Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alexei Starovoitov | 6061 | 37.61% | 41 | 19.16% |
Daniel Borkmann | 1604 | 9.95% | 29 | 13.55% |
Eric Dumazet | 917 | 5.69% | 8 | 3.74% |
Jie Meng | 678 | 4.21% | 5 | 2.34% |
Menglong Dong | 650 | 4.03% | 3 | 1.40% |
Peter Zijlstra | 641 | 3.98% | 16 | 7.48% |
Brendan Jackman | 639 | 3.97% | 9 | 4.21% |
Yonghong Song | 615 | 3.82% | 8 | 3.74% |
Song Liu | 604 | 3.75% | 10 | 4.67% |
Maciej Fijalkowski | 533 | 3.31% | 4 | 1.87% |
Björn Töpel | 530 | 3.29% | 2 | 0.93% |
KP Singh | 443 | 2.75% | 3 | 1.40% |
Kumar Kartikeya Dwivedi | 388 | 2.41% | 4 | 1.87% |
Jiri Olsa | 346 | 2.15% | 7 | 3.27% |
Gary Lin | 280 | 1.74% | 1 | 0.47% |
Jiong Wang | 208 | 1.29% | 1 | 0.47% |
Kui-Feng Lee | 136 | 0.84% | 3 | 1.40% |
Martin KaFai Lau | 97 | 0.60% | 6 | 2.80% |
Leon Huayra | 97 | 0.60% | 3 | 1.40% |
Puranjay Mohan | 88 | 0.55% | 3 | 1.40% |
Hou Tao | 67 | 0.42% | 3 | 1.40% |
Andrii Nakryiko | 66 | 0.41% | 2 | 0.93% |
Ingo Molnar | 57 | 0.35% | 3 | 1.40% |
Thomas Gleixner | 53 | 0.33% | 3 | 1.40% |
Joe Perches | 36 | 0.22% | 1 | 0.47% |
Dave Marchevsky | 34 | 0.21% | 1 | 0.47% |
Luke Nelson | 24 | 0.15% | 1 | 0.47% |
Joan Bruguera Micó | 23 | 0.14% | 1 | 0.47% |
Pu Lehui | 23 | 0.14% | 1 | 0.47% |
Johan Almbladh | 21 | 0.13% | 1 | 0.47% |
Jan Seiffert | 18 | 0.11% | 1 | 0.47% |
Gianluca Borello | 15 | 0.09% | 1 | 0.47% |
John Fastabend | 14 | 0.09% | 1 | 0.47% |
Ilya Leoshkevich | 12 | 0.07% | 1 | 0.47% |
Piotr Krysiuk | 9 | 0.06% | 1 | 0.47% |
Wang YanQing | 9 | 0.06% | 1 | 0.47% |
Steven Rostedt | 9 | 0.06% | 3 | 1.40% |
Pavel Emelyanov | 7 | 0.04% | 2 | 0.93% |
Tiezhu Yang | 7 | 0.04% | 1 | 0.47% |
Quentin Monnet | 7 | 0.04% | 1 | 0.47% |
Jakub Kiciński | 6 | 0.04% | 1 | 0.47% |
Linus Torvalds (pre-git) | 6 | 0.04% | 4 | 1.87% |
Ravi Bangoria | 6 | 0.04% | 1 | 0.47% |
David S. Miller | 6 | 0.04% | 1 | 0.47% |
Srikar Dronamraju | 4 | 0.02% | 1 | 0.47% |
Christophe Leroy | 4 | 0.02% | 1 | 0.47% |
Tony Ambardar | 3 | 0.02% | 1 | 0.47% |
Laura Abbott | 3 | 0.02% | 1 | 0.47% |
Sami Tolvanen | 3 | 0.02% | 1 | 0.47% |
Uros Bizjak | 2 | 0.01% | 1 | 0.47% |
Jakub Sitnicki | 1 | 0.01% | 1 | 0.47% |
Björn Helgaas | 1 | 0.01% | 1 | 0.47% |
Kees Cook | 1 | 0.01% | 1 | 0.47% |
Stanislav Fomichev | 1 | 0.01% | 1 | 0.47% |
Christoph Hellwig | 1 | 0.01% | 1 | 0.47% |
Total | 16114 | 214 |
// SPDX-License-Identifier: GPL-2.0-only /* * BPF JIT compiler * * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com) * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com */ #include <linux/netdevice.h> #include <linux/filter.h> #include <linux/if_vlan.h> #include <linux/bpf.h> #include <linux/memory.h> #include <linux/sort.h> #include <asm/extable.h> #include <asm/ftrace.h> #include <asm/set_memory.h> #include <asm/nospec-branch.h> #include <asm/text-patching.h> #include <asm/unwind.h> #include <asm/cfi.h> static bool all_callee_regs_used[4] = {true, true, true, true}; static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len) { if (len == 1) *ptr = bytes; else if (len == 2) *(u16 *)ptr = bytes; else { *(u32 *)ptr = bytes; barrier(); } return ptr + len; } #define EMIT(bytes, len) \ do { prog = emit_code(prog, bytes, len); } while (0) #define EMIT1(b1) EMIT(b1, 1) #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2) #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3) #define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4) #define EMIT1_off32(b1, off) \ do { EMIT1(b1); EMIT(off, 4); } while (0) #define EMIT2_off32(b1, b2, off) \ do { EMIT2(b1, b2); EMIT(off, 4); } while (0) #define EMIT3_off32(b1, b2, b3, off) \ do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0) #define EMIT4_off32(b1, b2, b3, b4, off) \ do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0) #ifdef CONFIG_X86_KERNEL_IBT #define EMIT_ENDBR() EMIT(gen_endbr(), 4) #define EMIT_ENDBR_POISON() EMIT(gen_endbr_poison(), 4) #else #define EMIT_ENDBR() #define EMIT_ENDBR_POISON() #endif static bool is_imm8(int value) { return value <= 127 && value >= -128; } static bool is_simm32(s64 value) { return value == (s64)(s32)value; } static bool is_uimm32(u64 value) { return value == (u64)(u32)value; } /* mov dst, src */ #define EMIT_mov(DST, SRC) \ do { \ if (DST != SRC) \ EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \ } while (0) static int bpf_size_to_x86_bytes(int bpf_size) { if (bpf_size == BPF_W) return 4; else if (bpf_size == BPF_H) return 2; else if (bpf_size == BPF_B) return 1; else if (bpf_size == BPF_DW) return 4; /* imm32 */ else return 0; } /* * List of x86 cond jumps opcodes (. + s8) * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32) */ #define X86_JB 0x72 #define X86_JAE 0x73 #define X86_JE 0x74 #define X86_JNE 0x75 #define X86_JBE 0x76 #define X86_JA 0x77 #define X86_JL 0x7C #define X86_JGE 0x7D #define X86_JLE 0x7E #define X86_JG 0x7F /* Pick a register outside of BPF range for JIT internal work */ #define AUX_REG (MAX_BPF_JIT_REG + 1) #define X86_REG_R9 (MAX_BPF_JIT_REG + 2) #define X86_REG_R12 (MAX_BPF_JIT_REG + 3) /* * The following table maps BPF registers to x86-64 registers. * * x86-64 register R12 is unused, since if used as base address * register in load/store instructions, it always needs an * extra byte of encoding and is callee saved. * * x86-64 register R9 is not used by BPF programs, but can be used by BPF * trampoline. x86-64 register R10 is used for blinding (if enabled). */ static const int reg2hex[] = { [BPF_REG_0] = 0, /* RAX */ [BPF_REG_1] = 7, /* RDI */ [BPF_REG_2] = 6, /* RSI */ [BPF_REG_3] = 2, /* RDX */ [BPF_REG_4] = 1, /* RCX */ [BPF_REG_5] = 0, /* R8 */ [BPF_REG_6] = 3, /* RBX callee saved */ [BPF_REG_7] = 5, /* R13 callee saved */ [BPF_REG_8] = 6, /* R14 callee saved */ [BPF_REG_9] = 7, /* R15 callee saved */ [BPF_REG_FP] = 5, /* RBP readonly */ [BPF_REG_AX] = 2, /* R10 temp register */ [AUX_REG] = 3, /* R11 temp register */ [X86_REG_R9] = 1, /* R9 register, 6th function argument */ [X86_REG_R12] = 4, /* R12 callee saved */ }; static const int reg2pt_regs[] = { [BPF_REG_0] = offsetof(struct pt_regs, ax), [BPF_REG_1] = offsetof(struct pt_regs, di), [BPF_REG_2] = offsetof(struct pt_regs, si), [BPF_REG_3] = offsetof(struct pt_regs, dx), [BPF_REG_4] = offsetof(struct pt_regs, cx), [BPF_REG_5] = offsetof(struct pt_regs, r8), [BPF_REG_6] = offsetof(struct pt_regs, bx), [BPF_REG_7] = offsetof(struct pt_regs, r13), [BPF_REG_8] = offsetof(struct pt_regs, r14), [BPF_REG_9] = offsetof(struct pt_regs, r15), }; /* * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15 * which need extra byte of encoding. * rax,rcx,...,rbp have simpler encoding */ static bool is_ereg(u32 reg) { return (1 << reg) & (BIT(BPF_REG_5) | BIT(AUX_REG) | BIT(BPF_REG_7) | BIT(BPF_REG_8) | BIT(BPF_REG_9) | BIT(X86_REG_R9) | BIT(X86_REG_R12) | BIT(BPF_REG_AX)); } /* * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64 * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte * of encoding. al,cl,dl,bl have simpler encoding. */ static bool is_ereg_8l(u32 reg) { return is_ereg(reg) || (1 << reg) & (BIT(BPF_REG_1) | BIT(BPF_REG_2) | BIT(BPF_REG_FP)); } static bool is_axreg(u32 reg) { return reg == BPF_REG_0; } /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */ static u8 add_1mod(u8 byte, u32 reg) { if (is_ereg(reg)) byte |= 1; return byte; } static u8 add_2mod(u8 byte, u32 r1, u32 r2) { if (is_ereg(r1)) byte |= 1; if (is_ereg(r2)) byte |= 4; return byte; } static u8 add_3mod(u8 byte, u32 r1, u32 r2, u32 index) { if (is_ereg(r1)) byte |= 1; if (is_ereg(index)) byte |= 2; if (is_ereg(r2)) byte |= 4; return byte; } /* Encode 'dst_reg' register into x86-64 opcode 'byte' */ static u8 add_1reg(u8 byte, u32 dst_reg) { return byte + reg2hex[dst_reg]; } /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */ static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg) { return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3); } /* Some 1-byte opcodes for binary ALU operations */ static u8 simple_alu_opcodes[] = { [BPF_ADD] = 0x01, [BPF_SUB] = 0x29, [BPF_AND] = 0x21, [BPF_OR] = 0x09, [BPF_XOR] = 0x31, [BPF_LSH] = 0xE0, [BPF_RSH] = 0xE8, [BPF_ARSH] = 0xF8, }; static void jit_fill_hole(void *area, unsigned int size) { /* Fill whole space with INT3 instructions */ memset(area, 0xcc, size); } int bpf_arch_text_invalidate(void *dst, size_t len) { return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len)); } struct jit_context { int cleanup_addr; /* Epilogue code offset */ /* * Program specific offsets of labels in the code; these rely on the * JIT doing at least 2 passes, recording the position on the first * pass, only to generate the correct offset on the second pass. */ int tail_call_direct_label; int tail_call_indirect_label; }; /* Maximum number of bytes emitted while JITing one eBPF insn */ #define BPF_MAX_INSN_SIZE 128 #define BPF_INSN_SAFETY 64 /* Number of bytes emit_patch() needs to generate instructions */ #define X86_PATCH_SIZE 5 /* Number of bytes that will be skipped on tailcall */ #define X86_TAIL_CALL_OFFSET (11 + ENDBR_INSN_SIZE) static void push_r12(u8 **pprog) { u8 *prog = *pprog; EMIT2(0x41, 0x54); /* push r12 */ *pprog = prog; } static void push_callee_regs(u8 **pprog, bool *callee_regs_used) { u8 *prog = *pprog; if (callee_regs_used[0]) EMIT1(0x53); /* push rbx */ if (callee_regs_used[1]) EMIT2(0x41, 0x55); /* push r13 */ if (callee_regs_used[2]) EMIT2(0x41, 0x56); /* push r14 */ if (callee_regs_used[3]) EMIT2(0x41, 0x57); /* push r15 */ *pprog = prog; } static void pop_r12(u8 **pprog) { u8 *prog = *pprog; EMIT2(0x41, 0x5C); /* pop r12 */ *pprog = prog; } static void pop_callee_regs(u8 **pprog, bool *callee_regs_used) { u8 *prog = *pprog; if (callee_regs_used[3]) EMIT2(0x41, 0x5F); /* pop r15 */ if (callee_regs_used[2]) EMIT2(0x41, 0x5E); /* pop r14 */ if (callee_regs_used[1]) EMIT2(0x41, 0x5D); /* pop r13 */ if (callee_regs_used[0]) EMIT1(0x5B); /* pop rbx */ *pprog = prog; } static void emit_nops(u8 **pprog, int len) { u8 *prog = *pprog; int i, noplen; while (len > 0) { noplen = len; if (noplen > ASM_NOP_MAX) noplen = ASM_NOP_MAX; for (i = 0; i < noplen; i++) EMIT1(x86_nops[noplen][i]); len -= noplen; } *pprog = prog; } /* * Emit the various CFI preambles, see asm/cfi.h and the comments about FineIBT * in arch/x86/kernel/alternative.c */ static void emit_fineibt(u8 **pprog, u32 hash) { u8 *prog = *pprog; EMIT_ENDBR(); EMIT3_off32(0x41, 0x81, 0xea, hash); /* subl $hash, %r10d */ EMIT2(0x74, 0x07); /* jz.d8 +7 */ EMIT2(0x0f, 0x0b); /* ud2 */ EMIT1(0x90); /* nop */ EMIT_ENDBR_POISON(); *pprog = prog; } static void emit_kcfi(u8 **pprog, u32 hash) { u8 *prog = *pprog; EMIT1_off32(0xb8, hash); /* movl $hash, %eax */ #ifdef CONFIG_CALL_PADDING EMIT1(0x90); EMIT1(0x90); EMIT1(0x90); EMIT1(0x90); EMIT1(0x90); EMIT1(0x90); EMIT1(0x90); EMIT1(0x90); EMIT1(0x90); EMIT1(0x90); EMIT1(0x90); #endif EMIT_ENDBR(); *pprog = prog; } static void emit_cfi(u8 **pprog, u32 hash) { u8 *prog = *pprog; switch (cfi_mode) { case CFI_FINEIBT: emit_fineibt(&prog, hash); break; case CFI_KCFI: emit_kcfi(&prog, hash); break; default: EMIT_ENDBR(); break; } *pprog = prog; } /* * Emit x86-64 prologue code for BPF program. * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes * while jumping to another program */ static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf, bool tail_call_reachable, bool is_subprog, bool is_exception_cb) { u8 *prog = *pprog; emit_cfi(&prog, is_subprog ? cfi_bpf_subprog_hash : cfi_bpf_hash); /* BPF trampoline can be made to work without these nops, * but let's waste 5 bytes for now and optimize later */ emit_nops(&prog, X86_PATCH_SIZE); if (!ebpf_from_cbpf) { if (tail_call_reachable && !is_subprog) /* When it's the entry of the whole tailcall context, * zeroing rax means initialising tail_call_cnt. */ EMIT2(0x31, 0xC0); /* xor eax, eax */ else /* Keep the same instruction layout. */ EMIT2(0x66, 0x90); /* nop2 */ } /* Exception callback receives FP as third parameter */ if (is_exception_cb) { EMIT3(0x48, 0x89, 0xF4); /* mov rsp, rsi */ EMIT3(0x48, 0x89, 0xD5); /* mov rbp, rdx */ /* The main frame must have exception_boundary as true, so we * first restore those callee-saved regs from stack, before * reusing the stack frame. */ pop_callee_regs(&prog, all_callee_regs_used); pop_r12(&prog); /* Reset the stack frame. */ EMIT3(0x48, 0x89, 0xEC); /* mov rsp, rbp */ } else { EMIT1(0x55); /* push rbp */ EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */ } /* X86_TAIL_CALL_OFFSET is here */ EMIT_ENDBR(); /* sub rsp, rounded_stack_depth */ if (stack_depth) EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8)); if (tail_call_reachable) EMIT1(0x50); /* push rax */ *pprog = prog; } static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode) { u8 *prog = *pprog; s64 offset; offset = func - (ip + X86_PATCH_SIZE); if (!is_simm32(offset)) { pr_err("Target call %p is out of range\n", func); return -ERANGE; } EMIT1_off32(opcode, offset); *pprog = prog; return 0; } static int emit_call(u8 **pprog, void *func, void *ip) { return emit_patch(pprog, func, ip, 0xE8); } static int emit_rsb_call(u8 **pprog, void *func, void *ip) { OPTIMIZER_HIDE_VAR(func); ip += x86_call_depth_emit_accounting(pprog, func, ip); return emit_patch(pprog, func, ip, 0xE8); } static int emit_jump(u8 **pprog, void *func, void *ip) { return emit_patch(pprog, func, ip, 0xE9); } static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, void *old_addr, void *new_addr) { const u8 *nop_insn = x86_nops[5]; u8 old_insn[X86_PATCH_SIZE]; u8 new_insn[X86_PATCH_SIZE]; u8 *prog; int ret; memcpy(old_insn, nop_insn, X86_PATCH_SIZE); if (old_addr) { prog = old_insn; ret = t == BPF_MOD_CALL ? emit_call(&prog, old_addr, ip) : emit_jump(&prog, old_addr, ip); if (ret) return ret; } memcpy(new_insn, nop_insn, X86_PATCH_SIZE); if (new_addr) { prog = new_insn; ret = t == BPF_MOD_CALL ? emit_call(&prog, new_addr, ip) : emit_jump(&prog, new_addr, ip); if (ret) return ret; } ret = -EBUSY; mutex_lock(&text_mutex); if (memcmp(ip, old_insn, X86_PATCH_SIZE)) goto out; ret = 1; if (memcmp(ip, new_insn, X86_PATCH_SIZE)) { text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL); ret = 0; } out: mutex_unlock(&text_mutex); return ret; } int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, void *old_addr, void *new_addr) { if (!is_kernel_text((long)ip) && !is_bpf_text_address((long)ip)) /* BPF poking in modules is not supported */ return -EINVAL; /* * See emit_prologue(), for IBT builds the trampoline hook is preceded * with an ENDBR instruction. */ if (is_endbr(*(u32 *)ip)) ip += ENDBR_INSN_SIZE; return __bpf_arch_text_poke(ip, t, old_addr, new_addr); } #define EMIT_LFENCE() EMIT3(0x0F, 0xAE, 0xE8) static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip) { u8 *prog = *pprog; if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) { EMIT_LFENCE(); EMIT2(0xFF, 0xE0 + reg); } else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) { OPTIMIZER_HIDE_VAR(reg); if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH)) emit_jump(&prog, &__x86_indirect_jump_thunk_array[reg], ip); else emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip); } else { EMIT2(0xFF, 0xE0 + reg); /* jmp *%\reg */ if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) || IS_ENABLED(CONFIG_MITIGATION_SLS)) EMIT1(0xCC); /* int3 */ } *pprog = prog; } static void emit_return(u8 **pprog, u8 *ip) { u8 *prog = *pprog; if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) { emit_jump(&prog, x86_return_thunk, ip); } else { EMIT1(0xC3); /* ret */ if (IS_ENABLED(CONFIG_MITIGATION_SLS)) EMIT1(0xCC); /* int3 */ } *pprog = prog; } /* * Generate the following code: * * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ... * if (index >= array->map.max_entries) * goto out; * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT) * goto out; * prog = array->ptrs[index]; * if (prog == NULL) * goto out; * goto *(prog->bpf_func + prologue_size); * out: */ static void emit_bpf_tail_call_indirect(struct bpf_prog *bpf_prog, u8 **pprog, bool *callee_regs_used, u32 stack_depth, u8 *ip, struct jit_context *ctx) { int tcc_off = -4 - round_up(stack_depth, 8); u8 *prog = *pprog, *start = *pprog; int offset; /* * rdi - pointer to ctx * rsi - pointer to bpf_array * rdx - index in bpf_array */ /* * if (index >= array->map.max_entries) * goto out; */ EMIT2(0x89, 0xD2); /* mov edx, edx */ EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */ offsetof(struct bpf_array, map.max_entries)); offset = ctx->tail_call_indirect_label - (prog + 2 - start); EMIT2(X86_JBE, offset); /* jbe out */ /* * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT) * goto out; */ EMIT2_off32(0x8B, 0x85, tcc_off); /* mov eax, dword ptr [rbp - tcc_off] */ EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */ offset = ctx->tail_call_indirect_label - (prog + 2 - start); EMIT2(X86_JAE, offset); /* jae out */ EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */ EMIT2_off32(0x89, 0x85, tcc_off); /* mov dword ptr [rbp - tcc_off], eax */ /* prog = array->ptrs[index]; */ EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6, /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */ offsetof(struct bpf_array, ptrs)); /* * if (prog == NULL) * goto out; */ EMIT3(0x48, 0x85, 0xC9); /* test rcx,rcx */ offset = ctx->tail_call_indirect_label - (prog + 2 - start); EMIT2(X86_JE, offset); /* je out */ if (bpf_prog->aux->exception_boundary) { pop_callee_regs(&prog, all_callee_regs_used); pop_r12(&prog); } else { pop_callee_regs(&prog, callee_regs_used); if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena)) pop_r12(&prog); } EMIT1(0x58); /* pop rax */ if (stack_depth) EMIT3_off32(0x48, 0x81, 0xC4, /* add rsp, sd */ round_up(stack_depth, 8)); /* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */ EMIT4(0x48, 0x8B, 0x49, /* mov rcx, qword ptr [rcx + 32] */ offsetof(struct bpf_prog, bpf_func)); EMIT4(0x48, 0x83, 0xC1, /* add rcx, X86_TAIL_CALL_OFFSET */ X86_TAIL_CALL_OFFSET); /* * Now we're ready to jump into next BPF program * rdi == ctx (1st arg) * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET */ emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start)); /* out: */ ctx->tail_call_indirect_label = prog - start; *pprog = prog; } static void emit_bpf_tail_call_direct(struct bpf_prog *bpf_prog, struct bpf_jit_poke_descriptor *poke, u8 **pprog, u8 *ip, bool *callee_regs_used, u32 stack_depth, struct jit_context *ctx) { int tcc_off = -4 - round_up(stack_depth, 8); u8 *prog = *pprog, *start = *pprog; int offset; /* * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT) * goto out; */ EMIT2_off32(0x8B, 0x85, tcc_off); /* mov eax, dword ptr [rbp - tcc_off] */ EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */ offset = ctx->tail_call_direct_label - (prog + 2 - start); EMIT2(X86_JAE, offset); /* jae out */ EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */ EMIT2_off32(0x89, 0x85, tcc_off); /* mov dword ptr [rbp - tcc_off], eax */ poke->tailcall_bypass = ip + (prog - start); poke->adj_off = X86_TAIL_CALL_OFFSET; poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE; poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE; emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE, poke->tailcall_bypass); if (bpf_prog->aux->exception_boundary) { pop_callee_regs(&prog, all_callee_regs_used); pop_r12(&prog); } else { pop_callee_regs(&prog, callee_regs_used); if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena)) pop_r12(&prog); } EMIT1(0x58); /* pop rax */ if (stack_depth) EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8)); emit_nops(&prog, X86_PATCH_SIZE); /* out: */ ctx->tail_call_direct_label = prog - start; *pprog = prog; } static void bpf_tail_call_direct_fixup(struct bpf_prog *prog) { struct bpf_jit_poke_descriptor *poke; struct bpf_array *array; struct bpf_prog *target; int i, ret; for (i = 0; i < prog->aux->size_poke_tab; i++) { poke = &prog->aux->poke_tab[i]; if (poke->aux && poke->aux != prog->aux) continue; WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable)); if (poke->reason != BPF_POKE_REASON_TAIL_CALL) continue; array = container_of(poke->tail_call.map, struct bpf_array, map); mutex_lock(&array->aux->poke_mutex); target = array->ptrs[poke->tail_call.key]; if (target) { ret = __bpf_arch_text_poke(poke->tailcall_target, BPF_MOD_JUMP, NULL, (u8 *)target->bpf_func + poke->adj_off); BUG_ON(ret < 0); ret = __bpf_arch_text_poke(poke->tailcall_bypass, BPF_MOD_JUMP, (u8 *)poke->tailcall_target + X86_PATCH_SIZE, NULL); BUG_ON(ret < 0); } WRITE_ONCE(poke->tailcall_target_stable, true); mutex_unlock(&array->aux->poke_mutex); } } static void emit_mov_imm32(u8 **pprog, bool sign_propagate, u32 dst_reg, const u32 imm32) { u8 *prog = *pprog; u8 b1, b2, b3; /* * Optimization: if imm32 is positive, use 'mov %eax, imm32' * (which zero-extends imm32) to save 2 bytes. */ if (sign_propagate && (s32)imm32 < 0) { /* 'mov %rax, imm32' sign extends imm32 */ b1 = add_1mod(0x48, dst_reg); b2 = 0xC7; b3 = 0xC0; EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32); goto done; } /* * Optimization: if imm32 is zero, use 'xor %eax, %eax' * to save 3 bytes. */ if (imm32 == 0) { if (is_ereg(dst_reg)) EMIT1(add_2mod(0x40, dst_reg, dst_reg)); b2 = 0x31; /* xor */ b3 = 0xC0; EMIT2(b2, add_2reg(b3, dst_reg, dst_reg)); goto done; } /* mov %eax, imm32 */ if (is_ereg(dst_reg)) EMIT1(add_1mod(0x40, dst_reg)); EMIT1_off32(add_1reg(0xB8, dst_reg), imm32); done: *pprog = prog; } static void emit_mov_imm64(u8 **pprog, u32 dst_reg, const u32 imm32_hi, const u32 imm32_lo) { u64 imm64 = ((u64)imm32_hi << 32) | (u32)imm32_lo; u8 *prog = *pprog; if (is_uimm32(imm64)) { /* * For emitting plain u32, where sign bit must not be * propagated LLVM tends to load imm64 over mov32 * directly, so save couple of bytes by just doing * 'mov %eax, imm32' instead. */ emit_mov_imm32(&prog, false, dst_reg, imm32_lo); } else if (is_simm32(imm64)) { emit_mov_imm32(&prog, true, dst_reg, imm32_lo); } else { /* movabsq rax, imm64 */ EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg)); EMIT(imm32_lo, 4); EMIT(imm32_hi, 4); } *pprog = prog; } static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg) { u8 *prog = *pprog; if (is64) { /* mov dst, src */ EMIT_mov(dst_reg, src_reg); } else { /* mov32 dst, src */ if (is_ereg(dst_reg) || is_ereg(src_reg)) EMIT1(add_2mod(0x40, dst_reg, src_reg)); EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg)); } *pprog = prog; } static void emit_movsx_reg(u8 **pprog, int num_bits, bool is64, u32 dst_reg, u32 src_reg) { u8 *prog = *pprog; if (is64) { /* movs[b,w,l]q dst, src */ if (num_bits == 8) EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbe, add_2reg(0xC0, src_reg, dst_reg)); else if (num_bits == 16) EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbf, add_2reg(0xC0, src_reg, dst_reg)); else if (num_bits == 32) EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x63, add_2reg(0xC0, src_reg, dst_reg)); } else { /* movs[b,w]l dst, src */ if (num_bits == 8) { EMIT4(add_2mod(0x40, src_reg, dst_reg), 0x0f, 0xbe, add_2reg(0xC0, src_reg, dst_reg)); } else if (num_bits == 16) { if (is_ereg(dst_reg) || is_ereg(src_reg)) EMIT1(add_2mod(0x40, src_reg, dst_reg)); EMIT3(add_2mod(0x0f, src_reg, dst_reg), 0xbf, add_2reg(0xC0, src_reg, dst_reg)); } } *pprog = prog; } /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */ static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off) { u8 *prog = *pprog; if (is_imm8(off)) { /* 1-byte signed displacement. * * If off == 0 we could skip this and save one extra byte, but * special case of x86 R13 which always needs an offset is not * worth the hassle */ EMIT2(add_2reg(0x40, ptr_reg, val_reg), off); } else { /* 4-byte signed displacement */ EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off); } *pprog = prog; } static void emit_insn_suffix_SIB(u8 **pprog, u32 ptr_reg, u32 val_reg, u32 index_reg, int off) { u8 *prog = *pprog; if (is_imm8(off)) { EMIT3(add_2reg(0x44, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off); } else { EMIT2_off32(add_2reg(0x84, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off); } *pprog = prog; } /* * Emit a REX byte if it will be necessary to address these registers */ static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64) { u8 *prog = *pprog; if (is64) EMIT1(add_2mod(0x48, dst_reg, src_reg)); else if (is_ereg(dst_reg) || is_ereg(src_reg)) EMIT1(add_2mod(0x40, dst_reg, src_reg)); *pprog = prog; } /* * Similar version of maybe_emit_mod() for a single register */ static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64) { u8 *prog = *pprog; if (is64) EMIT1(add_1mod(0x48, reg)); else if (is_ereg(reg)) EMIT1(add_1mod(0x40, reg)); *pprog = prog; } /* LDX: dst_reg = *(u8*)(src_reg + off) */ static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) { u8 *prog = *pprog; switch (size) { case BPF_B: /* Emit 'movzx rax, byte ptr [rax + off]' */ EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6); break; case BPF_H: /* Emit 'movzx rax, word ptr [rax + off]' */ EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7); break; case BPF_W: /* Emit 'mov eax, dword ptr [rax+0x14]' */ if (is_ereg(dst_reg) || is_ereg(src_reg)) EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B); else EMIT1(0x8B); break; case BPF_DW: /* Emit 'mov rax, qword ptr [rax+0x14]' */ EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B); break; } emit_insn_suffix(&prog, src_reg, dst_reg, off); *pprog = prog; } /* LDSX: dst_reg = *(s8*)(src_reg + off) */ static void emit_ldsx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) { u8 *prog = *pprog; switch (size) { case BPF_B: /* Emit 'movsx rax, byte ptr [rax + off]' */ EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBE); break; case BPF_H: /* Emit 'movsx rax, word ptr [rax + off]' */ EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBF); break; case BPF_W: /* Emit 'movsx rax, dword ptr [rax+0x14]' */ EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x63); break; } emit_insn_suffix(&prog, src_reg, dst_reg, off); *pprog = prog; } static void emit_ldx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off) { u8 *prog = *pprog; switch (size) { case BPF_B: /* movzx rax, byte ptr [rax + r12 + off] */ EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB6); break; case BPF_H: /* movzx rax, word ptr [rax + r12 + off] */ EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB7); break; case BPF_W: /* mov eax, dword ptr [rax + r12 + off] */ EMIT2(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x8B); break; case BPF_DW: /* mov rax, qword ptr [rax + r12 + off] */ EMIT2(add_3mod(0x48, src_reg, dst_reg, index_reg), 0x8B); break; } emit_insn_suffix_SIB(&prog, src_reg, dst_reg, index_reg, off); *pprog = prog; } static void emit_ldx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) { emit_ldx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off); } /* STX: *(u8*)(dst_reg + off) = src_reg */ static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) { u8 *prog = *pprog; switch (size) { case BPF_B: /* Emit 'mov byte ptr [rax + off], al' */ if (is_ereg(dst_reg) || is_ereg_8l(src_reg)) /* Add extra byte for eregs or SIL,DIL,BPL in src_reg */ EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88); else EMIT1(0x88); break; case BPF_H: if (is_ereg(dst_reg) || is_ereg(src_reg)) EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89); else EMIT2(0x66, 0x89); break; case BPF_W: if (is_ereg(dst_reg) || is_ereg(src_reg)) EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89); else EMIT1(0x89); break; case BPF_DW: EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89); break; } emit_insn_suffix(&prog, dst_reg, src_reg, off); *pprog = prog; } /* STX: *(u8*)(dst_reg + index_reg + off) = src_reg */ static void emit_stx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off) { u8 *prog = *pprog; switch (size) { case BPF_B: /* mov byte ptr [rax + r12 + off], al */ EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x88); break; case BPF_H: /* mov word ptr [rax + r12 + off], ax */ EMIT3(0x66, add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89); break; case BPF_W: /* mov dword ptr [rax + r12 + 1], eax */ EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89); break; case BPF_DW: /* mov qword ptr [rax + r12 + 1], rax */ EMIT2(add_3mod(0x48, dst_reg, src_reg, index_reg), 0x89); break; } emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off); *pprog = prog; } static void emit_stx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) { emit_stx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off); } /* ST: *(u8*)(dst_reg + index_reg + off) = imm32 */ static void emit_st_index(u8 **pprog, u32 size, u32 dst_reg, u32 index_reg, int off, int imm) { u8 *prog = *pprog; switch (size) { case BPF_B: /* mov byte ptr [rax + r12 + off], imm8 */ EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC6); break; case BPF_H: /* mov word ptr [rax + r12 + off], imm16 */ EMIT3(0x66, add_3mod(0x40, dst_reg, 0, index_reg), 0xC7); break; case BPF_W: /* mov dword ptr [rax + r12 + 1], imm32 */ EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC7); break; case BPF_DW: /* mov qword ptr [rax + r12 + 1], imm32 */ EMIT2(add_3mod(0x48, dst_reg, 0, index_reg), 0xC7); break; } emit_insn_suffix_SIB(&prog, dst_reg, 0, index_reg, off); EMIT(imm, bpf_size_to_x86_bytes(size)); *pprog = prog; } static void emit_st_r12(u8 **pprog, u32 size, u32 dst_reg, int off, int imm) { emit_st_index(pprog, size, dst_reg, X86_REG_R12, off, imm); } static int emit_atomic(u8 **pprog, u8 atomic_op, u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size) { u8 *prog = *pprog; EMIT1(0xF0); /* lock prefix */ maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW); /* emit opcode */ switch (atomic_op) { case BPF_ADD: case BPF_AND: case BPF_OR: case BPF_XOR: /* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */ EMIT1(simple_alu_opcodes[atomic_op]); break; case BPF_ADD | BPF_FETCH: /* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */ EMIT2(0x0F, 0xC1); break; case BPF_XCHG: /* src_reg = atomic_xchg(dst_reg + off, src_reg); */ EMIT1(0x87); break; case BPF_CMPXCHG: /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */ EMIT2(0x0F, 0xB1); break; default: pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op); return -EFAULT; } emit_insn_suffix(&prog, dst_reg, src_reg, off); *pprog = prog; return 0; } static int emit_atomic_index(u8 **pprog, u8 atomic_op, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off) { u8 *prog = *pprog; EMIT1(0xF0); /* lock prefix */ switch (size) { case BPF_W: EMIT1(add_3mod(0x40, dst_reg, src_reg, index_reg)); break; case BPF_DW: EMIT1(add_3mod(0x48, dst_reg, src_reg, index_reg)); break; default: pr_err("bpf_jit: 1 and 2 byte atomics are not supported\n"); return -EFAULT; } /* emit opcode */ switch (atomic_op) { case BPF_ADD: case BPF_AND: case BPF_OR: case BPF_XOR: /* lock *(u32/u64*)(dst_reg + idx_reg + off) <op>= src_reg */ EMIT1(simple_alu_opcodes[atomic_op]); break; case BPF_ADD | BPF_FETCH: /* src_reg = atomic_fetch_add(dst_reg + idx_reg + off, src_reg); */ EMIT2(0x0F, 0xC1); break; case BPF_XCHG: /* src_reg = atomic_xchg(dst_reg + idx_reg + off, src_reg); */ EMIT1(0x87); break; case BPF_CMPXCHG: /* r0 = atomic_cmpxchg(dst_reg + idx_reg + off, r0, src_reg); */ EMIT2(0x0F, 0xB1); break; default: pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op); return -EFAULT; } emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off); *pprog = prog; return 0; } #define DONT_CLEAR 1 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs) { u32 reg = x->fixup >> 8; /* jump over faulting load and clear dest register */ if (reg != DONT_CLEAR) *(unsigned long *)((void *)regs + reg) = 0; regs->ip += x->fixup & 0xff; return true; } static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt, bool *regs_used) { int i; for (i = 1; i <= insn_cnt; i++, insn++) { if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6) regs_used[0] = true; if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7) regs_used[1] = true; if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8) regs_used[2] = true; if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9) regs_used[3] = true; } } /* emit the 3-byte VEX prefix * * r: same as rex.r, extra bit for ModRM reg field * x: same as rex.x, extra bit for SIB index field * b: same as rex.b, extra bit for ModRM r/m, or SIB base * m: opcode map select, encoding escape bytes e.g. 0x0f38 * w: same as rex.w (32 bit or 64 bit) or opcode specific * src_reg2: additional source reg (encoded as BPF reg) * l: vector length (128 bit or 256 bit) or reserved * pp: opcode prefix (none, 0x66, 0xf2 or 0xf3) */ static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m, bool w, u8 src_reg2, bool l, u8 pp) { u8 *prog = *pprog; const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */ u8 b1, b2; u8 vvvv = reg2hex[src_reg2]; /* reg2hex gives only the lower 3 bit of vvvv */ if (is_ereg(src_reg2)) vvvv |= 1 << 3; /* * 2nd byte of 3-byte VEX prefix * ~ means bit inverted encoding * * 7 0 * +---+---+---+---+---+---+---+---+ * |~R |~X |~B | m | * +---+---+---+---+---+---+---+---+ */ b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f); /* * 3rd byte of 3-byte VEX prefix * * 7 0 * +---+---+---+---+---+---+---+---+ * | W | ~vvvv | L | pp | * +---+---+---+---+---+---+---+---+ */ b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3); EMIT3(b0, b1, b2); *pprog = prog; } /* emit BMI2 shift instruction */ static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op) { u8 *prog = *pprog; bool r = is_ereg(dst_reg); u8 m = 2; /* escape code 0f38 */ emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op); EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg)); *pprog = prog; } #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp))) /* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */ #define RESTORE_TAIL_CALL_CNT(stack) \ EMIT3_off32(0x48, 0x8B, 0x85, -round_up(stack, 8) - 8) static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image, int oldproglen, struct jit_context *ctx, bool jmp_padding) { bool tail_call_reachable = bpf_prog->aux->tail_call_reachable; struct bpf_insn *insn = bpf_prog->insnsi; bool callee_regs_used[4] = {}; int insn_cnt = bpf_prog->len; bool seen_exit = false; u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY]; u64 arena_vm_start, user_vm_start; int i, excnt = 0; int ilen, proglen = 0; u8 *prog = temp; int err; arena_vm_start = bpf_arena_get_kern_vm_start(bpf_prog->aux->arena); user_vm_start = bpf_arena_get_user_vm_start(bpf_prog->aux->arena); detect_reg_usage(insn, insn_cnt, callee_regs_used); emit_prologue(&prog, bpf_prog->aux->stack_depth, bpf_prog_was_classic(bpf_prog), tail_call_reachable, bpf_is_subprog(bpf_prog), bpf_prog->aux->exception_cb); /* Exception callback will clobber callee regs for its own use, and * restore the original callee regs from main prog's stack frame. */ if (bpf_prog->aux->exception_boundary) { /* We also need to save r12, which is not mapped to any BPF * register, as we throw after entry into the kernel, which may * overwrite r12. */ push_r12(&prog); push_callee_regs(&prog, all_callee_regs_used); } else { if (arena_vm_start) push_r12(&prog); push_callee_regs(&prog, callee_regs_used); } if (arena_vm_start) emit_mov_imm64(&prog, X86_REG_R12, arena_vm_start >> 32, (u32) arena_vm_start); ilen = prog - temp; if (rw_image) memcpy(rw_image + proglen, temp, ilen); proglen += ilen; addrs[0] = proglen; prog = temp; for (i = 1; i <= insn_cnt; i++, insn++) { const s32 imm32 = insn->imm; u32 dst_reg = insn->dst_reg; u32 src_reg = insn->src_reg; u8 b2 = 0, b3 = 0; u8 *start_of_ldx; s64 jmp_offset; s16 insn_off; u8 jmp_cond; u8 *func; int nops; switch (insn->code) { /* ALU */ case BPF_ALU | BPF_ADD | BPF_X: case BPF_ALU | BPF_SUB | BPF_X: case BPF_ALU | BPF_AND | BPF_X: case BPF_ALU | BPF_OR | BPF_X: case BPF_ALU | BPF_XOR | BPF_X: case BPF_ALU64 | BPF_ADD | BPF_X: case BPF_ALU64 | BPF_SUB | BPF_X: case BPF_ALU64 | BPF_AND | BPF_X: case BPF_ALU64 | BPF_OR | BPF_X: case BPF_ALU64 | BPF_XOR | BPF_X: maybe_emit_mod(&prog, dst_reg, src_reg, BPF_CLASS(insn->code) == BPF_ALU64); b2 = simple_alu_opcodes[BPF_OP(insn->code)]; EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg)); break; case BPF_ALU64 | BPF_MOV | BPF_X: if (insn_is_cast_user(insn)) { if (dst_reg != src_reg) /* 32-bit mov */ emit_mov_reg(&prog, false, dst_reg, src_reg); /* shl dst_reg, 32 */ maybe_emit_1mod(&prog, dst_reg, true); EMIT3(0xC1, add_1reg(0xE0, dst_reg), 32); /* or dst_reg, user_vm_start */ maybe_emit_1mod(&prog, dst_reg, true); if (is_axreg(dst_reg)) EMIT1_off32(0x0D, user_vm_start >> 32); else EMIT2_off32(0x81, add_1reg(0xC8, dst_reg), user_vm_start >> 32); /* rol dst_reg, 32 */ maybe_emit_1mod(&prog, dst_reg, true); EMIT3(0xC1, add_1reg(0xC0, dst_reg), 32); /* xor r11, r11 */ EMIT3(0x4D, 0x31, 0xDB); /* test dst_reg32, dst_reg32; check if lower 32-bit are zero */ maybe_emit_mod(&prog, dst_reg, dst_reg, false); EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg)); /* cmove r11, dst_reg; if so, set dst_reg to zero */ /* WARNING: Intel swapped src/dst register encoding in CMOVcc !!! */ maybe_emit_mod(&prog, AUX_REG, dst_reg, true); EMIT3(0x0F, 0x44, add_2reg(0xC0, AUX_REG, dst_reg)); break; } else if (insn_is_mov_percpu_addr(insn)) { /* mov <dst>, <src> (if necessary) */ EMIT_mov(dst_reg, src_reg); #ifdef CONFIG_SMP /* add <dst>, gs:[<off>] */ EMIT2(0x65, add_1mod(0x48, dst_reg)); EMIT3(0x03, add_2reg(0x04, 0, dst_reg), 0x25); EMIT((u32)(unsigned long)&this_cpu_off, 4); #endif break; } fallthrough; case BPF_ALU | BPF_MOV | BPF_X: if (insn->off == 0) emit_mov_reg(&prog, BPF_CLASS(insn->code) == BPF_ALU64, dst_reg, src_reg); else emit_movsx_reg(&prog, insn->off, BPF_CLASS(insn->code) == BPF_ALU64, dst_reg, src_reg); break; /* neg dst */ case BPF_ALU | BPF_NEG: case BPF_ALU64 | BPF_NEG: maybe_emit_1mod(&prog, dst_reg, BPF_CLASS(insn->code) == BPF_ALU64); EMIT2(0xF7, add_1reg(0xD8, dst_reg)); break; case BPF_ALU | BPF_ADD | BPF_K: case BPF_ALU | BPF_SUB | BPF_K: case BPF_ALU | BPF_AND | BPF_K: case BPF_ALU | BPF_OR | BPF_K: case BPF_ALU | BPF_XOR | BPF_K: case BPF_ALU64 | BPF_ADD | BPF_K: case BPF_ALU64 | BPF_SUB | BPF_K: case BPF_ALU64 | BPF_AND | BPF_K: case BPF_ALU64 | BPF_OR | BPF_K: case BPF_ALU64 | BPF_XOR | BPF_K: maybe_emit_1mod(&prog, dst_reg, BPF_CLASS(insn->code) == BPF_ALU64); /* * b3 holds 'normal' opcode, b2 short form only valid * in case dst is eax/rax. */ switch (BPF_OP(insn->code)) { case BPF_ADD: b3 = 0xC0; b2 = 0x05; break; case BPF_SUB: b3 = 0xE8; b2 = 0x2D; break; case BPF_AND: b3 = 0xE0; b2 = 0x25; break; case BPF_OR: b3 = 0xC8; b2 = 0x0D; break; case BPF_XOR: b3 = 0xF0; b2 = 0x35; break; } if (is_imm8(imm32)) EMIT3(0x83, add_1reg(b3, dst_reg), imm32); else if (is_axreg(dst_reg)) EMIT1_off32(b2, imm32); else EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32); break; case BPF_ALU64 | BPF_MOV | BPF_K: case BPF_ALU | BPF_MOV | BPF_K: emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64, dst_reg, imm32); break; case BPF_LD | BPF_IMM | BPF_DW: emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm); insn++; i++; break; /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */ case BPF_ALU | BPF_MOD | BPF_X: case BPF_ALU | BPF_DIV | BPF_X: case BPF_ALU | BPF_MOD | BPF_K: case BPF_ALU | BPF_DIV | BPF_K: case BPF_ALU64 | BPF_MOD | BPF_X: case BPF_ALU64 | BPF_DIV | BPF_X: case BPF_ALU64 | BPF_MOD | BPF_K: case BPF_ALU64 | BPF_DIV | BPF_K: { bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; if (dst_reg != BPF_REG_0) EMIT1(0x50); /* push rax */ if (dst_reg != BPF_REG_3) EMIT1(0x52); /* push rdx */ if (BPF_SRC(insn->code) == BPF_X) { if (src_reg == BPF_REG_0 || src_reg == BPF_REG_3) { /* mov r11, src_reg */ EMIT_mov(AUX_REG, src_reg); src_reg = AUX_REG; } } else { /* mov r11, imm32 */ EMIT3_off32(0x49, 0xC7, 0xC3, imm32); src_reg = AUX_REG; } if (dst_reg != BPF_REG_0) /* mov rax, dst_reg */ emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg); if (insn->off == 0) { /* * xor edx, edx * equivalent to 'xor rdx, rdx', but one byte less */ EMIT2(0x31, 0xd2); /* div src_reg */ maybe_emit_1mod(&prog, src_reg, is64); EMIT2(0xF7, add_1reg(0xF0, src_reg)); } else { if (BPF_CLASS(insn->code) == BPF_ALU) EMIT1(0x99); /* cdq */ else EMIT2(0x48, 0x99); /* cqo */ /* idiv src_reg */ maybe_emit_1mod(&prog, src_reg, is64); EMIT2(0xF7, add_1reg(0xF8, src_reg)); } if (BPF_OP(insn->code) == BPF_MOD && dst_reg != BPF_REG_3) /* mov dst_reg, rdx */ emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3); else if (BPF_OP(insn->code) == BPF_DIV && dst_reg != BPF_REG_0) /* mov dst_reg, rax */ emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0); if (dst_reg != BPF_REG_3) EMIT1(0x5A); /* pop rdx */ if (dst_reg != BPF_REG_0) EMIT1(0x58); /* pop rax */ break; } case BPF_ALU | BPF_MUL | BPF_K: case BPF_ALU64 | BPF_MUL | BPF_K: maybe_emit_mod(&prog, dst_reg, dst_reg, BPF_CLASS(insn->code) == BPF_ALU64); if (is_imm8(imm32)) /* imul dst_reg, dst_reg, imm8 */ EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg), imm32); else /* imul dst_reg, dst_reg, imm32 */ EMIT2_off32(0x69, add_2reg(0xC0, dst_reg, dst_reg), imm32); break; case BPF_ALU | BPF_MUL | BPF_X: case BPF_ALU64 | BPF_MUL | BPF_X: maybe_emit_mod(&prog, src_reg, dst_reg, BPF_CLASS(insn->code) == BPF_ALU64); /* imul dst_reg, src_reg */ EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg)); break; /* Shifts */ case BPF_ALU | BPF_LSH | BPF_K: case BPF_ALU | BPF_RSH | BPF_K: case BPF_ALU | BPF_ARSH | BPF_K: case BPF_ALU64 | BPF_LSH | BPF_K: case BPF_ALU64 | BPF_RSH | BPF_K: case BPF_ALU64 | BPF_ARSH | BPF_K: maybe_emit_1mod(&prog, dst_reg, BPF_CLASS(insn->code) == BPF_ALU64); b3 = simple_alu_opcodes[BPF_OP(insn->code)]; if (imm32 == 1) EMIT2(0xD1, add_1reg(b3, dst_reg)); else EMIT3(0xC1, add_1reg(b3, dst_reg), imm32); break; case BPF_ALU | BPF_LSH | BPF_X: case BPF_ALU | BPF_RSH | BPF_X: case BPF_ALU | BPF_ARSH | BPF_X: case BPF_ALU64 | BPF_LSH | BPF_X: case BPF_ALU64 | BPF_RSH | BPF_X: case BPF_ALU64 | BPF_ARSH | BPF_X: /* BMI2 shifts aren't better when shift count is already in rcx */ if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) { /* shrx/sarx/shlx dst_reg, dst_reg, src_reg */ bool w = (BPF_CLASS(insn->code) == BPF_ALU64); u8 op; switch (BPF_OP(insn->code)) { case BPF_LSH: op = 1; /* prefix 0x66 */ break; case BPF_RSH: op = 3; /* prefix 0xf2 */ break; case BPF_ARSH: op = 2; /* prefix 0xf3 */ break; } emit_shiftx(&prog, dst_reg, src_reg, w, op); break; } if (src_reg != BPF_REG_4) { /* common case */ /* Check for bad case when dst_reg == rcx */ if (dst_reg == BPF_REG_4) { /* mov r11, dst_reg */ EMIT_mov(AUX_REG, dst_reg); dst_reg = AUX_REG; } else { EMIT1(0x51); /* push rcx */ } /* mov rcx, src_reg */ EMIT_mov(BPF_REG_4, src_reg); } /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */ maybe_emit_1mod(&prog, dst_reg, BPF_CLASS(insn->code) == BPF_ALU64); b3 = simple_alu_opcodes[BPF_OP(insn->code)]; EMIT2(0xD3, add_1reg(b3, dst_reg)); if (src_reg != BPF_REG_4) { if (insn->dst_reg == BPF_REG_4) /* mov dst_reg, r11 */ EMIT_mov(insn->dst_reg, AUX_REG); else EMIT1(0x59); /* pop rcx */ } break; case BPF_ALU | BPF_END | BPF_FROM_BE: case BPF_ALU64 | BPF_END | BPF_FROM_LE: switch (imm32) { case 16: /* Emit 'ror %ax, 8' to swap lower 2 bytes */ EMIT1(0x66); if (is_ereg(dst_reg)) EMIT1(0x41); EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8); /* Emit 'movzwl eax, ax' */ if (is_ereg(dst_reg)) EMIT3(0x45, 0x0F, 0xB7); else EMIT2(0x0F, 0xB7); EMIT1(add_2reg(0xC0, dst_reg, dst_reg)); break; case 32: /* Emit 'bswap eax' to swap lower 4 bytes */ if (is_ereg(dst_reg)) EMIT2(0x41, 0x0F); else EMIT1(0x0F); EMIT1(add_1reg(0xC8, dst_reg)); break; case 64: /* Emit 'bswap rax' to swap 8 bytes */ EMIT3(add_1mod(0x48, dst_reg), 0x0F, add_1reg(0xC8, dst_reg)); break; } break; case BPF_ALU | BPF_END | BPF_FROM_LE: switch (imm32) { case 16: /* * Emit 'movzwl eax, ax' to zero extend 16-bit * into 64 bit */ if (is_ereg(dst_reg)) EMIT3(0x45, 0x0F, 0xB7); else EMIT2(0x0F, 0xB7); EMIT1(add_2reg(0xC0, dst_reg, dst_reg)); break; case 32: /* Emit 'mov eax, eax' to clear upper 32-bits */ if (is_ereg(dst_reg)) EMIT1(0x45); EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg)); break; case 64: /* nop */ break; } break; /* speculation barrier */ case BPF_ST | BPF_NOSPEC: EMIT_LFENCE(); break; /* ST: *(u8*)(dst_reg + off) = imm */ case BPF_ST | BPF_MEM | BPF_B: if (is_ereg(dst_reg)) EMIT2(0x41, 0xC6); else EMIT1(0xC6); goto st; case BPF_ST | BPF_MEM | BPF_H: if (is_ereg(dst_reg)) EMIT3(0x66, 0x41, 0xC7); else EMIT2(0x66, 0xC7); goto st; case BPF_ST | BPF_MEM | BPF_W: if (is_ereg(dst_reg)) EMIT2(0x41, 0xC7); else EMIT1(0xC7); goto st; case BPF_ST | BPF_MEM | BPF_DW: EMIT2(add_1mod(0x48, dst_reg), 0xC7); st: if (is_imm8(insn->off)) EMIT2(add_1reg(0x40, dst_reg), insn->off); else EMIT1_off32(add_1reg(0x80, dst_reg), insn->off); EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code))); break; /* STX: *(u8*)(dst_reg + off) = src_reg */ case BPF_STX | BPF_MEM | BPF_B: case BPF_STX | BPF_MEM | BPF_H: case BPF_STX | BPF_MEM | BPF_W: case BPF_STX | BPF_MEM | BPF_DW: emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); break; case BPF_ST | BPF_PROBE_MEM32 | BPF_B: case BPF_ST | BPF_PROBE_MEM32 | BPF_H: case BPF_ST | BPF_PROBE_MEM32 | BPF_W: case BPF_ST | BPF_PROBE_MEM32 | BPF_DW: start_of_ldx = prog; emit_st_r12(&prog, BPF_SIZE(insn->code), dst_reg, insn->off, insn->imm); goto populate_extable; /* LDX: dst_reg = *(u8*)(src_reg + r12 + off) */ case BPF_LDX | BPF_PROBE_MEM32 | BPF_B: case BPF_LDX | BPF_PROBE_MEM32 | BPF_H: case BPF_LDX | BPF_PROBE_MEM32 | BPF_W: case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW: case BPF_STX | BPF_PROBE_MEM32 | BPF_B: case BPF_STX | BPF_PROBE_MEM32 | BPF_H: case BPF_STX | BPF_PROBE_MEM32 | BPF_W: case BPF_STX | BPF_PROBE_MEM32 | BPF_DW: start_of_ldx = prog; if (BPF_CLASS(insn->code) == BPF_LDX) emit_ldx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); else emit_stx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); populate_extable: { struct exception_table_entry *ex; u8 *_insn = image + proglen + (start_of_ldx - temp); s64 delta; if (!bpf_prog->aux->extable) break; if (excnt >= bpf_prog->aux->num_exentries) { pr_err("mem32 extable bug\n"); return -EFAULT; } ex = &bpf_prog->aux->extable[excnt++]; delta = _insn - (u8 *)&ex->insn; /* switch ex to rw buffer for writes */ ex = (void *)rw_image + ((void *)ex - (void *)image); ex->insn = delta; ex->data = EX_TYPE_BPF; ex->fixup = (prog - start_of_ldx) | ((BPF_CLASS(insn->code) == BPF_LDX ? reg2pt_regs[dst_reg] : DONT_CLEAR) << 8); } break; /* LDX: dst_reg = *(u8*)(src_reg + off) */ case BPF_LDX | BPF_MEM | BPF_B: case BPF_LDX | BPF_PROBE_MEM | BPF_B: case BPF_LDX | BPF_MEM | BPF_H: case BPF_LDX | BPF_PROBE_MEM | BPF_H: case BPF_LDX | BPF_MEM | BPF_W: case BPF_LDX | BPF_PROBE_MEM | BPF_W: case BPF_LDX | BPF_MEM | BPF_DW: case BPF_LDX | BPF_PROBE_MEM | BPF_DW: /* LDXS: dst_reg = *(s8*)(src_reg + off) */ case BPF_LDX | BPF_MEMSX | BPF_B: case BPF_LDX | BPF_MEMSX | BPF_H: case BPF_LDX | BPF_MEMSX | BPF_W: case BPF_LDX | BPF_PROBE_MEMSX | BPF_B: case BPF_LDX | BPF_PROBE_MEMSX | BPF_H: case BPF_LDX | BPF_PROBE_MEMSX | BPF_W: insn_off = insn->off; if (BPF_MODE(insn->code) == BPF_PROBE_MEM || BPF_MODE(insn->code) == BPF_PROBE_MEMSX) { /* Conservatively check that src_reg + insn->off is a kernel address: * src_reg + insn->off > TASK_SIZE_MAX + PAGE_SIZE * and * src_reg + insn->off < VSYSCALL_ADDR */ u64 limit = TASK_SIZE_MAX + PAGE_SIZE - VSYSCALL_ADDR; u8 *end_of_jmp; /* movabsq r10, VSYSCALL_ADDR */ emit_mov_imm64(&prog, BPF_REG_AX, (long)VSYSCALL_ADDR >> 32, (u32)(long)VSYSCALL_ADDR); /* mov src_reg, r11 */ EMIT_mov(AUX_REG, src_reg); if (insn->off) { /* add r11, insn->off */ maybe_emit_1mod(&prog, AUX_REG, true); EMIT2_off32(0x81, add_1reg(0xC0, AUX_REG), insn->off); } /* sub r11, r10 */ maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true); EMIT2(0x29, add_2reg(0xC0, AUX_REG, BPF_REG_AX)); /* movabsq r10, limit */ emit_mov_imm64(&prog, BPF_REG_AX, (long)limit >> 32, (u32)(long)limit); /* cmp r10, r11 */ maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true); EMIT2(0x39, add_2reg(0xC0, AUX_REG, BPF_REG_AX)); /* if unsigned '>', goto load */ EMIT2(X86_JA, 0); end_of_jmp = prog; /* xor dst_reg, dst_reg */ emit_mov_imm32(&prog, false, dst_reg, 0); /* jmp byte_after_ldx */ EMIT2(0xEB, 0); /* populate jmp_offset for JAE above to jump to start_of_ldx */ start_of_ldx = prog; end_of_jmp[-1] = start_of_ldx - end_of_jmp; } if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX || BPF_MODE(insn->code) == BPF_MEMSX) emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off); else emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off); if (BPF_MODE(insn->code) == BPF_PROBE_MEM || BPF_MODE(insn->code) == BPF_PROBE_MEMSX) { struct exception_table_entry *ex; u8 *_insn = image + proglen + (start_of_ldx - temp); s64 delta; /* populate jmp_offset for JMP above */ start_of_ldx[-1] = prog - start_of_ldx; if (!bpf_prog->aux->extable) break; if (excnt >= bpf_prog->aux->num_exentries) { pr_err("ex gen bug\n"); return -EFAULT; } ex = &bpf_prog->aux->extable[excnt++]; delta = _insn - (u8 *)&ex->insn; if (!is_simm32(delta)) { pr_err("extable->insn doesn't fit into 32-bit\n"); return -EFAULT; } /* switch ex to rw buffer for writes */ ex = (void *)rw_image + ((void *)ex - (void *)image); ex->insn = delta; ex->data = EX_TYPE_BPF; if (dst_reg > BPF_REG_9) { pr_err("verifier error\n"); return -EFAULT; } /* * Compute size of x86 insn and its target dest x86 register. * ex_handler_bpf() will use lower 8 bits to adjust * pt_regs->ip to jump over this x86 instruction * and upper bits to figure out which pt_regs to zero out. * End result: x86 insn "mov rbx, qword ptr [rax+0x14]" * of 4 bytes will be ignored and rbx will be zero inited. */ ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8); } break; case BPF_STX | BPF_ATOMIC | BPF_W: case BPF_STX | BPF_ATOMIC | BPF_DW: if (insn->imm == (BPF_AND | BPF_FETCH) || insn->imm == (BPF_OR | BPF_FETCH) || insn->imm == (BPF_XOR | BPF_FETCH)) { bool is64 = BPF_SIZE(insn->code) == BPF_DW; u32 real_src_reg = src_reg; u32 real_dst_reg = dst_reg; u8 *branch_target; /* * Can't be implemented with a single x86 insn. * Need to do a CMPXCHG loop. */ /* Will need RAX as a CMPXCHG operand so save R0 */ emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0); if (src_reg == BPF_REG_0) real_src_reg = BPF_REG_AX; if (dst_reg == BPF_REG_0) real_dst_reg = BPF_REG_AX; branch_target = prog; /* Load old value */ emit_ldx(&prog, BPF_SIZE(insn->code), BPF_REG_0, real_dst_reg, insn->off); /* * Perform the (commutative) operation locally, * put the result in the AUX_REG. */ emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0); maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64); EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)], add_2reg(0xC0, AUX_REG, real_src_reg)); /* Attempt to swap in new value */ err = emit_atomic(&prog, BPF_CMPXCHG, real_dst_reg, AUX_REG, insn->off, BPF_SIZE(insn->code)); if (WARN_ON(err)) return err; /* * ZF tells us whether we won the race. If it's * cleared we need to try again. */ EMIT2(X86_JNE, -(prog - branch_target) - 2); /* Return the pre-modification value */ emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0); /* Restore R0 after clobbering RAX */ emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX); break; } err = emit_atomic(&prog, insn->imm, dst_reg, src_reg, insn->off, BPF_SIZE(insn->code)); if (err) return err; break; case BPF_STX | BPF_PROBE_ATOMIC | BPF_W: case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW: start_of_ldx = prog; err = emit_atomic_index(&prog, insn->imm, BPF_SIZE(insn->code), dst_reg, src_reg, X86_REG_R12, insn->off); if (err) return err; goto populate_extable; /* call */ case BPF_JMP | BPF_CALL: { u8 *ip = image + addrs[i - 1]; func = (u8 *) __bpf_call_base + imm32; if (tail_call_reachable) { RESTORE_TAIL_CALL_CNT(bpf_prog->aux->stack_depth); ip += 7; } if (!imm32) return -EINVAL; ip += x86_call_depth_emit_accounting(&prog, func, ip); if (emit_call(&prog, func, ip)) return -EINVAL; break; } case BPF_JMP | BPF_TAIL_CALL: if (imm32) emit_bpf_tail_call_direct(bpf_prog, &bpf_prog->aux->poke_tab[imm32 - 1], &prog, image + addrs[i - 1], callee_regs_used, bpf_prog->aux->stack_depth, ctx); else emit_bpf_tail_call_indirect(bpf_prog, &prog, callee_regs_used, bpf_prog->aux->stack_depth, image + addrs[i - 1], ctx); break; /* cond jump */ case BPF_JMP | BPF_JEQ | BPF_X: case BPF_JMP | BPF_JNE | BPF_X: case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP | BPF_JLT | BPF_X: case BPF_JMP | BPF_JGE | BPF_X: case BPF_JMP | BPF_JLE | BPF_X: case BPF_JMP | BPF_JSGT | BPF_X: case BPF_JMP | BPF_JSLT | BPF_X: case BPF_JMP | BPF_JSGE | BPF_X: case BPF_JMP | BPF_JSLE | BPF_X: case BPF_JMP32 | BPF_JEQ | BPF_X: case BPF_JMP32 | BPF_JNE | BPF_X: case BPF_JMP32 | BPF_JGT | BPF_X: case BPF_JMP32 | BPF_JLT | BPF_X: case BPF_JMP32 | BPF_JGE | BPF_X: case BPF_JMP32 | BPF_JLE | BPF_X: case BPF_JMP32 | BPF_JSGT | BPF_X: case BPF_JMP32 | BPF_JSLT | BPF_X: case BPF_JMP32 | BPF_JSGE | BPF_X: case BPF_JMP32 | BPF_JSLE | BPF_X: /* cmp dst_reg, src_reg */ maybe_emit_mod(&prog, dst_reg, src_reg, BPF_CLASS(insn->code) == BPF_JMP); EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg)); goto emit_cond_jmp; case BPF_JMP | BPF_JSET | BPF_X: case BPF_JMP32 | BPF_JSET | BPF_X: /* test dst_reg, src_reg */ maybe_emit_mod(&prog, dst_reg, src_reg, BPF_CLASS(insn->code) == BPF_JMP); EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg)); goto emit_cond_jmp; case BPF_JMP | BPF_JSET | BPF_K: case BPF_JMP32 | BPF_JSET | BPF_K: /* test dst_reg, imm32 */ maybe_emit_1mod(&prog, dst_reg, BPF_CLASS(insn->code) == BPF_JMP); EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32); goto emit_cond_jmp; case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JNE | BPF_K: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JLT | BPF_K: case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP | BPF_JLE | BPF_K: case BPF_JMP | BPF_JSGT | BPF_K: case BPF_JMP | BPF_JSLT | BPF_K: case BPF_JMP | BPF_JSGE | BPF_K: case BPF_JMP | BPF_JSLE | BPF_K: case BPF_JMP32 | BPF_JEQ | BPF_K: case BPF_JMP32 | BPF_JNE | BPF_K: case BPF_JMP32 | BPF_JGT | BPF_K: case BPF_JMP32 | BPF_JLT | BPF_K: case BPF_JMP32 | BPF_JGE | BPF_K: case BPF_JMP32 | BPF_JLE | BPF_K: case BPF_JMP32 | BPF_JSGT | BPF_K: case BPF_JMP32 | BPF_JSLT | BPF_K: case BPF_JMP32 | BPF_JSGE | BPF_K: case BPF_JMP32 | BPF_JSLE | BPF_K: /* test dst_reg, dst_reg to save one extra byte */ if (imm32 == 0) { maybe_emit_mod(&prog, dst_reg, dst_reg, BPF_CLASS(insn->code) == BPF_JMP); EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg)); goto emit_cond_jmp; } /* cmp dst_reg, imm8/32 */ maybe_emit_1mod(&prog, dst_reg, BPF_CLASS(insn->code) == BPF_JMP); if (is_imm8(imm32)) EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32); else EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32); emit_cond_jmp: /* Convert BPF opcode to x86 */ switch (BPF_OP(insn->code)) { case BPF_JEQ: jmp_cond = X86_JE; break; case BPF_JSET: case BPF_JNE: jmp_cond = X86_JNE; break; case BPF_JGT: /* GT is unsigned '>', JA in x86 */ jmp_cond = X86_JA; break; case BPF_JLT: /* LT is unsigned '<', JB in x86 */ jmp_cond = X86_JB; break; case BPF_JGE: /* GE is unsigned '>=', JAE in x86 */ jmp_cond = X86_JAE; break; case BPF_JLE: /* LE is unsigned '<=', JBE in x86 */ jmp_cond = X86_JBE; break; case BPF_JSGT: /* Signed '>', GT in x86 */ jmp_cond = X86_JG; break; case BPF_JSLT: /* Signed '<', LT in x86 */ jmp_cond = X86_JL; break; case BPF_JSGE: /* Signed '>=', GE in x86 */ jmp_cond = X86_JGE; break; case BPF_JSLE: /* Signed '<=', LE in x86 */ jmp_cond = X86_JLE; break; default: /* to silence GCC warning */ return -EFAULT; } jmp_offset = addrs[i + insn->off] - addrs[i]; if (is_imm8(jmp_offset)) { if (jmp_padding) { /* To keep the jmp_offset valid, the extra bytes are * padded before the jump insn, so we subtract the * 2 bytes of jmp_cond insn from INSN_SZ_DIFF. * * If the previous pass already emits an imm8 * jmp_cond, then this BPF insn won't shrink, so * "nops" is 0. * * On the other hand, if the previous pass emits an * imm32 jmp_cond, the extra 4 bytes(*) is padded to * keep the image from shrinking further. * * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond * is 2 bytes, so the size difference is 4 bytes. */ nops = INSN_SZ_DIFF - 2; if (nops != 0 && nops != 4) { pr_err("unexpected jmp_cond padding: %d bytes\n", nops); return -EFAULT; } emit_nops(&prog, nops); } EMIT2(jmp_cond, jmp_offset); } else if (is_simm32(jmp_offset)) { EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset); } else { pr_err("cond_jmp gen bug %llx\n", jmp_offset); return -EFAULT; } break; case BPF_JMP | BPF_JA: case BPF_JMP32 | BPF_JA: if (BPF_CLASS(insn->code) == BPF_JMP) { if (insn->off == -1) /* -1 jmp instructions will always jump * backwards two bytes. Explicitly handling * this case avoids wasting too many passes * when there are long sequences of replaced * dead code. */ jmp_offset = -2; else jmp_offset = addrs[i + insn->off] - addrs[i]; } else { if (insn->imm == -1) jmp_offset = -2; else jmp_offset = addrs[i + insn->imm] - addrs[i]; } if (!jmp_offset) { /* * If jmp_padding is enabled, the extra nops will * be inserted. Otherwise, optimize out nop jumps. */ if (jmp_padding) { /* There are 3 possible conditions. * (1) This BPF_JA is already optimized out in * the previous run, so there is no need * to pad any extra byte (0 byte). * (2) The previous pass emits an imm8 jmp, * so we pad 2 bytes to match the previous * insn size. * (3) Similarly, the previous pass emits an * imm32 jmp, and 5 bytes is padded. */ nops = INSN_SZ_DIFF; if (nops != 0 && nops != 2 && nops != 5) { pr_err("unexpected nop jump padding: %d bytes\n", nops); return -EFAULT; } emit_nops(&prog, nops); } break; } emit_jmp: if (is_imm8(jmp_offset)) { if (jmp_padding) { /* To avoid breaking jmp_offset, the extra bytes * are padded before the actual jmp insn, so * 2 bytes is subtracted from INSN_SZ_DIFF. * * If the previous pass already emits an imm8 * jmp, there is nothing to pad (0 byte). * * If it emits an imm32 jmp (5 bytes) previously * and now an imm8 jmp (2 bytes), then we pad * (5 - 2 = 3) bytes to stop the image from * shrinking further. */ nops = INSN_SZ_DIFF - 2; if (nops != 0 && nops != 3) { pr_err("unexpected jump padding: %d bytes\n", nops); return -EFAULT; } emit_nops(&prog, INSN_SZ_DIFF - 2); } EMIT2(0xEB, jmp_offset); } else if (is_simm32(jmp_offset)) { EMIT1_off32(0xE9, jmp_offset); } else { pr_err("jmp gen bug %llx\n", jmp_offset); return -EFAULT; } break; case BPF_JMP | BPF_EXIT: if (seen_exit) { jmp_offset = ctx->cleanup_addr - addrs[i]; goto emit_jmp; } seen_exit = true; /* Update cleanup_addr */ ctx->cleanup_addr = proglen; if (bpf_prog->aux->exception_boundary) { pop_callee_regs(&prog, all_callee_regs_used); pop_r12(&prog); } else { pop_callee_regs(&prog, callee_regs_used); if (arena_vm_start) pop_r12(&prog); } EMIT1(0xC9); /* leave */ emit_return(&prog, image + addrs[i - 1] + (prog - temp)); break; default: /* * By design x86-64 JIT should support all BPF instructions. * This error will be seen if new instruction was added * to the interpreter, but not to the JIT, or if there is * junk in bpf_prog. */ pr_err("bpf_jit: unknown opcode %02x\n", insn->code); return -EINVAL; } ilen = prog - temp; if (ilen > BPF_MAX_INSN_SIZE) { pr_err("bpf_jit: fatal insn size error\n"); return -EFAULT; } if (image) { /* * When populating the image, assert that: * * i) We do not write beyond the allocated space, and * ii) addrs[i] did not change from the prior run, in order * to validate assumptions made for computing branch * displacements. */ if (unlikely(proglen + ilen > oldproglen || proglen + ilen != addrs[i])) { pr_err("bpf_jit: fatal error\n"); return -EFAULT; } memcpy(rw_image + proglen, temp, ilen); } proglen += ilen; addrs[i] = proglen; prog = temp; } if (image && excnt != bpf_prog->aux->num_exentries) { pr_err("extable is not populated\n"); return -EFAULT; } return proglen; } static void clean_stack_garbage(const struct btf_func_model *m, u8 **pprog, int nr_stack_slots, int stack_size) { int arg_size, off; u8 *prog; /* Generally speaking, the compiler will pass the arguments * on-stack with "push" instruction, which will take 8-byte * on the stack. In this case, there won't be garbage values * while we copy the arguments from origin stack frame to current * in BPF_DW. * * However, sometimes the compiler will only allocate 4-byte on * the stack for the arguments. For now, this case will only * happen if there is only one argument on-stack and its size * not more than 4 byte. In this case, there will be garbage * values on the upper 4-byte where we store the argument on * current stack frame. * * arguments on origin stack: * * stack_arg_1(4-byte) xxx(4-byte) * * what we copy: * * stack_arg_1(8-byte): stack_arg_1(origin) xxx * * and the xxx is the garbage values which we should clean here. */ if (nr_stack_slots != 1) return; /* the size of the last argument */ arg_size = m->arg_size[m->nr_args - 1]; if (arg_size <= 4) { off = -(stack_size - 4); prog = *pprog; /* mov DWORD PTR [rbp + off], 0 */ if (!is_imm8(off)) EMIT2_off32(0xC7, 0x85, off); else EMIT3(0xC7, 0x45, off); EMIT(0, 4); *pprog = prog; } } /* get the count of the regs that are used to pass arguments */ static int get_nr_used_regs(const struct btf_func_model *m) { int i, arg_regs, nr_used_regs = 0; for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) { arg_regs = (m->arg_size[i] + 7) / 8; if (nr_used_regs + arg_regs <= 6) nr_used_regs += arg_regs; if (nr_used_regs >= 6) break; } return nr_used_regs; } static void save_args(const struct btf_func_model *m, u8 **prog, int stack_size, bool for_call_origin) { int arg_regs, first_off = 0, nr_regs = 0, nr_stack_slots = 0; int i, j; /* Store function arguments to stack. * For a function that accepts two pointers the sequence will be: * mov QWORD PTR [rbp-0x10],rdi * mov QWORD PTR [rbp-0x8],rsi */ for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) { arg_regs = (m->arg_size[i] + 7) / 8; /* According to the research of Yonghong, struct members * should be all in register or all on the stack. * Meanwhile, the compiler will pass the argument on regs * if the remaining regs can hold the argument. * * Disorder of the args can happen. For example: * * struct foo_struct { * long a; * int b; * }; * int foo(char, char, char, char, char, struct foo_struct, * char); * * the arg1-5,arg7 will be passed by regs, and arg6 will * by stack. */ if (nr_regs + arg_regs > 6) { /* copy function arguments from origin stack frame * into current stack frame. * * The starting address of the arguments on-stack * is: * rbp + 8(push rbp) + * 8(return addr of origin call) + * 8(return addr of the caller) * which means: rbp + 24 */ for (j = 0; j < arg_regs; j++) { emit_ldx(prog, BPF_DW, BPF_REG_0, BPF_REG_FP, nr_stack_slots * 8 + 0x18); emit_stx(prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -stack_size); if (!nr_stack_slots) first_off = stack_size; stack_size -= 8; nr_stack_slots++; } } else { /* Only copy the arguments on-stack to current * 'stack_size' and ignore the regs, used to * prepare the arguments on-stack for origin call. */ if (for_call_origin) { nr_regs += arg_regs; continue; } /* copy the arguments from regs into stack */ for (j = 0; j < arg_regs; j++) { emit_stx(prog, BPF_DW, BPF_REG_FP, nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs, -stack_size); stack_size -= 8; nr_regs++; } } } clean_stack_garbage(m, prog, nr_stack_slots, first_off); } static void restore_regs(const struct btf_func_model *m, u8 **prog, int stack_size) { int i, j, arg_regs, nr_regs = 0; /* Restore function arguments from stack. * For a function that accepts two pointers the sequence will be: * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10] * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8] * * The logic here is similar to what we do in save_args() */ for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) { arg_regs = (m->arg_size[i] + 7) / 8; if (nr_regs + arg_regs <= 6) { for (j = 0; j < arg_regs; j++) { emit_ldx(prog, BPF_DW, nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs, BPF_REG_FP, -stack_size); stack_size -= 8; nr_regs++; } } else { stack_size -= 8 * arg_regs; } if (nr_regs >= 6) break; } } static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog, struct bpf_tramp_link *l, int stack_size, int run_ctx_off, bool save_ret, void *image, void *rw_image) { u8 *prog = *pprog; u8 *jmp_insn; int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie); struct bpf_prog *p = l->link.prog; u64 cookie = l->cookie; /* mov rdi, cookie */ emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie); /* Prepare struct bpf_tramp_run_ctx. * * bpf_tramp_run_ctx is already preserved by * arch_prepare_bpf_trampoline(). * * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi */ emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off); /* arg1: mov rdi, progs[i] */ emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p); /* arg2: lea rsi, [rbp - ctx_cookie_off] */ if (!is_imm8(-run_ctx_off)) EMIT3_off32(0x48, 0x8D, 0xB5, -run_ctx_off); else EMIT4(0x48, 0x8D, 0x75, -run_ctx_off); if (emit_rsb_call(&prog, bpf_trampoline_enter(p), image + (prog - (u8 *)rw_image))) return -EINVAL; /* remember prog start time returned by __bpf_prog_enter */ emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0); /* if (__bpf_prog_enter*(prog) == 0) * goto skip_exec_of_prog; */ EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */ /* emit 2 nops that will be replaced with JE insn */ jmp_insn = prog; emit_nops(&prog, 2); /* arg1: lea rdi, [rbp - stack_size] */ if (!is_imm8(-stack_size)) EMIT3_off32(0x48, 0x8D, 0xBD, -stack_size); else EMIT4(0x48, 0x8D, 0x7D, -stack_size); /* arg2: progs[i]->insnsi for interpreter */ if (!p->jited) emit_mov_imm64(&prog, BPF_REG_2, (long) p->insnsi >> 32, (u32) (long) p->insnsi); /* call JITed bpf program or interpreter */ if (emit_rsb_call(&prog, p->bpf_func, image + (prog - (u8 *)rw_image))) return -EINVAL; /* * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return * of the previous call which is then passed on the stack to * the next BPF program. * * BPF_TRAMP_FENTRY trampoline may need to return the return * value of BPF_PROG_TYPE_STRUCT_OPS prog. */ if (save_ret) emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8); /* replace 2 nops with JE insn, since jmp target is known */ jmp_insn[0] = X86_JE; jmp_insn[1] = prog - jmp_insn - 2; /* arg1: mov rdi, progs[i] */ emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p); /* arg2: mov rsi, rbx <- start time in nsec */ emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6); /* arg3: lea rdx, [rbp - run_ctx_off] */ if (!is_imm8(-run_ctx_off)) EMIT3_off32(0x48, 0x8D, 0x95, -run_ctx_off); else EMIT4(0x48, 0x8D, 0x55, -run_ctx_off); if (emit_rsb_call(&prog, bpf_trampoline_exit(p), image + (prog - (u8 *)rw_image))) return -EINVAL; *pprog = prog; return 0; } static void emit_align(u8 **pprog, u32 align) { u8 *target, *prog = *pprog; target = PTR_ALIGN(prog, align); if (target != prog) emit_nops(&prog, target - prog); *pprog = prog; } static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond) { u8 *prog = *pprog; s64 offset; offset = func - (ip + 2 + 4); if (!is_simm32(offset)) { pr_err("Target %p is out of range\n", func); return -EINVAL; } EMIT2_off32(0x0F, jmp_cond + 0x10, offset); *pprog = prog; return 0; } static int invoke_bpf(const struct btf_func_model *m, u8 **pprog, struct bpf_tramp_links *tl, int stack_size, int run_ctx_off, bool save_ret, void *image, void *rw_image) { int i; u8 *prog = *pprog; for (i = 0; i < tl->nr_links; i++) { if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, save_ret, image, rw_image)) return -EINVAL; } *pprog = prog; return 0; } static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog, struct bpf_tramp_links *tl, int stack_size, int run_ctx_off, u8 **branches, void *image, void *rw_image) { u8 *prog = *pprog; int i; /* The first fmod_ret program will receive a garbage return value. * Set this to 0 to avoid confusing the program. */ emit_mov_imm32(&prog, false, BPF_REG_0, 0); emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8); for (i = 0; i < tl->nr_links; i++) { if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true, image, rw_image)) return -EINVAL; /* mod_ret prog stored return value into [rbp - 8]. Emit: * if (*(u64 *)(rbp - 8) != 0) * goto do_fexit; */ /* cmp QWORD PTR [rbp - 0x8], 0x0 */ EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00); /* Save the location of the branch and Generate 6 nops * (4 bytes for an offset and 2 bytes for the jump) These nops * are replaced with a conditional jump once do_fexit (i.e. the * start of the fexit invocation) is finalized. */ branches[i] = prog; emit_nops(&prog, 4 + 2); } *pprog = prog; return 0; } /* Example: * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev); * its 'struct btf_func_model' will be nr_args=2 * The assembly code when eth_type_trans is executing after trampoline: * * push rbp * mov rbp, rsp * sub rsp, 16 // space for skb and dev * push rbx // temp regs to pass start time * mov qword ptr [rbp - 16], rdi // save skb pointer to stack * mov qword ptr [rbp - 8], rsi // save dev pointer to stack * call __bpf_prog_enter // rcu_read_lock and preempt_disable * mov rbx, rax // remember start time in bpf stats are enabled * lea rdi, [rbp - 16] // R1==ctx of bpf prog * call addr_of_jited_FENTRY_prog * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off * mov rsi, rbx // prog start time * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math * mov rdi, qword ptr [rbp - 16] // restore skb pointer from stack * mov rsi, qword ptr [rbp - 8] // restore dev pointer from stack * pop rbx * leave * ret * * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be * replaced with 'call generated_bpf_trampoline'. When it returns * eth_type_trans will continue executing with original skb and dev pointers. * * The assembly code when eth_type_trans is called from trampoline: * * push rbp * mov rbp, rsp * sub rsp, 24 // space for skb, dev, return value * push rbx // temp regs to pass start time * mov qword ptr [rbp - 24], rdi // save skb pointer to stack * mov qword ptr [rbp - 16], rsi // save dev pointer to stack * call __bpf_prog_enter // rcu_read_lock and preempt_disable * mov rbx, rax // remember start time if bpf stats are enabled * lea rdi, [rbp - 24] // R1==ctx of bpf prog * call addr_of_jited_FENTRY_prog // bpf prog can access skb and dev * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off * mov rsi, rbx // prog start time * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math * mov rdi, qword ptr [rbp - 24] // restore skb pointer from stack * mov rsi, qword ptr [rbp - 16] // restore dev pointer from stack * call eth_type_trans+5 // execute body of eth_type_trans * mov qword ptr [rbp - 8], rax // save return value * call __bpf_prog_enter // rcu_read_lock and preempt_disable * mov rbx, rax // remember start time in bpf stats are enabled * lea rdi, [rbp - 24] // R1==ctx of bpf prog * call addr_of_jited_FEXIT_prog // bpf prog can access skb, dev, return value * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off * mov rsi, rbx // prog start time * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math * mov rax, qword ptr [rbp - 8] // restore eth_type_trans's return value * pop rbx * leave * add rsp, 8 // skip eth_type_trans's frame * ret // return to its caller */ static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *rw_image, void *rw_image_end, void *image, const struct btf_func_model *m, u32 flags, struct bpf_tramp_links *tlinks, void *func_addr) { int i, ret, nr_regs = m->nr_args, stack_size = 0; int regs_off, nregs_off, ip_off, run_ctx_off, arg_stack_off, rbx_off; struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY]; struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT]; struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN]; void *orig_call = func_addr; u8 **branches = NULL; u8 *prog; bool save_ret; /* * F_INDIRECT is only compatible with F_RET_FENTRY_RET, it is * explicitly incompatible with F_CALL_ORIG | F_SKIP_FRAME | F_IP_ARG * because @func_addr. */ WARN_ON_ONCE((flags & BPF_TRAMP_F_INDIRECT) && (flags & ~(BPF_TRAMP_F_INDIRECT | BPF_TRAMP_F_RET_FENTRY_RET))); /* extra registers for struct arguments */ for (i = 0; i < m->nr_args; i++) { if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG) nr_regs += (m->arg_size[i] + 7) / 8 - 1; } /* x86-64 supports up to MAX_BPF_FUNC_ARGS arguments. 1-6 * are passed through regs, the remains are through stack. */ if (nr_regs > MAX_BPF_FUNC_ARGS) return -ENOTSUPP; /* Generated trampoline stack layout: * * RBP + 8 [ return address ] * RBP + 0 [ RBP ] * * RBP - 8 [ return value ] BPF_TRAMP_F_CALL_ORIG or * BPF_TRAMP_F_RET_FENTRY_RET flags * * [ reg_argN ] always * [ ... ] * RBP - regs_off [ reg_arg1 ] program's ctx pointer * * RBP - nregs_off [ regs count ] always * * RBP - ip_off [ traced function ] BPF_TRAMP_F_IP_ARG flag * * RBP - rbx_off [ rbx value ] always * * RBP - run_ctx_off [ bpf_tramp_run_ctx ] * * [ stack_argN ] BPF_TRAMP_F_CALL_ORIG * [ ... ] * [ stack_arg2 ] * RBP - arg_stack_off [ stack_arg1 ] * RSP [ tail_call_cnt ] BPF_TRAMP_F_TAIL_CALL_CTX */ /* room for return value of orig_call or fentry prog */ save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET); if (save_ret) stack_size += 8; stack_size += nr_regs * 8; regs_off = stack_size; /* regs count */ stack_size += 8; nregs_off = stack_size; if (flags & BPF_TRAMP_F_IP_ARG) stack_size += 8; /* room for IP address argument */ ip_off = stack_size; stack_size += 8; rbx_off = stack_size; stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7; run_ctx_off = stack_size; if (nr_regs > 6 && (flags & BPF_TRAMP_F_CALL_ORIG)) { /* the space that used to pass arguments on-stack */ stack_size += (nr_regs - get_nr_used_regs(m)) * 8; /* make sure the stack pointer is 16-byte aligned if we * need pass arguments on stack, which means * [stack_size + 8(rbp) + 8(rip) + 8(origin rip)] * should be 16-byte aligned. Following code depend on * that stack_size is already 8-byte aligned. */ stack_size += (stack_size % 16) ? 0 : 8; } arg_stack_off = stack_size; if (flags & BPF_TRAMP_F_SKIP_FRAME) { /* skip patched call instruction and point orig_call to actual * body of the kernel function. */ if (is_endbr(*(u32 *)orig_call)) orig_call += ENDBR_INSN_SIZE; orig_call += X86_PATCH_SIZE; } prog = rw_image; if (flags & BPF_TRAMP_F_INDIRECT) { /* * Indirect call for bpf_struct_ops */ emit_cfi(&prog, cfi_get_func_hash(func_addr)); } else { /* * Direct-call fentry stub, as such it needs accounting for the * __fentry__ call. */ x86_call_depth_emit_accounting(&prog, NULL, image); } EMIT1(0x55); /* push rbp */ EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */ if (!is_imm8(stack_size)) { /* sub rsp, stack_size */ EMIT3_off32(0x48, 0x81, 0xEC, stack_size); } else { /* sub rsp, stack_size */ EMIT4(0x48, 0x83, 0xEC, stack_size); } if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) EMIT1(0x50); /* push rax */ /* mov QWORD PTR [rbp - rbx_off], rbx */ emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_6, -rbx_off); /* Store number of argument registers of the traced function: * mov rax, nr_regs * mov QWORD PTR [rbp - nregs_off], rax */ emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_regs); emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -nregs_off); if (flags & BPF_TRAMP_F_IP_ARG) { /* Store IP address of the traced function: * movabsq rax, func_addr * mov QWORD PTR [rbp - ip_off], rax */ emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr); emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off); } save_args(m, &prog, regs_off, false); if (flags & BPF_TRAMP_F_CALL_ORIG) { /* arg1: mov rdi, im */ emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im); if (emit_rsb_call(&prog, __bpf_tramp_enter, image + (prog - (u8 *)rw_image))) { ret = -EINVAL; goto cleanup; } } if (fentry->nr_links) { if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off, flags & BPF_TRAMP_F_RET_FENTRY_RET, image, rw_image)) return -EINVAL; } if (fmod_ret->nr_links) { branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *), GFP_KERNEL); if (!branches) return -ENOMEM; if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off, run_ctx_off, branches, image, rw_image)) { ret = -EINVAL; goto cleanup; } } if (flags & BPF_TRAMP_F_CALL_ORIG) { restore_regs(m, &prog, regs_off); save_args(m, &prog, arg_stack_off, true); if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) { /* Before calling the original function, restore the * tail_call_cnt from stack to rax. */ RESTORE_TAIL_CALL_CNT(stack_size); } if (flags & BPF_TRAMP_F_ORIG_STACK) { emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, 8); EMIT2(0xff, 0xd3); /* call *rbx */ } else { /* call original function */ if (emit_rsb_call(&prog, orig_call, image + (prog - (u8 *)rw_image))) { ret = -EINVAL; goto cleanup; } } /* remember return value in a stack for bpf prog to access */ emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8); im->ip_after_call = image + (prog - (u8 *)rw_image); emit_nops(&prog, X86_PATCH_SIZE); } if (fmod_ret->nr_links) { /* From Intel 64 and IA-32 Architectures Optimization * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler * Coding Rule 11: All branch targets should be 16-byte * aligned. */ emit_align(&prog, 16); /* Update the branches saved in invoke_bpf_mod_ret with the * aligned address of do_fexit. */ for (i = 0; i < fmod_ret->nr_links; i++) { emit_cond_near_jump(&branches[i], image + (prog - (u8 *)rw_image), image + (branches[i] - (u8 *)rw_image), X86_JNE); } } if (fexit->nr_links) { if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off, false, image, rw_image)) { ret = -EINVAL; goto cleanup; } } if (flags & BPF_TRAMP_F_RESTORE_REGS) restore_regs(m, &prog, regs_off); /* This needs to be done regardless. If there were fmod_ret programs, * the return value is only updated on the stack and still needs to be * restored to R0. */ if (flags & BPF_TRAMP_F_CALL_ORIG) { im->ip_epilogue = image + (prog - (u8 *)rw_image); /* arg1: mov rdi, im */ emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im); if (emit_rsb_call(&prog, __bpf_tramp_exit, image + (prog - (u8 *)rw_image))) { ret = -EINVAL; goto cleanup; } } else if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) { /* Before running the original function, restore the * tail_call_cnt from stack to rax. */ RESTORE_TAIL_CALL_CNT(stack_size); } /* restore return value of orig_call or fentry prog back into RAX */ if (save_ret) emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8); emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, -rbx_off); EMIT1(0xC9); /* leave */ if (flags & BPF_TRAMP_F_SKIP_FRAME) { /* skip our return address and return to parent */ EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */ } emit_return(&prog, image + (prog - (u8 *)rw_image)); /* Make sure the trampoline generation logic doesn't overflow */ if (WARN_ON_ONCE(prog > (u8 *)rw_image_end - BPF_INSN_SAFETY)) { ret = -EFAULT; goto cleanup; } ret = prog - (u8 *)rw_image + BPF_INSN_SAFETY; cleanup: kfree(branches); return ret; } void *arch_alloc_bpf_trampoline(unsigned int size) { return bpf_prog_pack_alloc(size, jit_fill_hole); } void arch_free_bpf_trampoline(void *image, unsigned int size) { bpf_prog_pack_free(image, size); } int arch_protect_bpf_trampoline(void *image, unsigned int size) { return 0; } int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end, const struct btf_func_model *m, u32 flags, struct bpf_tramp_links *tlinks, void *func_addr) { void *rw_image, *tmp; int ret; u32 size = image_end - image; /* rw_image doesn't need to be in module memory range, so we can * use kvmalloc. */ rw_image = kvmalloc(size, GFP_KERNEL); if (!rw_image) return -ENOMEM; ret = __arch_prepare_bpf_trampoline(im, rw_image, rw_image + size, image, m, flags, tlinks, func_addr); if (ret < 0) goto out; tmp = bpf_arch_text_copy(image, rw_image, size); if (IS_ERR(tmp)) ret = PTR_ERR(tmp); out: kvfree(rw_image); return ret; } int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags, struct bpf_tramp_links *tlinks, void *func_addr) { struct bpf_tramp_image im; void *image; int ret; /* Allocate a temporary buffer for __arch_prepare_bpf_trampoline(). * This will NOT cause fragmentation in direct map, as we do not * call set_memory_*() on this buffer. * * We cannot use kvmalloc here, because we need image to be in * module memory range. */ image = bpf_jit_alloc_exec(PAGE_SIZE); if (!image) return -ENOMEM; ret = __arch_prepare_bpf_trampoline(&im, image, image + PAGE_SIZE, image, m, flags, tlinks, func_addr); bpf_jit_free_exec(image); return ret; } static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf) { u8 *jg_reloc, *prog = *pprog; int pivot, err, jg_bytes = 1; s64 jg_offset; if (a == b) { /* Leaf node of recursion, i.e. not a range of indices * anymore. */ EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */ if (!is_simm32(progs[a])) return -1; EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a]); err = emit_cond_near_jump(&prog, /* je func */ (void *)progs[a], image + (prog - buf), X86_JE); if (err) return err; emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf)); *pprog = prog; return 0; } /* Not a leaf node, so we pivot, and recursively descend into * the lower and upper ranges. */ pivot = (b - a) / 2; EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */ if (!is_simm32(progs[a + pivot])) return -1; EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]); if (pivot > 2) { /* jg upper_part */ /* Require near jump. */ jg_bytes = 4; EMIT2_off32(0x0F, X86_JG + 0x10, 0); } else { EMIT2(X86_JG, 0); } jg_reloc = prog; err = emit_bpf_dispatcher(&prog, a, a + pivot, /* emit lower_part */ progs, image, buf); if (err) return err; /* From Intel 64 and IA-32 Architectures Optimization * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler * Coding Rule 11: All branch targets should be 16-byte * aligned. */ emit_align(&prog, 16); jg_offset = prog - jg_reloc; emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes); err = emit_bpf_dispatcher(&prog, a + pivot + 1, /* emit upper_part */ b, progs, image, buf); if (err) return err; *pprog = prog; return 0; } static int cmp_ips(const void *a, const void *b) { const s64 *ipa = a; const s64 *ipb = b; if (*ipa > *ipb) return 1; if (*ipa < *ipb) return -1; return 0; } int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs) { u8 *prog = buf; sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL); return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf); } struct x64_jit_data { struct bpf_binary_header *rw_header; struct bpf_binary_header *header; int *addrs; u8 *image; int proglen; struct jit_context ctx; }; #define MAX_PASSES 20 #define PADDING_PASSES (MAX_PASSES - 5) struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog) { struct bpf_binary_header *rw_header = NULL; struct bpf_binary_header *header = NULL; struct bpf_prog *tmp, *orig_prog = prog; struct x64_jit_data *jit_data; int proglen, oldproglen = 0; struct jit_context ctx = {}; bool tmp_blinded = false; bool extra_pass = false; bool padding = false; u8 *rw_image = NULL; u8 *image = NULL; int *addrs; int pass; int i; if (!prog->jit_requested) return orig_prog; tmp = bpf_jit_blind_constants(prog); /* * If blinding was requested and we failed during blinding, * we must fall back to the interpreter. */ if (IS_ERR(tmp)) return orig_prog; if (tmp != prog) { tmp_blinded = true; prog = tmp; } jit_data = prog->aux->jit_data; if (!jit_data) { jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL); if (!jit_data) { prog = orig_prog; goto out; } prog->aux->jit_data = jit_data; } addrs = jit_data->addrs; if (addrs) { ctx = jit_data->ctx; oldproglen = jit_data->proglen; image = jit_data->image; header = jit_data->header; rw_header = jit_data->rw_header; rw_image = (void *)rw_header + ((void *)image - (void *)header); extra_pass = true; padding = true; goto skip_init_addrs; } addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL); if (!addrs) { prog = orig_prog; goto out_addrs; } /* * Before first pass, make a rough estimation of addrs[] * each BPF instruction is translated to less than 64 bytes */ for (proglen = 0, i = 0; i <= prog->len; i++) { proglen += 64; addrs[i] = proglen; } ctx.cleanup_addr = proglen; skip_init_addrs: /* * JITed image shrinks with every pass and the loop iterates * until the image stops shrinking. Very large BPF programs * may converge on the last pass. In such case do one more * pass to emit the final image. */ for (pass = 0; pass < MAX_PASSES || image; pass++) { if (!padding && pass >= PADDING_PASSES) padding = true; proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding); if (proglen <= 0) { out_image: image = NULL; if (header) { bpf_arch_text_copy(&header->size, &rw_header->size, sizeof(rw_header->size)); bpf_jit_binary_pack_free(header, rw_header); } /* Fall back to interpreter mode */ prog = orig_prog; if (extra_pass) { prog->bpf_func = NULL; prog->jited = 0; prog->jited_len = 0; } goto out_addrs; } if (image) { if (proglen != oldproglen) { pr_err("bpf_jit: proglen=%d != oldproglen=%d\n", proglen, oldproglen); goto out_image; } break; } if (proglen == oldproglen) { /* * The number of entries in extable is the number of BPF_LDX * insns that access kernel memory via "pointer to BTF type". * The verifier changed their opcode from LDX|MEM|size * to LDX|PROBE_MEM|size to make JITing easier. */ u32 align = __alignof__(struct exception_table_entry); u32 extable_size = prog->aux->num_exentries * sizeof(struct exception_table_entry); /* allocate module memory for x86 insns and extable */ header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size, &image, align, &rw_header, &rw_image, jit_fill_hole); if (!header) { prog = orig_prog; goto out_addrs; } prog->aux->extable = (void *) image + roundup(proglen, align); } oldproglen = proglen; cond_resched(); } if (bpf_jit_enable > 1) bpf_jit_dump(prog->len, proglen, pass + 1, rw_image); if (image) { if (!prog->is_func || extra_pass) { /* * bpf_jit_binary_pack_finalize fails in two scenarios: * 1) header is not pointing to proper module memory; * 2) the arch doesn't support bpf_arch_text_copy(). * * Both cases are serious bugs and justify WARN_ON. */ if (WARN_ON(bpf_jit_binary_pack_finalize(header, rw_header))) { /* header has been freed */ header = NULL; goto out_image; } bpf_tail_call_direct_fixup(prog); } else { jit_data->addrs = addrs; jit_data->ctx = ctx; jit_data->proglen = proglen; jit_data->image = image; jit_data->header = header; jit_data->rw_header = rw_header; } /* * ctx.prog_offset is used when CFI preambles put code *before* * the function. See emit_cfi(). For FineIBT specifically this code * can also be executed and bpf_prog_kallsyms_add() will * generate an additional symbol to cover this, hence also * decrement proglen. */ prog->bpf_func = (void *)image + cfi_get_offset(); prog->jited = 1; prog->jited_len = proglen - cfi_get_offset(); } else { prog = orig_prog; } if (!image || !prog->is_func || extra_pass) { if (image) bpf_prog_fill_jited_linfo(prog, addrs + 1); out_addrs: kvfree(addrs); kfree(jit_data); prog->aux->jit_data = NULL; } out: if (tmp_blinded) bpf_jit_prog_release_other(prog, prog == orig_prog ? tmp : orig_prog); return prog; } bool bpf_jit_supports_kfunc_call(void) { return true; } void *bpf_arch_text_copy(void *dst, void *src, size_t len) { if (text_poke_copy(dst, src, len) == NULL) return ERR_PTR(-EINVAL); return dst; } /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */ bool bpf_jit_supports_subprog_tailcalls(void) { return true; } bool bpf_jit_supports_percpu_insn(void) { return true; } void bpf_jit_free(struct bpf_prog *prog) { if (prog->jited) { struct x64_jit_data *jit_data = prog->aux->jit_data; struct bpf_binary_header *hdr; /* * If we fail the final pass of JIT (from jit_subprogs), * the program may not be finalized yet. Call finalize here * before freeing it. */ if (jit_data) { bpf_jit_binary_pack_finalize(jit_data->header, jit_data->rw_header); kvfree(jit_data->addrs); kfree(jit_data); } prog->bpf_func = (void *)prog->bpf_func - cfi_get_offset(); hdr = bpf_jit_binary_pack_hdr(prog); bpf_jit_binary_pack_free(hdr, NULL); WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog)); } bpf_prog_unlock_free(prog); } bool bpf_jit_supports_exceptions(void) { /* We unwind through both kernel frames (starting from within bpf_throw * call) and BPF frames. Therefore we require ORC unwinder to be enabled * to walk kernel frames and reach BPF frames in the stack trace. */ return IS_ENABLED(CONFIG_UNWINDER_ORC); } void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie) { #if defined(CONFIG_UNWINDER_ORC) struct unwind_state state; unsigned long addr; for (unwind_start(&state, current, NULL, NULL); !unwind_done(&state); unwind_next_frame(&state)) { addr = unwind_get_return_address(&state); if (!addr || !consume_fn(cookie, (u64)addr, (u64)state.sp, (u64)state.bp)) break; } return; #endif WARN(1, "verification of programs using bpf_throw should have failed\n"); } void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke, struct bpf_prog *new, struct bpf_prog *old) { u8 *old_addr, *new_addr, *old_bypass_addr; int ret; old_bypass_addr = old ? NULL : poke->bypass_addr; old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL; new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL; /* * On program loading or teardown, the program's kallsym entry * might not be in place, so we use __bpf_arch_text_poke to skip * the kallsyms check. */ if (new) { ret = __bpf_arch_text_poke(poke->tailcall_target, BPF_MOD_JUMP, old_addr, new_addr); BUG_ON(ret < 0); if (!old) { ret = __bpf_arch_text_poke(poke->tailcall_bypass, BPF_MOD_JUMP, poke->bypass_addr, NULL); BUG_ON(ret < 0); } } else { ret = __bpf_arch_text_poke(poke->tailcall_bypass, BPF_MOD_JUMP, old_bypass_addr, poke->bypass_addr); BUG_ON(ret < 0); /* let other CPUs finish the execution of program * so that it will not possible to expose them * to invalid nop, stack unwind, nop state */ if (!ret) synchronize_rcu(); ret = __bpf_arch_text_poke(poke->tailcall_target, BPF_MOD_JUMP, old_addr, NULL); BUG_ON(ret < 0); } } bool bpf_jit_supports_arena(void) { return true; } bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena) { if (!in_arena) return true; switch (insn->code) { case BPF_STX | BPF_ATOMIC | BPF_W: case BPF_STX | BPF_ATOMIC | BPF_DW: if (insn->imm == (BPF_AND | BPF_FETCH) || insn->imm == (BPF_OR | BPF_FETCH) || insn->imm == (BPF_XOR | BPF_FETCH)) return false; } return true; } bool bpf_jit_supports_ptr_xchg(void) { return true; } /* x86-64 JIT emits its own code to filter user addresses so return 0 here */ u64 bpf_arch_uaddress_limit(void) { return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1