Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Aaron Lu | 795 | 61.11% | 2 | 9.09% |
Hans de Goede | 471 | 36.20% | 12 | 54.55% |
Andy Shevchenko | 25 | 1.92% | 5 | 22.73% |
Carlo Caione | 5 | 0.38% | 1 | 4.55% |
Jacob jun Pan | 3 | 0.23% | 1 | 4.55% |
Christophe Jaillet | 2 | 0.15% | 1 | 4.55% |
Total | 1301 | 22 |
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368
// SPDX-License-Identifier: GPL-2.0 /* * XPower AXP288 PMIC operation region driver * * Copyright (C) 2014 Intel Corporation. All rights reserved. */ #include <linux/acpi.h> #include <linux/init.h> #include <linux/mfd/axp20x.h> #include <linux/regmap.h> #include <linux/platform_device.h> #include <asm/iosf_mbi.h> #include "intel_pmic.h" #define XPOWER_GPADC_LOW 0x5b #define XPOWER_GPI1_CTRL 0x92 #define GPI1_LDO_MASK GENMASK(2, 0) #define GPI1_LDO_ON (3 << 0) #define GPI1_LDO_OFF (4 << 0) #define AXP288_ADC_TS_CURRENT_ON_OFF_MASK GENMASK(1, 0) #define AXP288_ADC_TS_CURRENT_OFF (0 << 0) #define AXP288_ADC_TS_CURRENT_ON_WHEN_CHARGING (1 << 0) #define AXP288_ADC_TS_CURRENT_ON_ONDEMAND (2 << 0) #define AXP288_ADC_TS_CURRENT_ON (3 << 0) static const struct pmic_table power_table[] = { { .address = 0x00, .reg = 0x13, .bit = 0x05, }, /* ALD1 */ { .address = 0x04, .reg = 0x13, .bit = 0x06, }, /* ALD2 */ { .address = 0x08, .reg = 0x13, .bit = 0x07, }, /* ALD3 */ { .address = 0x0c, .reg = 0x12, .bit = 0x03, }, /* DLD1 */ { .address = 0x10, .reg = 0x12, .bit = 0x04, }, /* DLD2 */ { .address = 0x14, .reg = 0x12, .bit = 0x05, }, /* DLD3 */ { .address = 0x18, .reg = 0x12, .bit = 0x06, }, /* DLD4 */ { .address = 0x1c, .reg = 0x12, .bit = 0x00, }, /* ELD1 */ { .address = 0x20, .reg = 0x12, .bit = 0x01, }, /* ELD2 */ { .address = 0x24, .reg = 0x12, .bit = 0x02, }, /* ELD3 */ { .address = 0x28, .reg = 0x13, .bit = 0x02, }, /* FLD1 */ { .address = 0x2c, .reg = 0x13, .bit = 0x03, }, /* FLD2 */ { .address = 0x30, .reg = 0x13, .bit = 0x04, }, /* FLD3 */ { .address = 0x34, .reg = 0x10, .bit = 0x03, }, /* BUC1 */ { .address = 0x38, .reg = 0x10, .bit = 0x06, }, /* BUC2 */ { .address = 0x3c, .reg = 0x10, .bit = 0x05, }, /* BUC3 */ { .address = 0x40, .reg = 0x10, .bit = 0x04, }, /* BUC4 */ { .address = 0x44, .reg = 0x10, .bit = 0x01, }, /* BUC5 */ { .address = 0x48, .reg = 0x10, .bit = 0x00 }, /* BUC6 */ { .address = 0x4c, .reg = 0x92, }, /* GPI1 */ }; /* TMP0 - TMP5 are the same, all from GPADC */ static const struct pmic_table thermal_table[] = { { .address = 0x00, .reg = XPOWER_GPADC_LOW }, { .address = 0x0c, .reg = XPOWER_GPADC_LOW }, { .address = 0x18, .reg = XPOWER_GPADC_LOW }, { .address = 0x24, .reg = XPOWER_GPADC_LOW }, { .address = 0x30, .reg = XPOWER_GPADC_LOW }, { .address = 0x3c, .reg = XPOWER_GPADC_LOW }, }; static int intel_xpower_pmic_get_power(struct regmap *regmap, int reg, int bit, u64 *value) { int data; if (regmap_read(regmap, reg, &data)) return -EIO; /* GPIO1 LDO regulator needs special handling */ if (reg == XPOWER_GPI1_CTRL) *value = ((data & GPI1_LDO_MASK) == GPI1_LDO_ON); else *value = (data & BIT(bit)) ? 1 : 0; return 0; } static int intel_xpower_pmic_update_power(struct regmap *regmap, int reg, int bit, bool on) { int data, ret; ret = iosf_mbi_block_punit_i2c_access(); if (ret) return ret; /* GPIO1 LDO regulator needs special handling */ if (reg == XPOWER_GPI1_CTRL) { ret = regmap_update_bits(regmap, reg, GPI1_LDO_MASK, on ? GPI1_LDO_ON : GPI1_LDO_OFF); goto out; } if (regmap_read(regmap, reg, &data)) { ret = -EIO; goto out; } if (on) data |= BIT(bit); else data &= ~BIT(bit); if (regmap_write(regmap, reg, data)) ret = -EIO; out: iosf_mbi_unblock_punit_i2c_access(); return ret; } /** * intel_xpower_pmic_get_raw_temp(): Get raw temperature reading from the PMIC * * @regmap: regmap of the PMIC device * @reg: register to get the reading * * Return a positive value on success, errno on failure. */ static int intel_xpower_pmic_get_raw_temp(struct regmap *regmap, int reg) { int ret, adc_ts_pin_ctrl; u8 buf[2]; /* * The current-source used for the battery temp-sensor (TS) is shared * with the GPADC. For proper fuel-gauge and charger operation the TS * current-source needs to be permanently on. But to read the GPADC we * need to temporary switch the TS current-source to ondemand, so that * the GPADC can use it, otherwise we will always read an all 0 value. * * Note that the switching from on to on-ondemand is not necessary * when the TS current-source is off (this happens on devices which * do not use the TS-pin). */ ret = regmap_read(regmap, AXP288_ADC_TS_PIN_CTRL, &adc_ts_pin_ctrl); if (ret) return ret; if (adc_ts_pin_ctrl & AXP288_ADC_TS_CURRENT_ON_OFF_MASK) { /* * AXP288_ADC_TS_PIN_CTRL reads are cached by the regmap, so * this does to a single I2C-transfer, and thus there is no * need to explicitly call iosf_mbi_block_punit_i2c_access(). */ ret = regmap_update_bits(regmap, AXP288_ADC_TS_PIN_CTRL, AXP288_ADC_TS_CURRENT_ON_OFF_MASK, AXP288_ADC_TS_CURRENT_ON_ONDEMAND); if (ret) return ret; /* Wait a bit after switching the current-source */ usleep_range(6000, 10000); } ret = iosf_mbi_block_punit_i2c_access(); if (ret) return ret; ret = regmap_bulk_read(regmap, AXP288_GP_ADC_H, buf, sizeof(buf)); if (ret == 0) ret = (buf[0] << 4) + ((buf[1] >> 4) & 0x0f); if (adc_ts_pin_ctrl & AXP288_ADC_TS_CURRENT_ON_OFF_MASK) { regmap_update_bits(regmap, AXP288_ADC_TS_PIN_CTRL, AXP288_ADC_TS_CURRENT_ON_OFF_MASK, AXP288_ADC_TS_CURRENT_ON); } iosf_mbi_unblock_punit_i2c_access(); return ret; } static int intel_xpower_exec_mipi_pmic_seq_element(struct regmap *regmap, u16 i2c_address, u32 reg_address, u32 value, u32 mask) { struct device *dev = regmap_get_device(regmap); int ret; if (i2c_address != 0x34) { dev_err(dev, "Unexpected i2c-addr: 0x%02x (reg-addr 0x%x value 0x%x mask 0x%x)\n", i2c_address, reg_address, value, mask); return -ENXIO; } ret = iosf_mbi_block_punit_i2c_access(); if (ret) return ret; ret = regmap_update_bits(regmap, reg_address, mask, value); iosf_mbi_unblock_punit_i2c_access(); return ret; } static int intel_xpower_lpat_raw_to_temp(struct acpi_lpat_conversion_table *lpat_table, int raw) { struct acpi_lpat first = lpat_table->lpat[0]; struct acpi_lpat last = lpat_table->lpat[lpat_table->lpat_count - 1]; /* * Some LPAT tables in the ACPI Device for the AXP288 PMIC for some * reason only describe a small temperature range, e.g. 27° - 37° * Celcius. Resulting in errors when the tablet is idle in a cool room. * * To avoid these errors clamp the raw value to be inside the LPAT. */ if (first.raw < last.raw) raw = clamp(raw, first.raw, last.raw); else raw = clamp(raw, last.raw, first.raw); return acpi_lpat_raw_to_temp(lpat_table, raw); } static const struct intel_pmic_opregion_data intel_xpower_pmic_opregion_data = { .get_power = intel_xpower_pmic_get_power, .update_power = intel_xpower_pmic_update_power, .get_raw_temp = intel_xpower_pmic_get_raw_temp, .exec_mipi_pmic_seq_element = intel_xpower_exec_mipi_pmic_seq_element, .lpat_raw_to_temp = intel_xpower_lpat_raw_to_temp, .power_table = power_table, .power_table_count = ARRAY_SIZE(power_table), .thermal_table = thermal_table, .thermal_table_count = ARRAY_SIZE(thermal_table), .pmic_i2c_address = 0x34, }; static acpi_status intel_xpower_pmic_gpio_handler(u32 function, acpi_physical_address address, u32 bit_width, u64 *value, void *handler_context, void *region_context) { return AE_OK; } static int intel_xpower_pmic_opregion_probe(struct platform_device *pdev) { struct device *parent = pdev->dev.parent; struct axp20x_dev *axp20x = dev_get_drvdata(parent); acpi_status status; int result; status = acpi_install_address_space_handler(ACPI_HANDLE(parent), ACPI_ADR_SPACE_GPIO, intel_xpower_pmic_gpio_handler, NULL, NULL); if (ACPI_FAILURE(status)) return -ENODEV; result = intel_pmic_install_opregion_handler(&pdev->dev, ACPI_HANDLE(parent), axp20x->regmap, &intel_xpower_pmic_opregion_data); if (result) acpi_remove_address_space_handler(ACPI_HANDLE(parent), ACPI_ADR_SPACE_GPIO, intel_xpower_pmic_gpio_handler); return result; } static struct platform_driver intel_xpower_pmic_opregion_driver = { .probe = intel_xpower_pmic_opregion_probe, .driver = { .name = "axp288_pmic_acpi", }, }; builtin_platform_driver(intel_xpower_pmic_opregion_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1