Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Andres Salomon | 1292 | 97.14% | 2 | 14.29% |
Andi Kleen | 13 | 0.98% | 1 | 7.14% |
Jan Beulich | 11 | 0.83% | 2 | 14.29% |
Linus Torvalds (pre-git) | 6 | 0.45% | 4 | 28.57% |
Alexey Dobriyan | 2 | 0.15% | 1 | 7.14% |
Björn Helgaas | 2 | 0.15% | 1 | 7.14% |
Thomas Gleixner | 2 | 0.15% | 1 | 7.14% |
Jaswinder Singh Rajput | 1 | 0.08% | 1 | 7.14% |
Daniel Drake | 1 | 0.08% | 1 | 7.14% |
Total | 1330 | 14 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Low-level PCI config space access for OLPC systems who lack the VSA * PCI virtualization software. * * Copyright © 2006 Advanced Micro Devices, Inc. * * The AMD Geode chipset (ie: GX2 processor, cs5536 I/O companion device) * has some I/O functions (display, southbridge, sound, USB HCIs, etc) * that more or less behave like PCI devices, but the hardware doesn't * directly implement the PCI configuration space headers. AMD provides * "VSA" (Virtual System Architecture) software that emulates PCI config * space for these devices, by trapping I/O accesses to PCI config register * (CF8/CFC) and running some code in System Management Mode interrupt state. * On the OLPC platform, we don't want to use that VSA code because * (a) it slows down suspend/resume, and (b) recompiling it requires special * compilers that are hard to get. So instead of letting the complex VSA * code simulate the PCI config registers for the on-chip devices, we * just simulate them the easy way, by inserting the code into the * pci_write_config and pci_read_config path. Most of the config registers * are read-only anyway, so the bulk of the simulation is just table lookup. */ #include <linux/pci.h> #include <linux/init.h> #include <asm/olpc.h> #include <asm/geode.h> #include <asm/pci_x86.h> /* * In the tables below, the first two line (8 longwords) are the * size masks that are used when the higher level PCI code determines * the size of the region by writing ~0 to a base address register * and reading back the result. * * The following lines are the values that are read during normal * PCI config access cycles, i.e. not after just having written * ~0 to a base address register. */ static const uint32_t lxnb_hdr[] = { /* dev 1 function 0 - devfn = 8 */ 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x281022, 0x2200005, 0x6000021, 0x80f808, /* AMD Vendor ID */ 0x0, 0x0, 0x0, 0x0, /* No virtual registers, hence no BAR */ 0x0, 0x0, 0x0, 0x28100b, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, }; static const uint32_t gxnb_hdr[] = { /* dev 1 function 0 - devfn = 8 */ 0xfffffffd, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x28100b, 0x2200005, 0x6000021, 0x80f808, /* NSC Vendor ID */ 0xac1d, 0x0, 0x0, 0x0, /* I/O BAR - base of virtual registers */ 0x0, 0x0, 0x0, 0x28100b, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, }; static const uint32_t lxfb_hdr[] = { /* dev 1 function 1 - devfn = 9 */ 0xff000008, 0xffffc000, 0xffffc000, 0xffffc000, 0xffffc000, 0x0, 0x0, 0x0, 0x20811022, 0x2200003, 0x3000000, 0x0, /* AMD Vendor ID */ 0xfd000000, 0xfe000000, 0xfe004000, 0xfe008000, /* FB, GP, VG, DF */ 0xfe00c000, 0x0, 0x0, 0x30100b, /* VIP */ 0x0, 0x0, 0x0, 0x10e, /* INTA, IRQ14 for graphics accel */ 0x0, 0x0, 0x0, 0x0, 0x3d0, 0x3c0, 0xa0000, 0x0, /* VG IO, VG IO, EGA FB, MONO FB */ 0x0, 0x0, 0x0, 0x0, }; static const uint32_t gxfb_hdr[] = { /* dev 1 function 1 - devfn = 9 */ 0xff800008, 0xffffc000, 0xffffc000, 0xffffc000, 0x0, 0x0, 0x0, 0x0, 0x30100b, 0x2200003, 0x3000000, 0x0, /* NSC Vendor ID */ 0xfd000000, 0xfe000000, 0xfe004000, 0xfe008000, /* FB, GP, VG, DF */ 0x0, 0x0, 0x0, 0x30100b, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x3d0, 0x3c0, 0xa0000, 0x0, /* VG IO, VG IO, EGA FB, MONO FB */ 0x0, 0x0, 0x0, 0x0, }; static const uint32_t aes_hdr[] = { /* dev 1 function 2 - devfn = 0xa */ 0xffffc000, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x20821022, 0x2a00006, 0x10100000, 0x8, /* NSC Vendor ID */ 0xfe010000, 0x0, 0x0, 0x0, /* AES registers */ 0x0, 0x0, 0x0, 0x20821022, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, }; static const uint32_t isa_hdr[] = { /* dev f function 0 - devfn = 78 */ 0xfffffff9, 0xffffff01, 0xffffffc1, 0xffffffe1, 0xffffff81, 0xffffffc1, 0x0, 0x0, 0x20901022, 0x2a00049, 0x6010003, 0x802000, 0x18b1, 0x1001, 0x1801, 0x1881, /* SMB-8 GPIO-256 MFGPT-64 IRQ-32 */ 0x1401, 0x1841, 0x0, 0x20901022, /* PMS-128 ACPI-64 */ 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0xaa5b, /* IRQ steering */ 0x0, 0x0, 0x0, 0x0, }; static const uint32_t ac97_hdr[] = { /* dev f function 3 - devfn = 7b */ 0xffffff81, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x20931022, 0x2a00041, 0x4010001, 0x0, 0x1481, 0x0, 0x0, 0x0, /* I/O BAR-128 */ 0x0, 0x0, 0x0, 0x20931022, 0x0, 0x0, 0x0, 0x205, /* IntB, IRQ5 */ 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, }; static const uint32_t ohci_hdr[] = { /* dev f function 4 - devfn = 7c */ 0xfffff000, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x20941022, 0x2300006, 0xc031002, 0x0, 0xfe01a000, 0x0, 0x0, 0x0, /* MEMBAR-1000 */ 0x0, 0x0, 0x0, 0x20941022, 0x0, 0x40, 0x0, 0x40a, /* CapPtr INT-D, IRQA */ 0xc8020001, 0x0, 0x0, 0x0, /* Capabilities - 40 is R/O, 44 is mask 8103 (power control) */ 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, }; static const uint32_t ehci_hdr[] = { /* dev f function 4 - devfn = 7d */ 0xfffff000, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x20951022, 0x2300006, 0xc032002, 0x0, 0xfe01b000, 0x0, 0x0, 0x0, /* MEMBAR-1000 */ 0x0, 0x0, 0x0, 0x20951022, 0x0, 0x40, 0x0, 0x40a, /* CapPtr INT-D, IRQA */ 0xc8020001, 0x0, 0x0, 0x0, /* Capabilities - 40 is R/O, 44 is mask 8103 (power control) */ 0x01000001, 0x0, 0x0, 0x0, /* EECP - see EHCI spec section 2.1.7 */ 0x2020, 0x0, 0x0, 0x0, /* (EHCI page 8) 60 SBRN (R/O), 61 FLADJ (R/W), PORTWAKECAP */ }; static uint32_t ff_loc = ~0; static uint32_t zero_loc; static int bar_probing; /* Set after a write of ~0 to a BAR */ static int is_lx; #define NB_SLOT 0x1 /* Northbridge - GX chip - Device 1 */ #define SB_SLOT 0xf /* Southbridge - CS5536 chip - Device F */ static int is_simulated(unsigned int bus, unsigned int devfn) { return (!bus && ((PCI_SLOT(devfn) == NB_SLOT) || (PCI_SLOT(devfn) == SB_SLOT))); } static uint32_t *hdr_addr(const uint32_t *hdr, int reg) { uint32_t addr; /* * This is a little bit tricky. The header maps consist of * 0x20 bytes of size masks, followed by 0x70 bytes of header data. * In the normal case, when not probing a BAR's size, we want * to access the header data, so we add 0x20 to the reg offset, * thus skipping the size mask area. * In the BAR probing case, we want to access the size mask for * the BAR, so we subtract 0x10 (the config header offset for * BAR0), and don't skip the size mask area. */ addr = (uint32_t)hdr + reg + (bar_probing ? -0x10 : 0x20); bar_probing = 0; return (uint32_t *)addr; } static int pci_olpc_read(unsigned int seg, unsigned int bus, unsigned int devfn, int reg, int len, uint32_t *value) { uint32_t *addr; WARN_ON(seg); /* Use the hardware mechanism for non-simulated devices */ if (!is_simulated(bus, devfn)) return pci_direct_conf1.read(seg, bus, devfn, reg, len, value); /* * No device has config registers past 0x70, so we save table space * by not storing entries for the nonexistent registers */ if (reg >= 0x70) addr = &zero_loc; else { switch (devfn) { case 0x8: addr = hdr_addr(is_lx ? lxnb_hdr : gxnb_hdr, reg); break; case 0x9: addr = hdr_addr(is_lx ? lxfb_hdr : gxfb_hdr, reg); break; case 0xa: addr = is_lx ? hdr_addr(aes_hdr, reg) : &ff_loc; break; case 0x78: addr = hdr_addr(isa_hdr, reg); break; case 0x7b: addr = hdr_addr(ac97_hdr, reg); break; case 0x7c: addr = hdr_addr(ohci_hdr, reg); break; case 0x7d: addr = hdr_addr(ehci_hdr, reg); break; default: addr = &ff_loc; break; } } switch (len) { case 1: *value = *(uint8_t *)addr; break; case 2: *value = *(uint16_t *)addr; break; case 4: *value = *addr; break; default: BUG(); } return 0; } static int pci_olpc_write(unsigned int seg, unsigned int bus, unsigned int devfn, int reg, int len, uint32_t value) { WARN_ON(seg); /* Use the hardware mechanism for non-simulated devices */ if (!is_simulated(bus, devfn)) return pci_direct_conf1.write(seg, bus, devfn, reg, len, value); /* XXX we may want to extend this to simulate EHCI power management */ /* * Mostly we just discard writes, but if the write is a size probe * (i.e. writing ~0 to a BAR), we remember it and arrange to return * the appropriate size mask on the next read. This is cheating * to some extent, because it depends on the fact that the next * access after such a write will always be a read to the same BAR. */ if ((reg >= 0x10) && (reg < 0x2c)) { /* write is to a BAR */ if (value == ~0) bar_probing = 1; } else { /* * No warning on writes to ROM BAR, CMD, LATENCY_TIMER, * CACHE_LINE_SIZE, or PM registers. */ if ((reg != PCI_ROM_ADDRESS) && (reg != PCI_COMMAND_MASTER) && (reg != PCI_LATENCY_TIMER) && (reg != PCI_CACHE_LINE_SIZE) && (reg != 0x44)) printk(KERN_WARNING "OLPC PCI: Config write to devfn" " %x reg %x value %x\n", devfn, reg, value); } return 0; } static const struct pci_raw_ops pci_olpc_conf = { .read = pci_olpc_read, .write = pci_olpc_write, }; int __init pci_olpc_init(void) { printk(KERN_INFO "PCI: Using configuration type OLPC XO-1\n"); raw_pci_ops = &pci_olpc_conf; is_lx = is_geode_lx(); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1