Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Neeraj Sanjay Kale | 7328 | 98.67% | 21 | 84.00% |
Luiz Augusto von Dentz | 95 | 1.28% | 1 | 4.00% |
Francesco Dolcini | 3 | 0.04% | 2 | 8.00% |
Luke Wang | 1 | 0.01% | 1 | 4.00% |
Total | 7427 | 25 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * NXP Bluetooth driver * Copyright 2023 NXP */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/serdev.h> #include <linux/of.h> #include <linux/skbuff.h> #include <asm/unaligned.h> #include <linux/firmware.h> #include <linux/string.h> #include <linux/crc8.h> #include <linux/crc32.h> #include <linux/string_helpers.h> #include <net/bluetooth/bluetooth.h> #include <net/bluetooth/hci_core.h> #include "h4_recv.h" #define MANUFACTURER_NXP 37 #define BTNXPUART_TX_STATE_ACTIVE 1 #define BTNXPUART_FW_DOWNLOADING 2 #define BTNXPUART_CHECK_BOOT_SIGNATURE 3 #define BTNXPUART_SERDEV_OPEN 4 #define BTNXPUART_IR_IN_PROGRESS 5 #define BTNXPUART_FW_DOWNLOAD_ABORT 6 /* NXP HW err codes */ #define BTNXPUART_IR_HW_ERR 0xb0 #define FIRMWARE_W8987 "uart8987_bt_v0.bin" #define FIRMWARE_W8987_OLD "uartuart8987_bt.bin" #define FIRMWARE_W8997 "uart8997_bt_v4.bin" #define FIRMWARE_W8997_OLD "uartuart8997_bt_v4.bin" #define FIRMWARE_W9098 "uart9098_bt_v1.bin" #define FIRMWARE_W9098_OLD "uartuart9098_bt_v1.bin" #define FIRMWARE_IW416 "uartiw416_bt_v0.bin" #define FIRMWARE_IW612 "uartspi_n61x_v1.bin.se" #define FIRMWARE_IW615 "uartspi_iw610_v0.bin" #define FIRMWARE_SECURE_IW615 "uartspi_iw610_v0.bin.se" #define FIRMWARE_IW624 "uartiw624_bt.bin" #define FIRMWARE_SECURE_IW624 "uartiw624_bt.bin.se" #define FIRMWARE_AW693 "uartaw693_bt.bin" #define FIRMWARE_SECURE_AW693 "uartaw693_bt.bin.se" #define FIRMWARE_AW693_A1 "uartaw693_bt_v1.bin" #define FIRMWARE_SECURE_AW693_A1 "uartaw693_bt_v1.bin.se" #define FIRMWARE_HELPER "helper_uart_3000000.bin" #define CHIP_ID_W9098 0x5c03 #define CHIP_ID_IW416 0x7201 #define CHIP_ID_IW612 0x7601 #define CHIP_ID_IW624a 0x8000 #define CHIP_ID_IW624c 0x8001 #define CHIP_ID_AW693a0 0x8200 #define CHIP_ID_AW693a1 0x8201 #define CHIP_ID_IW615a0 0x8800 #define CHIP_ID_IW615a1 0x8801 #define FW_SECURE_MASK 0xc0 #define FW_OPEN 0x00 #define FW_AUTH_ILLEGAL 0x40 #define FW_AUTH_PLAIN 0x80 #define FW_AUTH_ENC 0xc0 #define HCI_NXP_PRI_BAUDRATE 115200 #define HCI_NXP_SEC_BAUDRATE 3000000 #define MAX_FW_FILE_NAME_LEN 50 /* Default ps timeout period in milliseconds */ #define PS_DEFAULT_TIMEOUT_PERIOD_MS 2000 /* wakeup methods */ #define WAKEUP_METHOD_DTR 0 #define WAKEUP_METHOD_BREAK 1 #define WAKEUP_METHOD_EXT_BREAK 2 #define WAKEUP_METHOD_RTS 3 #define WAKEUP_METHOD_INVALID 0xff /* power save mode status */ #define PS_MODE_DISABLE 0 #define PS_MODE_ENABLE 1 /* Power Save Commands to ps_work_func */ #define PS_CMD_EXIT_PS 1 #define PS_CMD_ENTER_PS 2 /* power save state */ #define PS_STATE_AWAKE 0 #define PS_STATE_SLEEP 1 /* Bluetooth vendor command : Sleep mode */ #define HCI_NXP_AUTO_SLEEP_MODE 0xfc23 /* Bluetooth vendor command : Wakeup method */ #define HCI_NXP_WAKEUP_METHOD 0xfc53 /* Bluetooth vendor command : Set operational baudrate */ #define HCI_NXP_SET_OPER_SPEED 0xfc09 /* Bluetooth vendor command: Independent Reset */ #define HCI_NXP_IND_RESET 0xfcfc /* Bluetooth Power State : Vendor cmd params */ #define BT_PS_ENABLE 0x02 #define BT_PS_DISABLE 0x03 /* Bluetooth Host Wakeup Methods */ #define BT_HOST_WAKEUP_METHOD_NONE 0x00 #define BT_HOST_WAKEUP_METHOD_DTR 0x01 #define BT_HOST_WAKEUP_METHOD_BREAK 0x02 #define BT_HOST_WAKEUP_METHOD_GPIO 0x03 /* Bluetooth Chip Wakeup Methods */ #define BT_CTRL_WAKEUP_METHOD_DSR 0x00 #define BT_CTRL_WAKEUP_METHOD_BREAK 0x01 #define BT_CTRL_WAKEUP_METHOD_GPIO 0x02 #define BT_CTRL_WAKEUP_METHOD_EXT_BREAK 0x04 #define BT_CTRL_WAKEUP_METHOD_RTS 0x05 struct ps_data { u8 target_ps_mode; /* ps mode to be set */ u8 cur_psmode; /* current ps_mode */ u8 ps_state; /* controller's power save state */ u8 ps_cmd; u8 h2c_wakeupmode; u8 cur_h2c_wakeupmode; u8 c2h_wakeupmode; u8 c2h_wakeup_gpio; u8 h2c_wakeup_gpio; bool driver_sent_cmd; u16 h2c_ps_interval; u16 c2h_ps_interval; struct hci_dev *hdev; struct work_struct work; struct timer_list ps_timer; struct mutex ps_lock; }; struct wakeup_cmd_payload { u8 c2h_wakeupmode; u8 c2h_wakeup_gpio; u8 h2c_wakeupmode; u8 h2c_wakeup_gpio; } __packed; struct psmode_cmd_payload { u8 ps_cmd; __le16 c2h_ps_interval; } __packed; struct btnxpuart_data { const char *helper_fw_name; const char *fw_name; const char *fw_name_old; }; struct btnxpuart_dev { struct hci_dev *hdev; struct serdev_device *serdev; struct work_struct tx_work; unsigned long tx_state; struct sk_buff_head txq; struct sk_buff *rx_skb; const struct firmware *fw; u8 fw_name[MAX_FW_FILE_NAME_LEN]; u32 fw_dnld_v1_offset; u32 fw_v1_sent_bytes; u32 fw_dnld_v3_offset; u32 fw_v3_offset_correction; u32 fw_v1_expected_len; u32 boot_reg_offset; wait_queue_head_t fw_dnld_done_wait_q; wait_queue_head_t check_boot_sign_wait_q; u32 new_baudrate; u32 current_baudrate; u32 fw_init_baudrate; bool timeout_changed; bool baudrate_changed; bool helper_downloaded; struct ps_data psdata; struct btnxpuart_data *nxp_data; }; #define NXP_V1_FW_REQ_PKT 0xa5 #define NXP_V1_CHIP_VER_PKT 0xaa #define NXP_V3_FW_REQ_PKT 0xa7 #define NXP_V3_CHIP_VER_PKT 0xab #define NXP_ACK_V1 0x5a #define NXP_NAK_V1 0xbf #define NXP_ACK_V3 0x7a #define NXP_NAK_V3 0x7b #define NXP_CRC_ERROR_V3 0x7c /* Bootloader signature error codes */ #define NXP_ACK_RX_TIMEOUT 0x0002 /* ACK not received from host */ #define NXP_HDR_RX_TIMEOUT 0x0003 /* FW Header chunk not received */ #define NXP_DATA_RX_TIMEOUT 0x0004 /* FW Data chunk not received */ #define HDR_LEN 16 #define NXP_RECV_CHIP_VER_V1 \ .type = NXP_V1_CHIP_VER_PKT, \ .hlen = 4, \ .loff = 0, \ .lsize = 0, \ .maxlen = 4 #define NXP_RECV_FW_REQ_V1 \ .type = NXP_V1_FW_REQ_PKT, \ .hlen = 4, \ .loff = 0, \ .lsize = 0, \ .maxlen = 4 #define NXP_RECV_CHIP_VER_V3 \ .type = NXP_V3_CHIP_VER_PKT, \ .hlen = 4, \ .loff = 0, \ .lsize = 0, \ .maxlen = 4 #define NXP_RECV_FW_REQ_V3 \ .type = NXP_V3_FW_REQ_PKT, \ .hlen = 9, \ .loff = 0, \ .lsize = 0, \ .maxlen = 9 struct v1_data_req { __le16 len; __le16 len_comp; } __packed; struct v1_start_ind { __le16 chip_id; __le16 chip_id_comp; } __packed; struct v3_data_req { __le16 len; __le32 offset; __le16 error; u8 crc; } __packed; struct v3_start_ind { __le16 chip_id; u8 loader_ver; u8 crc; } __packed; /* UART register addresses of BT chip */ #define CLKDIVADDR 0x7f00008f #define UARTDIVADDR 0x7f000090 #define UARTMCRADDR 0x7f000091 #define UARTREINITADDR 0x7f000092 #define UARTICRADDR 0x7f000093 #define UARTFCRADDR 0x7f000094 #define MCR 0x00000022 #define INIT 0x00000001 #define ICR 0x000000c7 #define FCR 0x000000c7 #define POLYNOMIAL8 0x07 struct uart_reg { __le32 address; __le32 value; } __packed; struct uart_config { struct uart_reg clkdiv; struct uart_reg uartdiv; struct uart_reg mcr; struct uart_reg re_init; struct uart_reg icr; struct uart_reg fcr; __be32 crc; } __packed; struct nxp_bootloader_cmd { __le32 header; __le32 arg; __le32 payload_len; __be32 crc; } __packed; struct nxp_v3_rx_timeout_nak { u8 nak; __le32 offset; u8 crc; } __packed; union nxp_v3_rx_timeout_nak_u { struct nxp_v3_rx_timeout_nak pkt; u8 buf[6]; }; static u8 crc8_table[CRC8_TABLE_SIZE]; /* Default configurations */ #define DEFAULT_H2C_WAKEUP_MODE WAKEUP_METHOD_BREAK #define DEFAULT_PS_MODE PS_MODE_ENABLE #define FW_INIT_BAUDRATE HCI_NXP_PRI_BAUDRATE static struct sk_buff *nxp_drv_send_cmd(struct hci_dev *hdev, u16 opcode, u32 plen, void *param) { struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev); struct ps_data *psdata = &nxpdev->psdata; struct sk_buff *skb; /* set flag to prevent nxp_enqueue from parsing values from this command and * calling hci_cmd_sync_queue() again. */ psdata->driver_sent_cmd = true; skb = __hci_cmd_sync(hdev, opcode, plen, param, HCI_CMD_TIMEOUT); psdata->driver_sent_cmd = false; return skb; } static void btnxpuart_tx_wakeup(struct btnxpuart_dev *nxpdev) { if (schedule_work(&nxpdev->tx_work)) set_bit(BTNXPUART_TX_STATE_ACTIVE, &nxpdev->tx_state); } /* NXP Power Save Feature */ static void ps_start_timer(struct btnxpuart_dev *nxpdev) { struct ps_data *psdata = &nxpdev->psdata; if (!psdata) return; if (psdata->cur_psmode == PS_MODE_ENABLE) mod_timer(&psdata->ps_timer, jiffies + msecs_to_jiffies(psdata->h2c_ps_interval)); if (psdata->ps_state == PS_STATE_AWAKE && psdata->ps_cmd == PS_CMD_ENTER_PS) cancel_work_sync(&psdata->work); } static void ps_cancel_timer(struct btnxpuart_dev *nxpdev) { struct ps_data *psdata = &nxpdev->psdata; flush_work(&psdata->work); timer_shutdown_sync(&psdata->ps_timer); } static void ps_control(struct hci_dev *hdev, u8 ps_state) { struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev); struct ps_data *psdata = &nxpdev->psdata; int status; if (psdata->ps_state == ps_state || !test_bit(BTNXPUART_SERDEV_OPEN, &nxpdev->tx_state)) return; mutex_lock(&psdata->ps_lock); switch (psdata->cur_h2c_wakeupmode) { case WAKEUP_METHOD_DTR: if (ps_state == PS_STATE_AWAKE) status = serdev_device_set_tiocm(nxpdev->serdev, TIOCM_DTR, 0); else status = serdev_device_set_tiocm(nxpdev->serdev, 0, TIOCM_DTR); break; case WAKEUP_METHOD_BREAK: default: if (ps_state == PS_STATE_AWAKE) status = serdev_device_break_ctl(nxpdev->serdev, 0); else status = serdev_device_break_ctl(nxpdev->serdev, -1); msleep(20); /* Allow chip to detect UART-break and enter sleep */ bt_dev_dbg(hdev, "Set UART break: %s, status=%d", str_on_off(ps_state == PS_STATE_SLEEP), status); break; } if (!status) psdata->ps_state = ps_state; mutex_unlock(&psdata->ps_lock); if (ps_state == PS_STATE_AWAKE) btnxpuart_tx_wakeup(nxpdev); } static void ps_work_func(struct work_struct *work) { struct ps_data *data = container_of(work, struct ps_data, work); if (data->ps_cmd == PS_CMD_ENTER_PS && data->cur_psmode == PS_MODE_ENABLE) ps_control(data->hdev, PS_STATE_SLEEP); else if (data->ps_cmd == PS_CMD_EXIT_PS) ps_control(data->hdev, PS_STATE_AWAKE); } static void ps_timeout_func(struct timer_list *t) { struct ps_data *data = from_timer(data, t, ps_timer); struct hci_dev *hdev = data->hdev; struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev); if (test_bit(BTNXPUART_TX_STATE_ACTIVE, &nxpdev->tx_state)) { ps_start_timer(nxpdev); } else { data->ps_cmd = PS_CMD_ENTER_PS; schedule_work(&data->work); } } static void ps_setup(struct hci_dev *hdev) { struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev); struct ps_data *psdata = &nxpdev->psdata; psdata->hdev = hdev; INIT_WORK(&psdata->work, ps_work_func); mutex_init(&psdata->ps_lock); timer_setup(&psdata->ps_timer, ps_timeout_func, 0); } static bool ps_wakeup(struct btnxpuart_dev *nxpdev) { struct ps_data *psdata = &nxpdev->psdata; u8 ps_state; mutex_lock(&psdata->ps_lock); ps_state = psdata->ps_state; mutex_unlock(&psdata->ps_lock); if (ps_state != PS_STATE_AWAKE) { psdata->ps_cmd = PS_CMD_EXIT_PS; schedule_work(&psdata->work); return true; } return false; } static void ps_cleanup(struct btnxpuart_dev *nxpdev) { struct ps_data *psdata = &nxpdev->psdata; u8 ps_state; mutex_lock(&psdata->ps_lock); ps_state = psdata->ps_state; mutex_unlock(&psdata->ps_lock); if (ps_state != PS_STATE_AWAKE) ps_control(psdata->hdev, PS_STATE_AWAKE); ps_cancel_timer(nxpdev); cancel_work_sync(&psdata->work); mutex_destroy(&psdata->ps_lock); } static int send_ps_cmd(struct hci_dev *hdev, void *data) { struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev); struct ps_data *psdata = &nxpdev->psdata; struct psmode_cmd_payload pcmd; struct sk_buff *skb; u8 *status; if (psdata->target_ps_mode == PS_MODE_ENABLE) pcmd.ps_cmd = BT_PS_ENABLE; else pcmd.ps_cmd = BT_PS_DISABLE; pcmd.c2h_ps_interval = __cpu_to_le16(psdata->c2h_ps_interval); skb = nxp_drv_send_cmd(hdev, HCI_NXP_AUTO_SLEEP_MODE, sizeof(pcmd), &pcmd); if (IS_ERR(skb)) { bt_dev_err(hdev, "Setting Power Save mode failed (%ld)", PTR_ERR(skb)); return PTR_ERR(skb); } status = skb_pull_data(skb, 1); if (status) { if (!*status) psdata->cur_psmode = psdata->target_ps_mode; else psdata->target_ps_mode = psdata->cur_psmode; if (psdata->cur_psmode == PS_MODE_ENABLE) ps_start_timer(nxpdev); else ps_wakeup(nxpdev); bt_dev_dbg(hdev, "Power Save mode response: status=%d, ps_mode=%d", *status, psdata->cur_psmode); } kfree_skb(skb); return 0; } static int send_wakeup_method_cmd(struct hci_dev *hdev, void *data) { struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev); struct ps_data *psdata = &nxpdev->psdata; struct wakeup_cmd_payload pcmd; struct sk_buff *skb; u8 *status; pcmd.c2h_wakeupmode = psdata->c2h_wakeupmode; pcmd.c2h_wakeup_gpio = psdata->c2h_wakeup_gpio; switch (psdata->h2c_wakeupmode) { case WAKEUP_METHOD_DTR: pcmd.h2c_wakeupmode = BT_CTRL_WAKEUP_METHOD_DSR; break; case WAKEUP_METHOD_BREAK: default: pcmd.h2c_wakeupmode = BT_CTRL_WAKEUP_METHOD_BREAK; break; } pcmd.h2c_wakeup_gpio = 0xff; skb = nxp_drv_send_cmd(hdev, HCI_NXP_WAKEUP_METHOD, sizeof(pcmd), &pcmd); if (IS_ERR(skb)) { bt_dev_err(hdev, "Setting wake-up method failed (%ld)", PTR_ERR(skb)); return PTR_ERR(skb); } status = skb_pull_data(skb, 1); if (status) { if (*status == 0) psdata->cur_h2c_wakeupmode = psdata->h2c_wakeupmode; else psdata->h2c_wakeupmode = psdata->cur_h2c_wakeupmode; bt_dev_dbg(hdev, "Set Wakeup Method response: status=%d, h2c_wakeupmode=%d", *status, psdata->cur_h2c_wakeupmode); } kfree_skb(skb); return 0; } static void ps_init(struct hci_dev *hdev) { struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev); struct ps_data *psdata = &nxpdev->psdata; serdev_device_set_tiocm(nxpdev->serdev, 0, TIOCM_RTS); usleep_range(5000, 10000); serdev_device_set_tiocm(nxpdev->serdev, TIOCM_RTS, 0); usleep_range(5000, 10000); psdata->ps_state = PS_STATE_AWAKE; psdata->c2h_wakeupmode = BT_HOST_WAKEUP_METHOD_NONE; psdata->c2h_wakeup_gpio = 0xff; psdata->cur_h2c_wakeupmode = WAKEUP_METHOD_INVALID; psdata->h2c_ps_interval = PS_DEFAULT_TIMEOUT_PERIOD_MS; switch (DEFAULT_H2C_WAKEUP_MODE) { case WAKEUP_METHOD_DTR: psdata->h2c_wakeupmode = WAKEUP_METHOD_DTR; serdev_device_set_tiocm(nxpdev->serdev, 0, TIOCM_DTR); serdev_device_set_tiocm(nxpdev->serdev, TIOCM_DTR, 0); break; case WAKEUP_METHOD_BREAK: default: psdata->h2c_wakeupmode = WAKEUP_METHOD_BREAK; serdev_device_break_ctl(nxpdev->serdev, -1); usleep_range(5000, 10000); serdev_device_break_ctl(nxpdev->serdev, 0); usleep_range(5000, 10000); break; } psdata->cur_psmode = PS_MODE_DISABLE; psdata->target_ps_mode = DEFAULT_PS_MODE; if (psdata->cur_h2c_wakeupmode != psdata->h2c_wakeupmode) hci_cmd_sync_queue(hdev, send_wakeup_method_cmd, NULL, NULL); if (psdata->cur_psmode != psdata->target_ps_mode) hci_cmd_sync_queue(hdev, send_ps_cmd, NULL, NULL); } /* NXP Firmware Download Feature */ static int nxp_download_firmware(struct hci_dev *hdev) { struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev); int err = 0; nxpdev->fw_dnld_v1_offset = 0; nxpdev->fw_v1_sent_bytes = 0; nxpdev->fw_v1_expected_len = HDR_LEN; nxpdev->boot_reg_offset = 0; nxpdev->fw_dnld_v3_offset = 0; nxpdev->fw_v3_offset_correction = 0; nxpdev->baudrate_changed = false; nxpdev->timeout_changed = false; nxpdev->helper_downloaded = false; serdev_device_set_baudrate(nxpdev->serdev, HCI_NXP_PRI_BAUDRATE); serdev_device_set_flow_control(nxpdev->serdev, false); nxpdev->current_baudrate = HCI_NXP_PRI_BAUDRATE; /* Wait till FW is downloaded */ err = wait_event_interruptible_timeout(nxpdev->fw_dnld_done_wait_q, !test_bit(BTNXPUART_FW_DOWNLOADING, &nxpdev->tx_state), msecs_to_jiffies(60000)); release_firmware(nxpdev->fw); memset(nxpdev->fw_name, 0, sizeof(nxpdev->fw_name)); if (err == 0) { bt_dev_err(hdev, "FW Download Timeout. offset: %d", nxpdev->fw_dnld_v1_offset ? nxpdev->fw_dnld_v1_offset : nxpdev->fw_dnld_v3_offset); return -ETIMEDOUT; } if (test_bit(BTNXPUART_FW_DOWNLOAD_ABORT, &nxpdev->tx_state)) { bt_dev_err(hdev, "FW Download Aborted"); return -EINTR; } serdev_device_set_flow_control(nxpdev->serdev, true); /* Allow the downloaded FW to initialize */ msleep(1200); return 0; } static void nxp_send_ack(u8 ack, struct hci_dev *hdev) { struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev); u8 ack_nak[2]; int len = 1; ack_nak[0] = ack; if (ack == NXP_ACK_V3) { ack_nak[1] = crc8(crc8_table, ack_nak, 1, 0xff); len = 2; } serdev_device_write_buf(nxpdev->serdev, ack_nak, len); } static bool nxp_fw_change_baudrate(struct hci_dev *hdev, u16 req_len) { struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev); struct nxp_bootloader_cmd nxp_cmd5; struct uart_config uart_config; u32 clkdivaddr = CLKDIVADDR - nxpdev->boot_reg_offset; u32 uartdivaddr = UARTDIVADDR - nxpdev->boot_reg_offset; u32 uartmcraddr = UARTMCRADDR - nxpdev->boot_reg_offset; u32 uartreinitaddr = UARTREINITADDR - nxpdev->boot_reg_offset; u32 uarticraddr = UARTICRADDR - nxpdev->boot_reg_offset; u32 uartfcraddr = UARTFCRADDR - nxpdev->boot_reg_offset; if (req_len == sizeof(nxp_cmd5)) { nxp_cmd5.header = __cpu_to_le32(5); nxp_cmd5.arg = 0; nxp_cmd5.payload_len = __cpu_to_le32(sizeof(uart_config)); /* FW expects swapped CRC bytes */ nxp_cmd5.crc = __cpu_to_be32(crc32_be(0UL, (char *)&nxp_cmd5, sizeof(nxp_cmd5) - 4)); serdev_device_write_buf(nxpdev->serdev, (u8 *)&nxp_cmd5, sizeof(nxp_cmd5)); nxpdev->fw_v3_offset_correction += req_len; } else if (req_len == sizeof(uart_config)) { uart_config.clkdiv.address = __cpu_to_le32(clkdivaddr); uart_config.clkdiv.value = __cpu_to_le32(0x00c00000); uart_config.uartdiv.address = __cpu_to_le32(uartdivaddr); uart_config.uartdiv.value = __cpu_to_le32(1); uart_config.mcr.address = __cpu_to_le32(uartmcraddr); uart_config.mcr.value = __cpu_to_le32(MCR); uart_config.re_init.address = __cpu_to_le32(uartreinitaddr); uart_config.re_init.value = __cpu_to_le32(INIT); uart_config.icr.address = __cpu_to_le32(uarticraddr); uart_config.icr.value = __cpu_to_le32(ICR); uart_config.fcr.address = __cpu_to_le32(uartfcraddr); uart_config.fcr.value = __cpu_to_le32(FCR); /* FW expects swapped CRC bytes */ uart_config.crc = __cpu_to_be32(crc32_be(0UL, (char *)&uart_config, sizeof(uart_config) - 4)); serdev_device_write_buf(nxpdev->serdev, (u8 *)&uart_config, sizeof(uart_config)); serdev_device_wait_until_sent(nxpdev->serdev, 0); nxpdev->fw_v3_offset_correction += req_len; return true; } return false; } static bool nxp_fw_change_timeout(struct hci_dev *hdev, u16 req_len) { struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev); struct nxp_bootloader_cmd nxp_cmd7; if (req_len != sizeof(nxp_cmd7)) return false; nxp_cmd7.header = __cpu_to_le32(7); nxp_cmd7.arg = __cpu_to_le32(0x70); nxp_cmd7.payload_len = 0; /* FW expects swapped CRC bytes */ nxp_cmd7.crc = __cpu_to_be32(crc32_be(0UL, (char *)&nxp_cmd7, sizeof(nxp_cmd7) - 4)); serdev_device_write_buf(nxpdev->serdev, (u8 *)&nxp_cmd7, sizeof(nxp_cmd7)); serdev_device_wait_until_sent(nxpdev->serdev, 0); nxpdev->fw_v3_offset_correction += req_len; return true; } static u32 nxp_get_data_len(const u8 *buf) { struct nxp_bootloader_cmd *hdr = (struct nxp_bootloader_cmd *)buf; return __le32_to_cpu(hdr->payload_len); } static bool is_fw_downloading(struct btnxpuart_dev *nxpdev) { return test_bit(BTNXPUART_FW_DOWNLOADING, &nxpdev->tx_state); } static bool process_boot_signature(struct btnxpuart_dev *nxpdev) { if (test_bit(BTNXPUART_CHECK_BOOT_SIGNATURE, &nxpdev->tx_state)) { clear_bit(BTNXPUART_CHECK_BOOT_SIGNATURE, &nxpdev->tx_state); wake_up_interruptible(&nxpdev->check_boot_sign_wait_q); return false; } return is_fw_downloading(nxpdev); } static int nxp_request_firmware(struct hci_dev *hdev, const char *fw_name, const char *fw_name_old) { struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev); const char *fw_name_dt; int err = 0; if (!fw_name) return -ENOENT; if (!strlen(nxpdev->fw_name)) { if (strcmp(fw_name, FIRMWARE_HELPER) && !device_property_read_string(&nxpdev->serdev->dev, "firmware-name", &fw_name_dt)) fw_name = fw_name_dt; snprintf(nxpdev->fw_name, MAX_FW_FILE_NAME_LEN, "nxp/%s", fw_name); err = request_firmware_direct(&nxpdev->fw, nxpdev->fw_name, &hdev->dev); if (err < 0 && fw_name_old) { snprintf(nxpdev->fw_name, MAX_FW_FILE_NAME_LEN, "nxp/%s", fw_name_old); err = request_firmware_direct(&nxpdev->fw, nxpdev->fw_name, &hdev->dev); } bt_dev_info(hdev, "Request Firmware: %s", nxpdev->fw_name); if (err < 0) { bt_dev_err(hdev, "Firmware file %s not found", nxpdev->fw_name); clear_bit(BTNXPUART_FW_DOWNLOADING, &nxpdev->tx_state); } } return err; } /* for legacy chipsets with V1 bootloader */ static int nxp_recv_chip_ver_v1(struct hci_dev *hdev, struct sk_buff *skb) { struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev); struct v1_start_ind *req; __u16 chip_id; req = skb_pull_data(skb, sizeof(*req)); if (!req) goto free_skb; chip_id = le16_to_cpu(req->chip_id ^ req->chip_id_comp); if (chip_id == 0xffff && nxpdev->fw_dnld_v1_offset) { nxpdev->fw_dnld_v1_offset = 0; nxpdev->fw_v1_sent_bytes = 0; nxpdev->fw_v1_expected_len = HDR_LEN; release_firmware(nxpdev->fw); memset(nxpdev->fw_name, 0, sizeof(nxpdev->fw_name)); nxp_send_ack(NXP_ACK_V1, hdev); } free_skb: kfree_skb(skb); return 0; } static int nxp_recv_fw_req_v1(struct hci_dev *hdev, struct sk_buff *skb) { struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev); struct btnxpuart_data *nxp_data = nxpdev->nxp_data; struct v1_data_req *req; __u16 len; if (!process_boot_signature(nxpdev)) goto free_skb; req = skb_pull_data(skb, sizeof(*req)); if (!req) goto free_skb; len = __le16_to_cpu(req->len ^ req->len_comp); if (len != 0xffff) { bt_dev_dbg(hdev, "ERR: Send NAK"); nxp_send_ack(NXP_NAK_V1, hdev); goto free_skb; } nxp_send_ack(NXP_ACK_V1, hdev); len = __le16_to_cpu(req->len); if (!nxp_data->helper_fw_name) { if (!nxpdev->timeout_changed) { nxpdev->timeout_changed = nxp_fw_change_timeout(hdev, len); goto free_skb; } if (!nxpdev->baudrate_changed) { nxpdev->baudrate_changed = nxp_fw_change_baudrate(hdev, len); if (nxpdev->baudrate_changed) { serdev_device_set_baudrate(nxpdev->serdev, HCI_NXP_SEC_BAUDRATE); serdev_device_set_flow_control(nxpdev->serdev, true); nxpdev->current_baudrate = HCI_NXP_SEC_BAUDRATE; } goto free_skb; } } if (!nxp_data->helper_fw_name || nxpdev->helper_downloaded) { if (nxp_request_firmware(hdev, nxp_data->fw_name, nxp_data->fw_name_old)) goto free_skb; } else if (nxp_data->helper_fw_name && !nxpdev->helper_downloaded) { if (nxp_request_firmware(hdev, nxp_data->helper_fw_name, NULL)) goto free_skb; } if (!len) { bt_dev_info(hdev, "FW Download Complete: %zu bytes", nxpdev->fw->size); if (nxp_data->helper_fw_name && !nxpdev->helper_downloaded) { nxpdev->helper_downloaded = true; serdev_device_wait_until_sent(nxpdev->serdev, 0); serdev_device_set_baudrate(nxpdev->serdev, HCI_NXP_SEC_BAUDRATE); serdev_device_set_flow_control(nxpdev->serdev, true); } else { clear_bit(BTNXPUART_FW_DOWNLOADING, &nxpdev->tx_state); wake_up_interruptible(&nxpdev->fw_dnld_done_wait_q); } goto free_skb; } if (len & 0x01) { /* The CRC did not match at the other end. * Simply send the same bytes again. */ len = nxpdev->fw_v1_sent_bytes; bt_dev_dbg(hdev, "CRC error. Resend %d bytes of FW.", len); } else { nxpdev->fw_dnld_v1_offset += nxpdev->fw_v1_sent_bytes; /* The FW bin file is made up of many blocks of * 16 byte header and payload data chunks. If the * FW has requested a header, read the payload length * info from the header, before sending the header. * In the next iteration, the FW should request the * payload data chunk, which should be equal to the * payload length read from header. If there is a * mismatch, clearly the driver and FW are out of sync, * and we need to re-send the previous header again. */ if (len == nxpdev->fw_v1_expected_len) { if (len == HDR_LEN) nxpdev->fw_v1_expected_len = nxp_get_data_len(nxpdev->fw->data + nxpdev->fw_dnld_v1_offset); else nxpdev->fw_v1_expected_len = HDR_LEN; } else if (len == HDR_LEN) { /* FW download out of sync. Send previous chunk again */ nxpdev->fw_dnld_v1_offset -= nxpdev->fw_v1_sent_bytes; nxpdev->fw_v1_expected_len = HDR_LEN; } } if (nxpdev->fw_dnld_v1_offset + len <= nxpdev->fw->size) serdev_device_write_buf(nxpdev->serdev, nxpdev->fw->data + nxpdev->fw_dnld_v1_offset, len); nxpdev->fw_v1_sent_bytes = len; free_skb: kfree_skb(skb); return 0; } static char *nxp_get_fw_name_from_chipid(struct hci_dev *hdev, u16 chipid, u8 loader_ver) { struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev); char *fw_name = NULL; switch (chipid) { case CHIP_ID_W9098: fw_name = FIRMWARE_W9098; break; case CHIP_ID_IW416: fw_name = FIRMWARE_IW416; break; case CHIP_ID_IW612: fw_name = FIRMWARE_IW612; break; case CHIP_ID_IW624a: case CHIP_ID_IW624c: nxpdev->boot_reg_offset = 1; if ((loader_ver & FW_SECURE_MASK) == FW_OPEN) fw_name = FIRMWARE_IW624; else if ((loader_ver & FW_SECURE_MASK) != FW_AUTH_ILLEGAL) fw_name = FIRMWARE_SECURE_IW624; else bt_dev_err(hdev, "Illegal loader version %02x", loader_ver); break; case CHIP_ID_AW693a0: if ((loader_ver & FW_SECURE_MASK) == FW_OPEN) fw_name = FIRMWARE_AW693; else if ((loader_ver & FW_SECURE_MASK) != FW_AUTH_ILLEGAL) fw_name = FIRMWARE_SECURE_AW693; else bt_dev_err(hdev, "Illegal loader version %02x", loader_ver); break; case CHIP_ID_AW693a1: if ((loader_ver & FW_SECURE_MASK) == FW_OPEN) fw_name = FIRMWARE_AW693_A1; else if ((loader_ver & FW_SECURE_MASK) != FW_AUTH_ILLEGAL) fw_name = FIRMWARE_SECURE_AW693_A1; else bt_dev_err(hdev, "Illegal loader version %02x", loader_ver); break; case CHIP_ID_IW615a0: case CHIP_ID_IW615a1: if ((loader_ver & FW_SECURE_MASK) == FW_OPEN) fw_name = FIRMWARE_IW615; else if ((loader_ver & FW_SECURE_MASK) != FW_AUTH_ILLEGAL) fw_name = FIRMWARE_SECURE_IW615; else bt_dev_err(hdev, "Illegal loader version %02x", loader_ver); break; default: bt_dev_err(hdev, "Unknown chip signature %04x", chipid); break; } return fw_name; } static char *nxp_get_old_fw_name_from_chipid(struct hci_dev *hdev, u16 chipid, u8 loader_ver) { char *fw_name_old = NULL; switch (chipid) { case CHIP_ID_W9098: fw_name_old = FIRMWARE_W9098_OLD; break; } return fw_name_old; } static int nxp_recv_chip_ver_v3(struct hci_dev *hdev, struct sk_buff *skb) { struct v3_start_ind *req = skb_pull_data(skb, sizeof(*req)); struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev); const char *fw_name; const char *fw_name_old; u16 chip_id; u8 loader_ver; if (!process_boot_signature(nxpdev)) goto free_skb; chip_id = le16_to_cpu(req->chip_id); loader_ver = req->loader_ver; bt_dev_info(hdev, "ChipID: %04x, Version: %d", chip_id, loader_ver); fw_name = nxp_get_fw_name_from_chipid(hdev, chip_id, loader_ver); fw_name_old = nxp_get_old_fw_name_from_chipid(hdev, chip_id, loader_ver); if (!nxp_request_firmware(hdev, fw_name, fw_name_old)) nxp_send_ack(NXP_ACK_V3, hdev); free_skb: kfree_skb(skb); return 0; } static void nxp_handle_fw_download_error(struct hci_dev *hdev, struct v3_data_req *req) { struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev); __u32 offset = __le32_to_cpu(req->offset); __u16 err = __le16_to_cpu(req->error); union nxp_v3_rx_timeout_nak_u nak_tx_buf; switch (err) { case NXP_ACK_RX_TIMEOUT: case NXP_HDR_RX_TIMEOUT: case NXP_DATA_RX_TIMEOUT: nak_tx_buf.pkt.nak = NXP_NAK_V3; nak_tx_buf.pkt.offset = __cpu_to_le32(offset); nak_tx_buf.pkt.crc = crc8(crc8_table, nak_tx_buf.buf, sizeof(nak_tx_buf) - 1, 0xff); serdev_device_write_buf(nxpdev->serdev, nak_tx_buf.buf, sizeof(nak_tx_buf)); break; default: bt_dev_dbg(hdev, "Unknown bootloader error code: %d", err); break; } } static int nxp_recv_fw_req_v3(struct hci_dev *hdev, struct sk_buff *skb) { struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev); struct v3_data_req *req; __u16 len; __u32 offset; if (!process_boot_signature(nxpdev)) goto free_skb; req = skb_pull_data(skb, sizeof(*req)); if (!req || !nxpdev->fw) goto free_skb; if (!req->error) { nxp_send_ack(NXP_ACK_V3, hdev); } else { nxp_handle_fw_download_error(hdev, req); goto free_skb; } len = __le16_to_cpu(req->len); if (!nxpdev->timeout_changed) { nxpdev->timeout_changed = nxp_fw_change_timeout(hdev, len); goto free_skb; } if (!nxpdev->baudrate_changed) { nxpdev->baudrate_changed = nxp_fw_change_baudrate(hdev, len); if (nxpdev->baudrate_changed) { serdev_device_set_baudrate(nxpdev->serdev, HCI_NXP_SEC_BAUDRATE); serdev_device_set_flow_control(nxpdev->serdev, true); nxpdev->current_baudrate = HCI_NXP_SEC_BAUDRATE; } goto free_skb; } if (req->len == 0) { bt_dev_info(hdev, "FW Download Complete: %zu bytes", nxpdev->fw->size); clear_bit(BTNXPUART_FW_DOWNLOADING, &nxpdev->tx_state); wake_up_interruptible(&nxpdev->fw_dnld_done_wait_q); goto free_skb; } offset = __le32_to_cpu(req->offset); if (offset < nxpdev->fw_v3_offset_correction) { /* This scenario should ideally never occur. But if it ever does, * FW is out of sync and needs a power cycle. */ bt_dev_err(hdev, "Something went wrong during FW download"); bt_dev_err(hdev, "Please power cycle and try again"); goto free_skb; } nxpdev->fw_dnld_v3_offset = offset - nxpdev->fw_v3_offset_correction; serdev_device_write_buf(nxpdev->serdev, nxpdev->fw->data + nxpdev->fw_dnld_v3_offset, len); free_skb: kfree_skb(skb); return 0; } static int nxp_set_baudrate_cmd(struct hci_dev *hdev, void *data) { struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev); __le32 new_baudrate = __cpu_to_le32(nxpdev->new_baudrate); struct ps_data *psdata = &nxpdev->psdata; struct sk_buff *skb; u8 *status; if (!psdata) return 0; skb = nxp_drv_send_cmd(hdev, HCI_NXP_SET_OPER_SPEED, 4, (u8 *)&new_baudrate); if (IS_ERR(skb)) { bt_dev_err(hdev, "Setting baudrate failed (%ld)", PTR_ERR(skb)); return PTR_ERR(skb); } status = (u8 *)skb_pull_data(skb, 1); if (status) { if (*status == 0) { serdev_device_set_baudrate(nxpdev->serdev, nxpdev->new_baudrate); nxpdev->current_baudrate = nxpdev->new_baudrate; } bt_dev_dbg(hdev, "Set baudrate response: status=%d, baudrate=%d", *status, nxpdev->new_baudrate); } kfree_skb(skb); return 0; } static int nxp_check_boot_sign(struct btnxpuart_dev *nxpdev) { serdev_device_set_baudrate(nxpdev->serdev, HCI_NXP_PRI_BAUDRATE); if (test_bit(BTNXPUART_IR_IN_PROGRESS, &nxpdev->tx_state)) serdev_device_set_flow_control(nxpdev->serdev, false); else serdev_device_set_flow_control(nxpdev->serdev, true); set_bit(BTNXPUART_CHECK_BOOT_SIGNATURE, &nxpdev->tx_state); return wait_event_interruptible_timeout(nxpdev->check_boot_sign_wait_q, !test_bit(BTNXPUART_CHECK_BOOT_SIGNATURE, &nxpdev->tx_state), msecs_to_jiffies(1000)); } static int nxp_set_ind_reset(struct hci_dev *hdev, void *data) { static const u8 ir_hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, BTNXPUART_IR_HW_ERR }; struct sk_buff *skb; skb = bt_skb_alloc(3, GFP_ATOMIC); if (!skb) return -ENOMEM; hci_skb_pkt_type(skb) = HCI_EVENT_PKT; skb_put_data(skb, ir_hw_err, 3); /* Inject Hardware Error to upper stack */ return hci_recv_frame(hdev, skb); } /* NXP protocol */ static int nxp_setup(struct hci_dev *hdev) { struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev); int err = 0; if (nxp_check_boot_sign(nxpdev)) { bt_dev_dbg(hdev, "Need FW Download."); err = nxp_download_firmware(hdev); if (err < 0) return err; } else { bt_dev_info(hdev, "FW already running."); clear_bit(BTNXPUART_FW_DOWNLOADING, &nxpdev->tx_state); } serdev_device_set_baudrate(nxpdev->serdev, nxpdev->fw_init_baudrate); nxpdev->current_baudrate = nxpdev->fw_init_baudrate; if (nxpdev->current_baudrate != HCI_NXP_SEC_BAUDRATE) { nxpdev->new_baudrate = HCI_NXP_SEC_BAUDRATE; hci_cmd_sync_queue(hdev, nxp_set_baudrate_cmd, NULL, NULL); } ps_init(hdev); if (test_and_clear_bit(BTNXPUART_IR_IN_PROGRESS, &nxpdev->tx_state)) hci_dev_clear_flag(hdev, HCI_SETUP); return 0; } static void nxp_hw_err(struct hci_dev *hdev, u8 code) { struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev); switch (code) { case BTNXPUART_IR_HW_ERR: set_bit(BTNXPUART_IR_IN_PROGRESS, &nxpdev->tx_state); hci_dev_set_flag(hdev, HCI_SETUP); break; default: break; } } static int nxp_shutdown(struct hci_dev *hdev) { struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev); struct sk_buff *skb; u8 *status; u8 pcmd = 0; if (test_bit(BTNXPUART_IR_IN_PROGRESS, &nxpdev->tx_state)) { skb = nxp_drv_send_cmd(hdev, HCI_NXP_IND_RESET, 1, &pcmd); if (IS_ERR(skb)) return PTR_ERR(skb); status = skb_pull_data(skb, 1); if (status) { serdev_device_set_flow_control(nxpdev->serdev, false); set_bit(BTNXPUART_FW_DOWNLOADING, &nxpdev->tx_state); } kfree_skb(skb); } return 0; } static int btnxpuart_queue_skb(struct hci_dev *hdev, struct sk_buff *skb) { struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev); /* Prepend skb with frame type */ memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1); skb_queue_tail(&nxpdev->txq, skb); btnxpuart_tx_wakeup(nxpdev); return 0; } static int nxp_enqueue(struct hci_dev *hdev, struct sk_buff *skb) { struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev); struct ps_data *psdata = &nxpdev->psdata; struct hci_command_hdr *hdr; struct psmode_cmd_payload ps_parm; struct wakeup_cmd_payload wakeup_parm; __le32 baudrate_parm; /* if vendor commands are received from user space (e.g. hcitool), update * driver flags accordingly and ask driver to re-send the command to FW. * In case the payload for any command does not match expected payload * length, let the firmware and user space program handle it, or throw * an error. */ if (bt_cb(skb)->pkt_type == HCI_COMMAND_PKT && !psdata->driver_sent_cmd) { hdr = (struct hci_command_hdr *)skb->data; if (hdr->plen != (skb->len - HCI_COMMAND_HDR_SIZE)) return btnxpuart_queue_skb(hdev, skb); switch (__le16_to_cpu(hdr->opcode)) { case HCI_NXP_AUTO_SLEEP_MODE: if (hdr->plen == sizeof(ps_parm)) { memcpy(&ps_parm, skb->data + HCI_COMMAND_HDR_SIZE, hdr->plen); if (ps_parm.ps_cmd == BT_PS_ENABLE) psdata->target_ps_mode = PS_MODE_ENABLE; else if (ps_parm.ps_cmd == BT_PS_DISABLE) psdata->target_ps_mode = PS_MODE_DISABLE; psdata->c2h_ps_interval = __le16_to_cpu(ps_parm.c2h_ps_interval); hci_cmd_sync_queue(hdev, send_ps_cmd, NULL, NULL); goto free_skb; } break; case HCI_NXP_WAKEUP_METHOD: if (hdr->plen == sizeof(wakeup_parm)) { memcpy(&wakeup_parm, skb->data + HCI_COMMAND_HDR_SIZE, hdr->plen); psdata->c2h_wakeupmode = wakeup_parm.c2h_wakeupmode; psdata->c2h_wakeup_gpio = wakeup_parm.c2h_wakeup_gpio; psdata->h2c_wakeup_gpio = wakeup_parm.h2c_wakeup_gpio; switch (wakeup_parm.h2c_wakeupmode) { case BT_CTRL_WAKEUP_METHOD_DSR: psdata->h2c_wakeupmode = WAKEUP_METHOD_DTR; break; case BT_CTRL_WAKEUP_METHOD_BREAK: default: psdata->h2c_wakeupmode = WAKEUP_METHOD_BREAK; break; } hci_cmd_sync_queue(hdev, send_wakeup_method_cmd, NULL, NULL); goto free_skb; } break; case HCI_NXP_SET_OPER_SPEED: if (hdr->plen == sizeof(baudrate_parm)) { memcpy(&baudrate_parm, skb->data + HCI_COMMAND_HDR_SIZE, hdr->plen); nxpdev->new_baudrate = __le32_to_cpu(baudrate_parm); hci_cmd_sync_queue(hdev, nxp_set_baudrate_cmd, NULL, NULL); goto free_skb; } break; case HCI_NXP_IND_RESET: if (hdr->plen == 1) { hci_cmd_sync_queue(hdev, nxp_set_ind_reset, NULL, NULL); goto free_skb; } break; default: break; } } return btnxpuart_queue_skb(hdev, skb); free_skb: kfree_skb(skb); return 0; } static struct sk_buff *nxp_dequeue(void *data) { struct btnxpuart_dev *nxpdev = (struct btnxpuart_dev *)data; ps_start_timer(nxpdev); return skb_dequeue(&nxpdev->txq); } /* btnxpuart based on serdev */ static void btnxpuart_tx_work(struct work_struct *work) { struct btnxpuart_dev *nxpdev = container_of(work, struct btnxpuart_dev, tx_work); struct serdev_device *serdev = nxpdev->serdev; struct hci_dev *hdev = nxpdev->hdev; struct sk_buff *skb; int len; if (ps_wakeup(nxpdev)) return; while ((skb = nxp_dequeue(nxpdev))) { len = serdev_device_write_buf(serdev, skb->data, skb->len); hdev->stat.byte_tx += len; skb_pull(skb, len); if (skb->len > 0) { skb_queue_head(&nxpdev->txq, skb); break; } switch (hci_skb_pkt_type(skb)) { case HCI_COMMAND_PKT: hdev->stat.cmd_tx++; break; case HCI_ACLDATA_PKT: hdev->stat.acl_tx++; break; case HCI_SCODATA_PKT: hdev->stat.sco_tx++; break; } kfree_skb(skb); } clear_bit(BTNXPUART_TX_STATE_ACTIVE, &nxpdev->tx_state); } static int btnxpuart_open(struct hci_dev *hdev) { struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev); int err = 0; err = serdev_device_open(nxpdev->serdev); if (err) { bt_dev_err(hdev, "Unable to open UART device %s", dev_name(&nxpdev->serdev->dev)); } else { set_bit(BTNXPUART_SERDEV_OPEN, &nxpdev->tx_state); } return err; } static int btnxpuart_close(struct hci_dev *hdev) { struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev); serdev_device_close(nxpdev->serdev); skb_queue_purge(&nxpdev->txq); if (!IS_ERR_OR_NULL(nxpdev->rx_skb)) { kfree_skb(nxpdev->rx_skb); nxpdev->rx_skb = NULL; } clear_bit(BTNXPUART_SERDEV_OPEN, &nxpdev->tx_state); return 0; } static int btnxpuart_flush(struct hci_dev *hdev) { struct btnxpuart_dev *nxpdev = hci_get_drvdata(hdev); /* Flush any pending characters */ serdev_device_write_flush(nxpdev->serdev); skb_queue_purge(&nxpdev->txq); cancel_work_sync(&nxpdev->tx_work); if (!IS_ERR_OR_NULL(nxpdev->rx_skb)) { kfree_skb(nxpdev->rx_skb); nxpdev->rx_skb = NULL; } return 0; } static const struct h4_recv_pkt nxp_recv_pkts[] = { { H4_RECV_ACL, .recv = hci_recv_frame }, { H4_RECV_SCO, .recv = hci_recv_frame }, { H4_RECV_EVENT, .recv = hci_recv_frame }, { NXP_RECV_CHIP_VER_V1, .recv = nxp_recv_chip_ver_v1 }, { NXP_RECV_FW_REQ_V1, .recv = nxp_recv_fw_req_v1 }, { NXP_RECV_CHIP_VER_V3, .recv = nxp_recv_chip_ver_v3 }, { NXP_RECV_FW_REQ_V3, .recv = nxp_recv_fw_req_v3 }, }; static size_t btnxpuart_receive_buf(struct serdev_device *serdev, const u8 *data, size_t count) { struct btnxpuart_dev *nxpdev = serdev_device_get_drvdata(serdev); ps_start_timer(nxpdev); nxpdev->rx_skb = h4_recv_buf(nxpdev->hdev, nxpdev->rx_skb, data, count, nxp_recv_pkts, ARRAY_SIZE(nxp_recv_pkts)); if (IS_ERR(nxpdev->rx_skb)) { int err = PTR_ERR(nxpdev->rx_skb); /* Safe to ignore out-of-sync bootloader signatures */ if (!is_fw_downloading(nxpdev)) bt_dev_err(nxpdev->hdev, "Frame reassembly failed (%d)", err); return count; } if (!is_fw_downloading(nxpdev)) nxpdev->hdev->stat.byte_rx += count; return count; } static void btnxpuart_write_wakeup(struct serdev_device *serdev) { serdev_device_write_wakeup(serdev); } static const struct serdev_device_ops btnxpuart_client_ops = { .receive_buf = btnxpuart_receive_buf, .write_wakeup = btnxpuart_write_wakeup, }; static int nxp_serdev_probe(struct serdev_device *serdev) { struct hci_dev *hdev; struct btnxpuart_dev *nxpdev; nxpdev = devm_kzalloc(&serdev->dev, sizeof(*nxpdev), GFP_KERNEL); if (!nxpdev) return -ENOMEM; nxpdev->nxp_data = (struct btnxpuart_data *)device_get_match_data(&serdev->dev); nxpdev->serdev = serdev; serdev_device_set_drvdata(serdev, nxpdev); serdev_device_set_client_ops(serdev, &btnxpuart_client_ops); INIT_WORK(&nxpdev->tx_work, btnxpuart_tx_work); skb_queue_head_init(&nxpdev->txq); init_waitqueue_head(&nxpdev->fw_dnld_done_wait_q); init_waitqueue_head(&nxpdev->check_boot_sign_wait_q); device_property_read_u32(&nxpdev->serdev->dev, "fw-init-baudrate", &nxpdev->fw_init_baudrate); if (!nxpdev->fw_init_baudrate) nxpdev->fw_init_baudrate = FW_INIT_BAUDRATE; set_bit(BTNXPUART_FW_DOWNLOADING, &nxpdev->tx_state); crc8_populate_msb(crc8_table, POLYNOMIAL8); /* Initialize and register HCI device */ hdev = hci_alloc_dev(); if (!hdev) { dev_err(&serdev->dev, "Can't allocate HCI device\n"); return -ENOMEM; } nxpdev->hdev = hdev; hdev->bus = HCI_UART; hci_set_drvdata(hdev, nxpdev); hdev->manufacturer = MANUFACTURER_NXP; hdev->open = btnxpuart_open; hdev->close = btnxpuart_close; hdev->flush = btnxpuart_flush; hdev->setup = nxp_setup; hdev->send = nxp_enqueue; hdev->hw_error = nxp_hw_err; hdev->shutdown = nxp_shutdown; SET_HCIDEV_DEV(hdev, &serdev->dev); if (hci_register_dev(hdev) < 0) { dev_err(&serdev->dev, "Can't register HCI device\n"); hci_free_dev(hdev); return -ENODEV; } ps_setup(hdev); return 0; } static void nxp_serdev_remove(struct serdev_device *serdev) { struct btnxpuart_dev *nxpdev = serdev_device_get_drvdata(serdev); struct hci_dev *hdev = nxpdev->hdev; if (is_fw_downloading(nxpdev)) { set_bit(BTNXPUART_FW_DOWNLOAD_ABORT, &nxpdev->tx_state); clear_bit(BTNXPUART_FW_DOWNLOADING, &nxpdev->tx_state); wake_up_interruptible(&nxpdev->check_boot_sign_wait_q); wake_up_interruptible(&nxpdev->fw_dnld_done_wait_q); } else { /* Restore FW baudrate to fw_init_baudrate if changed. * This will ensure FW baudrate is in sync with * driver baudrate in case this driver is re-inserted. */ if (nxpdev->current_baudrate != nxpdev->fw_init_baudrate) { nxpdev->new_baudrate = nxpdev->fw_init_baudrate; nxp_set_baudrate_cmd(hdev, NULL); } } ps_cleanup(nxpdev); hci_unregister_dev(hdev); hci_free_dev(hdev); } #ifdef CONFIG_PM_SLEEP static int nxp_serdev_suspend(struct device *dev) { struct btnxpuart_dev *nxpdev = dev_get_drvdata(dev); struct ps_data *psdata = &nxpdev->psdata; ps_control(psdata->hdev, PS_STATE_SLEEP); return 0; } static int nxp_serdev_resume(struct device *dev) { struct btnxpuart_dev *nxpdev = dev_get_drvdata(dev); struct ps_data *psdata = &nxpdev->psdata; ps_control(psdata->hdev, PS_STATE_AWAKE); return 0; } #endif static struct btnxpuart_data w8987_data __maybe_unused = { .helper_fw_name = NULL, .fw_name = FIRMWARE_W8987, .fw_name_old = FIRMWARE_W8987_OLD, }; static struct btnxpuart_data w8997_data __maybe_unused = { .helper_fw_name = FIRMWARE_HELPER, .fw_name = FIRMWARE_W8997, .fw_name_old = FIRMWARE_W8997_OLD, }; static const struct of_device_id nxpuart_of_match_table[] __maybe_unused = { { .compatible = "nxp,88w8987-bt", .data = &w8987_data }, { .compatible = "nxp,88w8997-bt", .data = &w8997_data }, { } }; MODULE_DEVICE_TABLE(of, nxpuart_of_match_table); static const struct dev_pm_ops nxp_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(nxp_serdev_suspend, nxp_serdev_resume) }; static struct serdev_device_driver nxp_serdev_driver = { .probe = nxp_serdev_probe, .remove = nxp_serdev_remove, .driver = { .name = "btnxpuart", .of_match_table = of_match_ptr(nxpuart_of_match_table), .pm = &nxp_pm_ops, }, }; module_serdev_device_driver(nxp_serdev_driver); MODULE_AUTHOR("Neeraj Sanjay Kale <neeraj.sanjaykale@nxp.com>"); MODULE_DESCRIPTION("NXP Bluetooth Serial driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1