Contributors: 50
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Andy Grover |
306 |
13.23% |
4 |
3.45% |
Hanjun Guo |
215 |
9.30% |
8 |
6.90% |
Andi Kleen |
208 |
8.99% |
9 |
7.76% |
Jonathan Cameron |
188 |
8.13% |
2 |
1.72% |
Alison Schofield |
170 |
7.35% |
5 |
4.31% |
Len Brown |
156 |
6.74% |
9 |
7.76% |
Yasunori Goto |
140 |
6.05% |
2 |
1.72% |
Suresh B. Siddha |
101 |
4.37% |
1 |
0.86% |
Tejun Heo |
72 |
3.11% |
7 |
6.03% |
David Rientjes |
65 |
2.81% |
6 |
5.17% |
Alexey Y. Starikovskiy |
64 |
2.77% |
1 |
0.86% |
Lukasz Anaczkowski |
54 |
2.33% |
1 |
0.86% |
Haibo Xu |
49 |
2.12% |
1 |
0.86% |
Björn Helgaas |
47 |
2.03% |
4 |
3.45% |
Dan J Williams |
42 |
1.82% |
4 |
3.45% |
Toshi Kani |
40 |
1.73% |
2 |
1.72% |
David Daney |
38 |
1.64% |
2 |
1.72% |
Keith Busch |
34 |
1.47% |
1 |
0.86% |
Dave Jiang |
34 |
1.47% |
1 |
0.86% |
Kurt Garloff |
33 |
1.43% |
2 |
1.72% |
Yinghai Lu |
32 |
1.38% |
4 |
3.45% |
Tang Chen |
29 |
1.25% |
2 |
1.72% |
Fenghua Yu |
28 |
1.21% |
1 |
0.86% |
Robert Richter |
27 |
1.17% |
4 |
3.45% |
Davidlohr Bueso A |
22 |
0.95% |
2 |
1.72% |
Jack Steiner |
18 |
0.78% |
1 |
0.86% |
Igor Mammedov |
14 |
0.61% |
1 |
0.86% |
Linus Torvalds (pre-git) |
9 |
0.39% |
4 |
3.45% |
Thomas Renninger |
8 |
0.35% |
2 |
1.72% |
Jes Sorensen |
8 |
0.35% |
1 |
0.86% |
Alex Williamson |
8 |
0.35% |
1 |
0.86% |
Yuntao Wang |
7 |
0.30% |
1 |
0.86% |
David Mosberger-Tang |
6 |
0.26% |
3 |
2.59% |
Andrew Morton |
6 |
0.26% |
1 |
0.86% |
David Hildenbrand |
5 |
0.22% |
1 |
0.86% |
Boris Ostrovsky |
4 |
0.17% |
1 |
0.86% |
Chao Fan |
3 |
0.13% |
1 |
0.86% |
Vitaly Kuznetsov |
3 |
0.13% |
1 |
0.86% |
Linda Knippers |
3 |
0.13% |
1 |
0.86% |
Tony Luck |
2 |
0.09% |
1 |
0.86% |
Thomas Gleixner |
2 |
0.09% |
1 |
0.86% |
Aaron Durbin |
2 |
0.09% |
1 |
0.86% |
Jianguo Wu |
2 |
0.09% |
1 |
0.86% |
Cyrill V. Gorcunov |
2 |
0.09% |
1 |
0.86% |
Dave Jones |
2 |
0.09% |
1 |
0.86% |
Lv Zheng |
1 |
0.04% |
1 |
0.86% |
Ganapatrao Kulkarni |
1 |
0.04% |
1 |
0.86% |
Matthew Wilcox |
1 |
0.04% |
1 |
0.86% |
Erich Focht |
1 |
0.04% |
1 |
0.86% |
Ross Zwisler |
1 |
0.04% |
1 |
0.86% |
Total |
2313 |
|
116 |
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* acpi_numa.c - ACPI NUMA support
*
* Copyright (C) 2002 Takayoshi Kochi <t-kochi@bq.jp.nec.com>
*/
#define pr_fmt(fmt) "ACPI: " fmt
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/acpi.h>
#include <linux/memblock.h>
#include <linux/numa.h>
#include <linux/nodemask.h>
#include <linux/topology.h>
static nodemask_t nodes_found_map = NODE_MASK_NONE;
/* maps to convert between proximity domain and logical node ID */
static int pxm_to_node_map[MAX_PXM_DOMAINS]
= { [0 ... MAX_PXM_DOMAINS - 1] = NUMA_NO_NODE };
static int node_to_pxm_map[MAX_NUMNODES]
= { [0 ... MAX_NUMNODES - 1] = PXM_INVAL };
unsigned char acpi_srat_revision __initdata;
static int acpi_numa __initdata;
static int last_real_pxm;
void __init disable_srat(void)
{
acpi_numa = -1;
}
int pxm_to_node(int pxm)
{
if (pxm < 0 || pxm >= MAX_PXM_DOMAINS || numa_off)
return NUMA_NO_NODE;
return pxm_to_node_map[pxm];
}
EXPORT_SYMBOL(pxm_to_node);
int node_to_pxm(int node)
{
if (node < 0)
return PXM_INVAL;
return node_to_pxm_map[node];
}
static void __acpi_map_pxm_to_node(int pxm, int node)
{
if (pxm_to_node_map[pxm] == NUMA_NO_NODE || node < pxm_to_node_map[pxm])
pxm_to_node_map[pxm] = node;
if (node_to_pxm_map[node] == PXM_INVAL || pxm < node_to_pxm_map[node])
node_to_pxm_map[node] = pxm;
}
int acpi_map_pxm_to_node(int pxm)
{
int node;
if (pxm < 0 || pxm >= MAX_PXM_DOMAINS || numa_off)
return NUMA_NO_NODE;
node = pxm_to_node_map[pxm];
if (node == NUMA_NO_NODE) {
node = first_unset_node(nodes_found_map);
if (node >= MAX_NUMNODES)
return NUMA_NO_NODE;
__acpi_map_pxm_to_node(pxm, node);
node_set(node, nodes_found_map);
}
return node;
}
EXPORT_SYMBOL(acpi_map_pxm_to_node);
static void __init
acpi_table_print_srat_entry(struct acpi_subtable_header *header)
{
switch (header->type) {
case ACPI_SRAT_TYPE_CPU_AFFINITY:
{
struct acpi_srat_cpu_affinity *p =
(struct acpi_srat_cpu_affinity *)header;
pr_debug("SRAT Processor (id[0x%02x] eid[0x%02x]) in proximity domain %d %s\n",
p->apic_id, p->local_sapic_eid,
p->proximity_domain_lo,
(p->flags & ACPI_SRAT_CPU_ENABLED) ?
"enabled" : "disabled");
}
break;
case ACPI_SRAT_TYPE_MEMORY_AFFINITY:
{
struct acpi_srat_mem_affinity *p =
(struct acpi_srat_mem_affinity *)header;
pr_debug("SRAT Memory (0x%llx length 0x%llx) in proximity domain %d %s%s%s\n",
(unsigned long long)p->base_address,
(unsigned long long)p->length,
p->proximity_domain,
(p->flags & ACPI_SRAT_MEM_ENABLED) ?
"enabled" : "disabled",
(p->flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) ?
" hot-pluggable" : "",
(p->flags & ACPI_SRAT_MEM_NON_VOLATILE) ?
" non-volatile" : "");
}
break;
case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY:
{
struct acpi_srat_x2apic_cpu_affinity *p =
(struct acpi_srat_x2apic_cpu_affinity *)header;
pr_debug("SRAT Processor (x2apicid[0x%08x]) in proximity domain %d %s\n",
p->apic_id,
p->proximity_domain,
(p->flags & ACPI_SRAT_CPU_ENABLED) ?
"enabled" : "disabled");
}
break;
case ACPI_SRAT_TYPE_GICC_AFFINITY:
{
struct acpi_srat_gicc_affinity *p =
(struct acpi_srat_gicc_affinity *)header;
pr_debug("SRAT Processor (acpi id[0x%04x]) in proximity domain %d %s\n",
p->acpi_processor_uid,
p->proximity_domain,
(p->flags & ACPI_SRAT_GICC_ENABLED) ?
"enabled" : "disabled");
}
break;
case ACPI_SRAT_TYPE_GENERIC_AFFINITY:
{
struct acpi_srat_generic_affinity *p =
(struct acpi_srat_generic_affinity *)header;
if (p->device_handle_type == 0) {
/*
* For pci devices this may be the only place they
* are assigned a proximity domain
*/
pr_debug("SRAT Generic Initiator(Seg:%u BDF:%u) in proximity domain %d %s\n",
*(u16 *)(&p->device_handle[0]),
*(u16 *)(&p->device_handle[2]),
p->proximity_domain,
(p->flags & ACPI_SRAT_GENERIC_AFFINITY_ENABLED) ?
"enabled" : "disabled");
} else {
/*
* In this case we can rely on the device having a
* proximity domain reference
*/
pr_debug("SRAT Generic Initiator(HID=%.8s UID=%.4s) in proximity domain %d %s\n",
(char *)(&p->device_handle[0]),
(char *)(&p->device_handle[8]),
p->proximity_domain,
(p->flags & ACPI_SRAT_GENERIC_AFFINITY_ENABLED) ?
"enabled" : "disabled");
}
}
break;
case ACPI_SRAT_TYPE_RINTC_AFFINITY:
{
struct acpi_srat_rintc_affinity *p =
(struct acpi_srat_rintc_affinity *)header;
pr_debug("SRAT Processor (acpi id[0x%04x]) in proximity domain %d %s\n",
p->acpi_processor_uid,
p->proximity_domain,
(p->flags & ACPI_SRAT_RINTC_ENABLED) ?
"enabled" : "disabled");
}
break;
default:
pr_warn("Found unsupported SRAT entry (type = 0x%x)\n",
header->type);
break;
}
}
/*
* A lot of BIOS fill in 10 (= no distance) everywhere. This messes
* up the NUMA heuristics which wants the local node to have a smaller
* distance than the others.
* Do some quick checks here and only use the SLIT if it passes.
*/
static int __init slit_valid(struct acpi_table_slit *slit)
{
int i, j;
int d = slit->locality_count;
for (i = 0; i < d; i++) {
for (j = 0; j < d; j++) {
u8 val = slit->entry[d*i + j];
if (i == j) {
if (val != LOCAL_DISTANCE)
return 0;
} else if (val <= LOCAL_DISTANCE)
return 0;
}
}
return 1;
}
void __init bad_srat(void)
{
pr_err("SRAT: SRAT not used.\n");
disable_srat();
}
int __init srat_disabled(void)
{
return acpi_numa < 0;
}
__weak int __init numa_fill_memblks(u64 start, u64 end)
{
return NUMA_NO_MEMBLK;
}
/*
* Callback for SLIT parsing. pxm_to_node() returns NUMA_NO_NODE for
* I/O localities since SRAT does not list them. I/O localities are
* not supported at this point.
*/
static int __init acpi_parse_slit(struct acpi_table_header *table)
{
struct acpi_table_slit *slit = (struct acpi_table_slit *)table;
int i, j;
if (!slit_valid(slit)) {
pr_info("SLIT table looks invalid. Not used.\n");
return -EINVAL;
}
for (i = 0; i < slit->locality_count; i++) {
const int from_node = pxm_to_node(i);
if (from_node == NUMA_NO_NODE)
continue;
for (j = 0; j < slit->locality_count; j++) {
const int to_node = pxm_to_node(j);
if (to_node == NUMA_NO_NODE)
continue;
numa_set_distance(from_node, to_node,
slit->entry[slit->locality_count * i + j]);
}
}
return 0;
}
static int parsed_numa_memblks __initdata;
static int __init
acpi_parse_memory_affinity(union acpi_subtable_headers *header,
const unsigned long table_end)
{
struct acpi_srat_mem_affinity *ma;
u64 start, end;
u32 hotpluggable;
int node, pxm;
ma = (struct acpi_srat_mem_affinity *)header;
acpi_table_print_srat_entry(&header->common);
if (srat_disabled())
return 0;
if (ma->header.length < sizeof(struct acpi_srat_mem_affinity)) {
pr_err("SRAT: Unexpected header length: %d\n",
ma->header.length);
goto out_err_bad_srat;
}
if ((ma->flags & ACPI_SRAT_MEM_ENABLED) == 0)
return 0;
hotpluggable = IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
(ma->flags & ACPI_SRAT_MEM_HOT_PLUGGABLE);
start = ma->base_address;
end = start + ma->length;
pxm = ma->proximity_domain;
if (acpi_srat_revision <= 1)
pxm &= 0xff;
node = acpi_map_pxm_to_node(pxm);
if (node == NUMA_NO_NODE) {
pr_err("SRAT: Too many proximity domains.\n");
goto out_err_bad_srat;
}
if (numa_add_memblk(node, start, end) < 0) {
pr_err("SRAT: Failed to add memblk to node %u [mem %#010Lx-%#010Lx]\n",
node, (unsigned long long) start,
(unsigned long long) end - 1);
goto out_err_bad_srat;
}
node_set(node, numa_nodes_parsed);
pr_info("SRAT: Node %u PXM %u [mem %#010Lx-%#010Lx]%s%s\n",
node, pxm,
(unsigned long long) start, (unsigned long long) end - 1,
hotpluggable ? " hotplug" : "",
ma->flags & ACPI_SRAT_MEM_NON_VOLATILE ? " non-volatile" : "");
/* Mark hotplug range in memblock. */
if (hotpluggable && memblock_mark_hotplug(start, ma->length))
pr_warn("SRAT: Failed to mark hotplug range [mem %#010Lx-%#010Lx] in memblock\n",
(unsigned long long)start, (unsigned long long)end - 1);
max_possible_pfn = max(max_possible_pfn, PFN_UP(end - 1));
parsed_numa_memblks++;
return 0;
out_err_bad_srat:
/* Just disable SRAT, but do not fail and ignore errors. */
bad_srat();
return 0;
}
static int __init acpi_parse_cfmws(union acpi_subtable_headers *header,
void *arg, const unsigned long table_end)
{
struct acpi_cedt_cfmws *cfmws;
int *fake_pxm = arg;
u64 start, end;
int node;
cfmws = (struct acpi_cedt_cfmws *)header;
start = cfmws->base_hpa;
end = cfmws->base_hpa + cfmws->window_size;
/*
* The SRAT may have already described NUMA details for all,
* or a portion of, this CFMWS HPA range. Extend the memblks
* found for any portion of the window to cover the entire
* window.
*/
if (!numa_fill_memblks(start, end))
return 0;
/* No SRAT description. Create a new node. */
node = acpi_map_pxm_to_node(*fake_pxm);
if (node == NUMA_NO_NODE) {
pr_err("ACPI NUMA: Too many proximity domains while processing CFMWS.\n");
return -EINVAL;
}
if (numa_add_memblk(node, start, end) < 0) {
/* CXL driver must handle the NUMA_NO_NODE case */
pr_warn("ACPI NUMA: Failed to add memblk for CFMWS node %d [mem %#llx-%#llx]\n",
node, start, end);
}
node_set(node, numa_nodes_parsed);
/* Set the next available fake_pxm value */
(*fake_pxm)++;
return 0;
}
void __init __weak
acpi_numa_x2apic_affinity_init(struct acpi_srat_x2apic_cpu_affinity *pa)
{
pr_warn("Found unsupported x2apic [0x%08x] SRAT entry\n", pa->apic_id);
}
static int __init
acpi_parse_x2apic_affinity(union acpi_subtable_headers *header,
const unsigned long end)
{
struct acpi_srat_x2apic_cpu_affinity *processor_affinity;
processor_affinity = (struct acpi_srat_x2apic_cpu_affinity *)header;
acpi_table_print_srat_entry(&header->common);
/* let architecture-dependent part to do it */
acpi_numa_x2apic_affinity_init(processor_affinity);
return 0;
}
static int __init
acpi_parse_processor_affinity(union acpi_subtable_headers *header,
const unsigned long end)
{
struct acpi_srat_cpu_affinity *processor_affinity;
processor_affinity = (struct acpi_srat_cpu_affinity *)header;
acpi_table_print_srat_entry(&header->common);
/* let architecture-dependent part to do it */
acpi_numa_processor_affinity_init(processor_affinity);
return 0;
}
static int __init
acpi_parse_gicc_affinity(union acpi_subtable_headers *header,
const unsigned long end)
{
struct acpi_srat_gicc_affinity *processor_affinity;
processor_affinity = (struct acpi_srat_gicc_affinity *)header;
acpi_table_print_srat_entry(&header->common);
/* let architecture-dependent part to do it */
acpi_numa_gicc_affinity_init(processor_affinity);
return 0;
}
#if defined(CONFIG_X86) || defined(CONFIG_ARM64)
static int __init
acpi_parse_gi_affinity(union acpi_subtable_headers *header,
const unsigned long end)
{
struct acpi_srat_generic_affinity *gi_affinity;
int node;
gi_affinity = (struct acpi_srat_generic_affinity *)header;
if (!gi_affinity)
return -EINVAL;
acpi_table_print_srat_entry(&header->common);
if (!(gi_affinity->flags & ACPI_SRAT_GENERIC_AFFINITY_ENABLED))
return -EINVAL;
node = acpi_map_pxm_to_node(gi_affinity->proximity_domain);
if (node == NUMA_NO_NODE) {
pr_err("SRAT: Too many proximity domains.\n");
return -EINVAL;
}
node_set(node, numa_nodes_parsed);
node_set_state(node, N_GENERIC_INITIATOR);
return 0;
}
#else
static int __init
acpi_parse_gi_affinity(union acpi_subtable_headers *header,
const unsigned long end)
{
return 0;
}
#endif /* defined(CONFIG_X86) || defined (CONFIG_ARM64) */
static int __init
acpi_parse_rintc_affinity(union acpi_subtable_headers *header,
const unsigned long end)
{
struct acpi_srat_rintc_affinity *rintc_affinity;
rintc_affinity = (struct acpi_srat_rintc_affinity *)header;
acpi_table_print_srat_entry(&header->common);
/* let architecture-dependent part to do it */
acpi_numa_rintc_affinity_init(rintc_affinity);
return 0;
}
static int __init acpi_parse_srat(struct acpi_table_header *table)
{
struct acpi_table_srat *srat = (struct acpi_table_srat *)table;
acpi_srat_revision = srat->header.revision;
/* Real work done in acpi_table_parse_srat below. */
return 0;
}
static int __init
acpi_table_parse_srat(enum acpi_srat_type id,
acpi_tbl_entry_handler handler, unsigned int max_entries)
{
return acpi_table_parse_entries(ACPI_SIG_SRAT,
sizeof(struct acpi_table_srat), id,
handler, max_entries);
}
int __init acpi_numa_init(void)
{
int i, fake_pxm, cnt = 0;
if (acpi_disabled)
return -EINVAL;
/*
* Should not limit number with cpu num that is from NR_CPUS or nr_cpus=
* SRAT cpu entries could have different order with that in MADT.
* So go over all cpu entries in SRAT to get apicid to node mapping.
*/
/* SRAT: System Resource Affinity Table */
if (!acpi_table_parse(ACPI_SIG_SRAT, acpi_parse_srat)) {
struct acpi_subtable_proc srat_proc[5];
memset(srat_proc, 0, sizeof(srat_proc));
srat_proc[0].id = ACPI_SRAT_TYPE_CPU_AFFINITY;
srat_proc[0].handler = acpi_parse_processor_affinity;
srat_proc[1].id = ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY;
srat_proc[1].handler = acpi_parse_x2apic_affinity;
srat_proc[2].id = ACPI_SRAT_TYPE_GICC_AFFINITY;
srat_proc[2].handler = acpi_parse_gicc_affinity;
srat_proc[3].id = ACPI_SRAT_TYPE_GENERIC_AFFINITY;
srat_proc[3].handler = acpi_parse_gi_affinity;
srat_proc[4].id = ACPI_SRAT_TYPE_RINTC_AFFINITY;
srat_proc[4].handler = acpi_parse_rintc_affinity;
acpi_table_parse_entries_array(ACPI_SIG_SRAT,
sizeof(struct acpi_table_srat),
srat_proc, ARRAY_SIZE(srat_proc), 0);
cnt = acpi_table_parse_srat(ACPI_SRAT_TYPE_MEMORY_AFFINITY,
acpi_parse_memory_affinity, 0);
}
/* SLIT: System Locality Information Table */
acpi_table_parse(ACPI_SIG_SLIT, acpi_parse_slit);
/*
* CXL Fixed Memory Window Structures (CFMWS) must be parsed
* after the SRAT. Create NUMA Nodes for CXL memory ranges that
* are defined in the CFMWS and not already defined in the SRAT.
* Initialize a fake_pxm as the first available PXM to emulate.
*/
/* fake_pxm is the next unused PXM value after SRAT parsing */
for (i = 0, fake_pxm = -1; i < MAX_NUMNODES; i++) {
if (node_to_pxm_map[i] > fake_pxm)
fake_pxm = node_to_pxm_map[i];
}
last_real_pxm = fake_pxm;
fake_pxm++;
acpi_table_parse_cedt(ACPI_CEDT_TYPE_CFMWS, acpi_parse_cfmws,
&fake_pxm);
if (cnt < 0)
return cnt;
else if (!parsed_numa_memblks)
return -ENOENT;
return 0;
}
bool acpi_node_backed_by_real_pxm(int nid)
{
int pxm = node_to_pxm(nid);
return pxm <= last_real_pxm;
}
EXPORT_SYMBOL_GPL(acpi_node_backed_by_real_pxm);
static int acpi_get_pxm(acpi_handle h)
{
unsigned long long pxm;
acpi_status status;
acpi_handle handle;
acpi_handle phandle = h;
do {
handle = phandle;
status = acpi_evaluate_integer(handle, "_PXM", NULL, &pxm);
if (ACPI_SUCCESS(status))
return pxm;
status = acpi_get_parent(handle, &phandle);
} while (ACPI_SUCCESS(status));
return -1;
}
int acpi_get_node(acpi_handle handle)
{
int pxm;
pxm = acpi_get_pxm(handle);
return pxm_to_node(pxm);
}
EXPORT_SYMBOL(acpi_get_node);