgprot_writethrough(pgprot_t prot) { return __pgprot(pgprot_val(prot) | cachemode2protval(_PAGE_CACHE_MODE_WT)); } EXPORT_SYMBOL_GPL(pgprot_writethrough); #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT) /* * We are allocating a temporary printout-entry to be passed * between seq_start()/next() and seq_show(): */ static struct memtype *memtype_get_idx(loff_t pos) { struct memtype *entry_print; int ret; entry_print = kzalloc(sizeof(struct memtype), GFP_KERNEL); if (!entry_print) return NULL; spin_lock(&memtype_lock); ret = memtype_copy_nth_element(entry_print, pos); spin_unlock(&memtype_lock); /* Free it on error: */ if (ret) { kfree(entry_print); return NULL; } return entry_print; } static void *memtype_seq_start(struct seq_file *seq, loff_t *pos) { if (*pos == 0) { ++*pos; seq_puts(seq, "PAT memtype list:\n"); } return memtype_get_idx(*pos); } static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos) { kfree(v); ++*pos; return memtype_get_idx(*pos); } static void memtype_seq_stop(struct seq_file *seq, void *v) { kfree(v); } static int memtype_seq_show(struct seq_file *seq, void *v) { struct memtype *entry_print = (struct memtype *)v; seq_printf(seq, "PAT: [mem 0x%016Lx-0x%016Lx] %s\n", entry_print->start, entry_print->end, cattr_name(entry_print->type)); return 0; } static const struct seq_operations memtype_seq_ops = { .start = memtype_seq_start, .next = memtype_seq_next, .stop = memtype_seq_stop, .show = memtype_seq_show, }; static int memtype_seq_open(struct inode *inode, struct file *file) { return seq_open(file, &memtype_seq_ops); } static const struct file_operations memtype_fops = { .open = memtype_seq_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; static int __init pat_memtype_list_init(void) { if (pat_enabled()) { debugfs_create_file("pat_memtype_list", S_IRUSR, arch_debugfs_dir, NULL, &memtype_fops); } return 0; } late_initcall(pat_memtype_list_init); #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1