Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ben Young Tae Kim | 3427 | 30.48% | 2 | 1.26% |
Balakrishna Godavarthi | 2353 | 20.93% | 16 | 10.06% |
Venkata Lakshmi Narayana Gubba | 987 | 8.78% | 14 | 8.81% |
Claire Chang | 522 | 4.64% | 1 | 0.63% |
Rocky Liao | 469 | 4.17% | 12 | 7.55% |
Sai Teja Aluvala | 412 | 3.66% | 2 | 1.26% |
Thierry Escande | 411 | 3.66% | 1 | 0.63% |
Zijun Hu | 391 | 3.48% | 6 | 3.77% |
Bartosz Golaszewski | 309 | 2.75% | 10 | 6.29% |
Matthias Kaehlcke | 277 | 2.46% | 11 | 6.92% |
Neil Armstrong | 254 | 2.26% | 2 | 1.26% |
Luca Weiss | 199 | 1.77% | 1 | 0.63% |
Björn Andersson | 187 | 1.66% | 3 | 1.89% |
Steev Klimaszewski | 160 | 1.42% | 2 | 1.26% |
Harish Bandi | 121 | 1.08% | 4 | 2.52% |
Maksim Krasnyanskiy | 92 | 0.82% | 3 | 1.89% |
Abhishek Pandit-Subedi | 76 | 0.68% | 3 | 1.89% |
Johan Hovold | 76 | 0.68% | 5 | 3.14% |
Johan Hedberg | 68 | 0.60% | 1 | 0.63% |
Marcel Holtmann | 54 | 0.48% | 9 | 5.66% |
Tim Jiang | 50 | 0.44% | 1 | 0.63% |
Linus Torvalds | 43 | 0.38% | 1 | 0.63% |
Kees Cook | 42 | 0.37% | 2 | 1.26% |
Christian Hewitt | 40 | 0.36% | 2 | 1.26% |
Krzysztof Kozlowski | 27 | 0.24% | 2 | 1.26% |
Felipe Balbi | 20 | 0.18% | 1 | 0.63% |
Zhengping Jiang | 17 | 0.15% | 2 | 1.26% |
Amit Pundir | 14 | 0.12% | 1 | 0.63% |
Loic Poulain | 14 | 0.12% | 1 | 0.63% |
Linus Torvalds (pre-git) | 13 | 0.12% | 7 | 4.40% |
Vladis Dronov | 12 | 0.11% | 1 | 0.63% |
Luiz Augusto von Dentz | 10 | 0.09% | 4 | 2.52% |
Nigel Christian | 10 | 0.09% | 1 | 0.63% |
Prasanna Karthik | 9 | 0.08% | 2 | 1.26% |
Miao-chen Chou | 9 | 0.08% | 1 | 0.63% |
Pavel Skripkin | 9 | 0.08% | 1 | 0.63% |
Thomas Gleixner | 9 | 0.08% | 2 | 1.26% |
Miaoqian Lin | 6 | 0.05% | 1 | 0.63% |
Dinghao Liu | 5 | 0.04% | 1 | 0.63% |
Joseph Hwang | 5 | 0.04% | 1 | 0.63% |
Erick Archer | 4 | 0.04% | 1 | 0.63% |
David Herrmann | 3 | 0.03% | 1 | 0.63% |
Dan Carpenter | 3 | 0.03% | 1 | 0.63% |
Doug Anderson | 3 | 0.03% | 1 | 0.63% |
Bhaktipriya Shridhar | 3 | 0.03% | 1 | 0.63% |
Johannes Berg | 2 | 0.02% | 1 | 0.63% |
Colin Ian King | 2 | 0.02% | 1 | 0.63% |
Viresh Kumar | 2 | 0.02% | 1 | 0.63% |
Deepak Saxena | 2 | 0.02% | 1 | 0.63% |
Gustavo A. R. Silva | 2 | 0.02% | 1 | 0.63% |
Panicker Harish | 2 | 0.02% | 1 | 0.63% |
Nishka Dasgupta | 1 | 0.01% | 1 | 0.63% |
Bhaskar Chowdhury | 1 | 0.01% | 1 | 0.63% |
Rob Herring | 1 | 0.01% | 1 | 0.63% |
Jia-Ju Bai | 1 | 0.01% | 1 | 0.63% |
Yang Yingliang | 1 | 0.01% | 1 | 0.63% |
Total | 11242 | 159 |
// SPDX-License-Identifier: GPL-2.0-only /* * Bluetooth Software UART Qualcomm protocol * * HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management * protocol extension to H4. * * Copyright (C) 2007 Texas Instruments, Inc. * Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved. * * Acknowledgements: * This file is based on hci_ll.c, which was... * Written by Ohad Ben-Cohen <ohad@bencohen.org> * which was in turn based on hci_h4.c, which was written * by Maxim Krasnyansky and Marcel Holtmann. */ #include <linux/kernel.h> #include <linux/clk.h> #include <linux/completion.h> #include <linux/debugfs.h> #include <linux/delay.h> #include <linux/devcoredump.h> #include <linux/device.h> #include <linux/gpio/consumer.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/of.h> #include <linux/acpi.h> #include <linux/platform_device.h> #include <linux/pwrseq/consumer.h> #include <linux/regulator/consumer.h> #include <linux/serdev.h> #include <linux/mutex.h> #include <asm/unaligned.h> #include <net/bluetooth/bluetooth.h> #include <net/bluetooth/hci_core.h> #include "hci_uart.h" #include "btqca.h" /* HCI_IBS protocol messages */ #define HCI_IBS_SLEEP_IND 0xFE #define HCI_IBS_WAKE_IND 0xFD #define HCI_IBS_WAKE_ACK 0xFC #define HCI_MAX_IBS_SIZE 10 #define IBS_WAKE_RETRANS_TIMEOUT_MS 100 #define IBS_BTSOC_TX_IDLE_TIMEOUT_MS 200 #define IBS_HOST_TX_IDLE_TIMEOUT_MS 2000 #define CMD_TRANS_TIMEOUT_MS 100 #define MEMDUMP_TIMEOUT_MS 8000 #define IBS_DISABLE_SSR_TIMEOUT_MS \ (MEMDUMP_TIMEOUT_MS + FW_DOWNLOAD_TIMEOUT_MS) #define FW_DOWNLOAD_TIMEOUT_MS 3000 /* susclk rate */ #define SUSCLK_RATE_32KHZ 32768 /* Controller debug log header */ #define QCA_DEBUG_HANDLE 0x2EDC /* max retry count when init fails */ #define MAX_INIT_RETRIES 3 /* Controller dump header */ #define QCA_SSR_DUMP_HANDLE 0x0108 #define QCA_DUMP_PACKET_SIZE 255 #define QCA_LAST_SEQUENCE_NUM 0xFFFF #define QCA_CRASHBYTE_PACKET_LEN 1096 #define QCA_MEMDUMP_BYTE 0xFB enum qca_flags { QCA_IBS_DISABLED, QCA_DROP_VENDOR_EVENT, QCA_SUSPENDING, QCA_MEMDUMP_COLLECTION, QCA_HW_ERROR_EVENT, QCA_SSR_TRIGGERED, QCA_BT_OFF, QCA_ROM_FW, QCA_DEBUGFS_CREATED, }; enum qca_capabilities { QCA_CAP_WIDEBAND_SPEECH = BIT(0), QCA_CAP_VALID_LE_STATES = BIT(1), }; /* HCI_IBS transmit side sleep protocol states */ enum tx_ibs_states { HCI_IBS_TX_ASLEEP, HCI_IBS_TX_WAKING, HCI_IBS_TX_AWAKE, }; /* HCI_IBS receive side sleep protocol states */ enum rx_states { HCI_IBS_RX_ASLEEP, HCI_IBS_RX_AWAKE, }; /* HCI_IBS transmit and receive side clock state vote */ enum hci_ibs_clock_state_vote { HCI_IBS_VOTE_STATS_UPDATE, HCI_IBS_TX_VOTE_CLOCK_ON, HCI_IBS_TX_VOTE_CLOCK_OFF, HCI_IBS_RX_VOTE_CLOCK_ON, HCI_IBS_RX_VOTE_CLOCK_OFF, }; /* Controller memory dump states */ enum qca_memdump_states { QCA_MEMDUMP_IDLE, QCA_MEMDUMP_COLLECTING, QCA_MEMDUMP_COLLECTED, QCA_MEMDUMP_TIMEOUT, }; struct qca_memdump_info { u32 current_seq_no; u32 received_dump; u32 ram_dump_size; }; struct qca_memdump_event_hdr { __u8 evt; __u8 plen; __u16 opcode; __le16 seq_no; __u8 reserved; } __packed; struct qca_dump_size { __le32 dump_size; } __packed; struct qca_data { struct hci_uart *hu; struct sk_buff *rx_skb; struct sk_buff_head txq; struct sk_buff_head tx_wait_q; /* HCI_IBS wait queue */ struct sk_buff_head rx_memdump_q; /* Memdump wait queue */ spinlock_t hci_ibs_lock; /* HCI_IBS state lock */ u8 tx_ibs_state; /* HCI_IBS transmit side power state*/ u8 rx_ibs_state; /* HCI_IBS receive side power state */ bool tx_vote; /* Clock must be on for TX */ bool rx_vote; /* Clock must be on for RX */ struct timer_list tx_idle_timer; u32 tx_idle_delay; struct timer_list wake_retrans_timer; u32 wake_retrans; struct workqueue_struct *workqueue; struct work_struct ws_awake_rx; struct work_struct ws_awake_device; struct work_struct ws_rx_vote_off; struct work_struct ws_tx_vote_off; struct work_struct ctrl_memdump_evt; struct delayed_work ctrl_memdump_timeout; struct qca_memdump_info *qca_memdump; unsigned long flags; struct completion drop_ev_comp; wait_queue_head_t suspend_wait_q; enum qca_memdump_states memdump_state; struct mutex hci_memdump_lock; u16 fw_version; u16 controller_id; /* For debugging purpose */ u64 ibs_sent_wacks; u64 ibs_sent_slps; u64 ibs_sent_wakes; u64 ibs_recv_wacks; u64 ibs_recv_slps; u64 ibs_recv_wakes; u64 vote_last_jif; u32 vote_on_ms; u32 vote_off_ms; u64 tx_votes_on; u64 rx_votes_on; u64 tx_votes_off; u64 rx_votes_off; u64 votes_on; u64 votes_off; }; enum qca_speed_type { QCA_INIT_SPEED = 1, QCA_OPER_SPEED }; /* * Voltage regulator information required for configuring the * QCA Bluetooth chipset */ struct qca_vreg { const char *name; unsigned int load_uA; }; struct qca_device_data { enum qca_btsoc_type soc_type; struct qca_vreg *vregs; size_t num_vregs; uint32_t capabilities; }; /* * Platform data for the QCA Bluetooth power driver. */ struct qca_power { struct device *dev; struct regulator_bulk_data *vreg_bulk; int num_vregs; bool vregs_on; struct pwrseq_desc *pwrseq; }; struct qca_serdev { struct hci_uart serdev_hu; struct gpio_desc *bt_en; struct gpio_desc *sw_ctrl; struct clk *susclk; enum qca_btsoc_type btsoc_type; struct qca_power *bt_power; u32 init_speed; u32 oper_speed; bool bdaddr_property_broken; const char *firmware_name; }; static int qca_regulator_enable(struct qca_serdev *qcadev); static void qca_regulator_disable(struct qca_serdev *qcadev); static void qca_power_shutdown(struct hci_uart *hu); static int qca_power_off(struct hci_dev *hdev); static void qca_controller_memdump(struct work_struct *work); static void qca_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb); static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu) { enum qca_btsoc_type soc_type; if (hu->serdev) { struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev); soc_type = qsd->btsoc_type; } else { soc_type = QCA_ROME; } return soc_type; } static const char *qca_get_firmware_name(struct hci_uart *hu) { if (hu->serdev) { struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev); return qsd->firmware_name; } else { return NULL; } } static void __serial_clock_on(struct tty_struct *tty) { /* TODO: Some chipset requires to enable UART clock on client * side to save power consumption or manual work is required. * Please put your code to control UART clock here if needed */ } static void __serial_clock_off(struct tty_struct *tty) { /* TODO: Some chipset requires to disable UART clock on client * side to save power consumption or manual work is required. * Please put your code to control UART clock off here if needed */ } /* serial_clock_vote needs to be called with the ibs lock held */ static void serial_clock_vote(unsigned long vote, struct hci_uart *hu) { struct qca_data *qca = hu->priv; unsigned int diff; bool old_vote = (qca->tx_vote | qca->rx_vote); bool new_vote; switch (vote) { case HCI_IBS_VOTE_STATS_UPDATE: diff = jiffies_to_msecs(jiffies - qca->vote_last_jif); if (old_vote) qca->vote_off_ms += diff; else qca->vote_on_ms += diff; return; case HCI_IBS_TX_VOTE_CLOCK_ON: qca->tx_vote = true; qca->tx_votes_on++; break; case HCI_IBS_RX_VOTE_CLOCK_ON: qca->rx_vote = true; qca->rx_votes_on++; break; case HCI_IBS_TX_VOTE_CLOCK_OFF: qca->tx_vote = false; qca->tx_votes_off++; break; case HCI_IBS_RX_VOTE_CLOCK_OFF: qca->rx_vote = false; qca->rx_votes_off++; break; default: BT_ERR("Voting irregularity"); return; } new_vote = qca->rx_vote | qca->tx_vote; if (new_vote != old_vote) { if (new_vote) __serial_clock_on(hu->tty); else __serial_clock_off(hu->tty); BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false", vote ? "true" : "false"); diff = jiffies_to_msecs(jiffies - qca->vote_last_jif); if (new_vote) { qca->votes_on++; qca->vote_off_ms += diff; } else { qca->votes_off++; qca->vote_on_ms += diff; } qca->vote_last_jif = jiffies; } } /* Builds and sends an HCI_IBS command packet. * These are very simple packets with only 1 cmd byte. */ static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu) { int err = 0; struct sk_buff *skb = NULL; struct qca_data *qca = hu->priv; BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd); skb = bt_skb_alloc(1, GFP_ATOMIC); if (!skb) { BT_ERR("Failed to allocate memory for HCI_IBS packet"); return -ENOMEM; } /* Assign HCI_IBS type */ skb_put_u8(skb, cmd); skb_queue_tail(&qca->txq, skb); return err; } static void qca_wq_awake_device(struct work_struct *work) { struct qca_data *qca = container_of(work, struct qca_data, ws_awake_device); struct hci_uart *hu = qca->hu; unsigned long retrans_delay; unsigned long flags; BT_DBG("hu %p wq awake device", hu); /* Vote for serial clock */ serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu); spin_lock_irqsave(&qca->hci_ibs_lock, flags); /* Send wake indication to device */ if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) BT_ERR("Failed to send WAKE to device"); qca->ibs_sent_wakes++; /* Start retransmit timer */ retrans_delay = msecs_to_jiffies(qca->wake_retrans); mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay); spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); /* Actually send the packets */ hci_uart_tx_wakeup(hu); } static void qca_wq_awake_rx(struct work_struct *work) { struct qca_data *qca = container_of(work, struct qca_data, ws_awake_rx); struct hci_uart *hu = qca->hu; unsigned long flags; BT_DBG("hu %p wq awake rx", hu); serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu); spin_lock_irqsave(&qca->hci_ibs_lock, flags); qca->rx_ibs_state = HCI_IBS_RX_AWAKE; /* Always acknowledge device wake up, * sending IBS message doesn't count as TX ON. */ if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) BT_ERR("Failed to acknowledge device wake up"); qca->ibs_sent_wacks++; spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); /* Actually send the packets */ hci_uart_tx_wakeup(hu); } static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work) { struct qca_data *qca = container_of(work, struct qca_data, ws_rx_vote_off); struct hci_uart *hu = qca->hu; BT_DBG("hu %p rx clock vote off", hu); serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu); } static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work) { struct qca_data *qca = container_of(work, struct qca_data, ws_tx_vote_off); struct hci_uart *hu = qca->hu; BT_DBG("hu %p tx clock vote off", hu); /* Run HCI tx handling unlocked */ hci_uart_tx_wakeup(hu); /* Now that message queued to tty driver, vote for tty clocks off. * It is up to the tty driver to pend the clocks off until tx done. */ serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu); } static void hci_ibs_tx_idle_timeout(struct timer_list *t) { struct qca_data *qca = from_timer(qca, t, tx_idle_timer); struct hci_uart *hu = qca->hu; unsigned long flags; BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state); spin_lock_irqsave_nested(&qca->hci_ibs_lock, flags, SINGLE_DEPTH_NESTING); switch (qca->tx_ibs_state) { case HCI_IBS_TX_AWAKE: /* TX_IDLE, go to SLEEP */ if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) { BT_ERR("Failed to send SLEEP to device"); break; } qca->tx_ibs_state = HCI_IBS_TX_ASLEEP; qca->ibs_sent_slps++; queue_work(qca->workqueue, &qca->ws_tx_vote_off); break; case HCI_IBS_TX_ASLEEP: case HCI_IBS_TX_WAKING: default: BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state); break; } spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); } static void hci_ibs_wake_retrans_timeout(struct timer_list *t) { struct qca_data *qca = from_timer(qca, t, wake_retrans_timer); struct hci_uart *hu = qca->hu; unsigned long flags, retrans_delay; bool retransmit = false; BT_DBG("hu %p wake retransmit timeout in %d state", hu, qca->tx_ibs_state); spin_lock_irqsave_nested(&qca->hci_ibs_lock, flags, SINGLE_DEPTH_NESTING); /* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */ if (test_bit(QCA_SUSPENDING, &qca->flags)) { spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); return; } switch (qca->tx_ibs_state) { case HCI_IBS_TX_WAKING: /* No WAKE_ACK, retransmit WAKE */ retransmit = true; if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) { BT_ERR("Failed to acknowledge device wake up"); break; } qca->ibs_sent_wakes++; retrans_delay = msecs_to_jiffies(qca->wake_retrans); mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay); break; case HCI_IBS_TX_ASLEEP: case HCI_IBS_TX_AWAKE: default: BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state); break; } spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); if (retransmit) hci_uart_tx_wakeup(hu); } static void qca_controller_memdump_timeout(struct work_struct *work) { struct qca_data *qca = container_of(work, struct qca_data, ctrl_memdump_timeout.work); struct hci_uart *hu = qca->hu; mutex_lock(&qca->hci_memdump_lock); if (test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) { qca->memdump_state = QCA_MEMDUMP_TIMEOUT; if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) { /* Inject hw error event to reset the device * and driver. */ hci_reset_dev(hu->hdev); } } mutex_unlock(&qca->hci_memdump_lock); } /* Initialize protocol */ static int qca_open(struct hci_uart *hu) { struct qca_serdev *qcadev; struct qca_data *qca; BT_DBG("hu %p qca_open", hu); if (!hci_uart_has_flow_control(hu)) return -EOPNOTSUPP; qca = kzalloc(sizeof(*qca), GFP_KERNEL); if (!qca) return -ENOMEM; skb_queue_head_init(&qca->txq); skb_queue_head_init(&qca->tx_wait_q); skb_queue_head_init(&qca->rx_memdump_q); spin_lock_init(&qca->hci_ibs_lock); mutex_init(&qca->hci_memdump_lock); qca->workqueue = alloc_ordered_workqueue("qca_wq", 0); if (!qca->workqueue) { BT_ERR("QCA Workqueue not initialized properly"); kfree(qca); return -ENOMEM; } INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx); INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device); INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off); INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off); INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump); INIT_DELAYED_WORK(&qca->ctrl_memdump_timeout, qca_controller_memdump_timeout); init_waitqueue_head(&qca->suspend_wait_q); qca->hu = hu; init_completion(&qca->drop_ev_comp); /* Assume we start with both sides asleep -- extra wakes OK */ qca->tx_ibs_state = HCI_IBS_TX_ASLEEP; qca->rx_ibs_state = HCI_IBS_RX_ASLEEP; qca->vote_last_jif = jiffies; hu->priv = qca; if (hu->serdev) { qcadev = serdev_device_get_drvdata(hu->serdev); switch (qcadev->btsoc_type) { case QCA_WCN3988: case QCA_WCN3990: case QCA_WCN3991: case QCA_WCN3998: case QCA_WCN6750: hu->init_speed = qcadev->init_speed; break; default: break; } if (qcadev->oper_speed) hu->oper_speed = qcadev->oper_speed; } timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0); qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS; timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0); qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS; BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u", qca->tx_idle_delay, qca->wake_retrans); return 0; } static void qca_debugfs_init(struct hci_dev *hdev) { struct hci_uart *hu = hci_get_drvdata(hdev); struct qca_data *qca = hu->priv; struct dentry *ibs_dir; umode_t mode; if (!hdev->debugfs) return; if (test_and_set_bit(QCA_DEBUGFS_CREATED, &qca->flags)) return; ibs_dir = debugfs_create_dir("ibs", hdev->debugfs); /* read only */ mode = 0444; debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state); debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state); debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir, &qca->ibs_sent_slps); debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir, &qca->ibs_sent_wakes); debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir, &qca->ibs_sent_wacks); debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir, &qca->ibs_recv_slps); debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir, &qca->ibs_recv_wakes); debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir, &qca->ibs_recv_wacks); debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote); debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on); debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off); debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote); debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on); debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off); debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on); debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off); debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms); debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms); /* read/write */ mode = 0644; debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans); debugfs_create_u32("tx_idle_delay", mode, ibs_dir, &qca->tx_idle_delay); } /* Flush protocol data */ static int qca_flush(struct hci_uart *hu) { struct qca_data *qca = hu->priv; BT_DBG("hu %p qca flush", hu); skb_queue_purge(&qca->tx_wait_q); skb_queue_purge(&qca->txq); return 0; } /* Close protocol */ static int qca_close(struct hci_uart *hu) { struct qca_data *qca = hu->priv; BT_DBG("hu %p qca close", hu); serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu); skb_queue_purge(&qca->tx_wait_q); skb_queue_purge(&qca->txq); skb_queue_purge(&qca->rx_memdump_q); /* * Shut the timers down so they can't be rearmed when * destroy_workqueue() drains pending work which in turn might try * to arm a timer. After shutdown rearm attempts are silently * ignored by the timer core code. */ timer_shutdown_sync(&qca->tx_idle_timer); timer_shutdown_sync(&qca->wake_retrans_timer); destroy_workqueue(qca->workqueue); qca->hu = NULL; kfree_skb(qca->rx_skb); hu->priv = NULL; kfree(qca); return 0; } /* Called upon a wake-up-indication from the device. */ static void device_want_to_wakeup(struct hci_uart *hu) { unsigned long flags; struct qca_data *qca = hu->priv; BT_DBG("hu %p want to wake up", hu); spin_lock_irqsave(&qca->hci_ibs_lock, flags); qca->ibs_recv_wakes++; /* Don't wake the rx up when suspending. */ if (test_bit(QCA_SUSPENDING, &qca->flags)) { spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); return; } switch (qca->rx_ibs_state) { case HCI_IBS_RX_ASLEEP: /* Make sure clock is on - we may have turned clock off since * receiving the wake up indicator awake rx clock. */ queue_work(qca->workqueue, &qca->ws_awake_rx); spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); return; case HCI_IBS_RX_AWAKE: /* Always acknowledge device wake up, * sending IBS message doesn't count as TX ON. */ if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) { BT_ERR("Failed to acknowledge device wake up"); break; } qca->ibs_sent_wacks++; break; default: /* Any other state is illegal */ BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d", qca->rx_ibs_state); break; } spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); /* Actually send the packets */ hci_uart_tx_wakeup(hu); } /* Called upon a sleep-indication from the device. */ static void device_want_to_sleep(struct hci_uart *hu) { unsigned long flags; struct qca_data *qca = hu->priv; BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state); spin_lock_irqsave(&qca->hci_ibs_lock, flags); qca->ibs_recv_slps++; switch (qca->rx_ibs_state) { case HCI_IBS_RX_AWAKE: /* Update state */ qca->rx_ibs_state = HCI_IBS_RX_ASLEEP; /* Vote off rx clock under workqueue */ queue_work(qca->workqueue, &qca->ws_rx_vote_off); break; case HCI_IBS_RX_ASLEEP: break; default: /* Any other state is illegal */ BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d", qca->rx_ibs_state); break; } wake_up_interruptible(&qca->suspend_wait_q); spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); } /* Called upon wake-up-acknowledgement from the device */ static void device_woke_up(struct hci_uart *hu) { unsigned long flags, idle_delay; struct qca_data *qca = hu->priv; struct sk_buff *skb = NULL; BT_DBG("hu %p woke up", hu); spin_lock_irqsave(&qca->hci_ibs_lock, flags); qca->ibs_recv_wacks++; /* Don't react to the wake-up-acknowledgment when suspending. */ if (test_bit(QCA_SUSPENDING, &qca->flags)) { spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); return; } switch (qca->tx_ibs_state) { case HCI_IBS_TX_AWAKE: /* Expect one if we send 2 WAKEs */ BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d", qca->tx_ibs_state); break; case HCI_IBS_TX_WAKING: /* Send pending packets */ while ((skb = skb_dequeue(&qca->tx_wait_q))) skb_queue_tail(&qca->txq, skb); /* Switch timers and change state to HCI_IBS_TX_AWAKE */ del_timer(&qca->wake_retrans_timer); idle_delay = msecs_to_jiffies(qca->tx_idle_delay); mod_timer(&qca->tx_idle_timer, jiffies + idle_delay); qca->tx_ibs_state = HCI_IBS_TX_AWAKE; break; case HCI_IBS_TX_ASLEEP: default: BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d", qca->tx_ibs_state); break; } spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); /* Actually send the packets */ hci_uart_tx_wakeup(hu); } /* Enqueue frame for transmittion (padding, crc, etc) may be called from * two simultaneous tasklets. */ static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb) { unsigned long flags = 0, idle_delay; struct qca_data *qca = hu->priv; BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb, qca->tx_ibs_state); if (test_bit(QCA_SSR_TRIGGERED, &qca->flags)) { /* As SSR is in progress, ignore the packets */ bt_dev_dbg(hu->hdev, "SSR is in progress"); kfree_skb(skb); return 0; } /* Prepend skb with frame type */ memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1); spin_lock_irqsave(&qca->hci_ibs_lock, flags); /* Don't go to sleep in middle of patch download or * Out-Of-Band(GPIOs control) sleep is selected. * Don't wake the device up when suspending. */ if (test_bit(QCA_IBS_DISABLED, &qca->flags) || test_bit(QCA_SUSPENDING, &qca->flags)) { skb_queue_tail(&qca->txq, skb); spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); return 0; } /* Act according to current state */ switch (qca->tx_ibs_state) { case HCI_IBS_TX_AWAKE: BT_DBG("Device awake, sending normally"); skb_queue_tail(&qca->txq, skb); idle_delay = msecs_to_jiffies(qca->tx_idle_delay); mod_timer(&qca->tx_idle_timer, jiffies + idle_delay); break; case HCI_IBS_TX_ASLEEP: BT_DBG("Device asleep, waking up and queueing packet"); /* Save packet for later */ skb_queue_tail(&qca->tx_wait_q, skb); qca->tx_ibs_state = HCI_IBS_TX_WAKING; /* Schedule a work queue to wake up device */ queue_work(qca->workqueue, &qca->ws_awake_device); break; case HCI_IBS_TX_WAKING: BT_DBG("Device waking up, queueing packet"); /* Transient state; just keep packet for later */ skb_queue_tail(&qca->tx_wait_q, skb); break; default: BT_ERR("Illegal tx state: %d (losing packet)", qca->tx_ibs_state); dev_kfree_skb_irq(skb); break; } spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); return 0; } static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb) { struct hci_uart *hu = hci_get_drvdata(hdev); BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND); device_want_to_sleep(hu); kfree_skb(skb); return 0; } static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb) { struct hci_uart *hu = hci_get_drvdata(hdev); BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND); device_want_to_wakeup(hu); kfree_skb(skb); return 0; } static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb) { struct hci_uart *hu = hci_get_drvdata(hdev); BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK); device_woke_up(hu); kfree_skb(skb); return 0; } static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb) { /* We receive debug logs from chip as an ACL packets. * Instead of sending the data to ACL to decode the * received data, we are pushing them to the above layers * as a diagnostic packet. */ if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE) return hci_recv_diag(hdev, skb); return hci_recv_frame(hdev, skb); } static void qca_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb) { struct hci_uart *hu = hci_get_drvdata(hdev); struct qca_data *qca = hu->priv; char buf[80]; snprintf(buf, sizeof(buf), "Controller Name: 0x%x\n", qca->controller_id); skb_put_data(skb, buf, strlen(buf)); snprintf(buf, sizeof(buf), "Firmware Version: 0x%x\n", qca->fw_version); skb_put_data(skb, buf, strlen(buf)); snprintf(buf, sizeof(buf), "Vendor:Qualcomm\n"); skb_put_data(skb, buf, strlen(buf)); snprintf(buf, sizeof(buf), "Driver: %s\n", hu->serdev->dev.driver->name); skb_put_data(skb, buf, strlen(buf)); } static void qca_controller_memdump(struct work_struct *work) { struct qca_data *qca = container_of(work, struct qca_data, ctrl_memdump_evt); struct hci_uart *hu = qca->hu; struct sk_buff *skb; struct qca_memdump_event_hdr *cmd_hdr; struct qca_memdump_info *qca_memdump = qca->qca_memdump; struct qca_dump_size *dump; u16 seq_no; u32 rx_size; int ret = 0; enum qca_btsoc_type soc_type = qca_soc_type(hu); while ((skb = skb_dequeue(&qca->rx_memdump_q))) { mutex_lock(&qca->hci_memdump_lock); /* Skip processing the received packets if timeout detected * or memdump collection completed. */ if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT || qca->memdump_state == QCA_MEMDUMP_COLLECTED) { mutex_unlock(&qca->hci_memdump_lock); return; } if (!qca_memdump) { qca_memdump = kzalloc(sizeof(*qca_memdump), GFP_ATOMIC); if (!qca_memdump) { mutex_unlock(&qca->hci_memdump_lock); return; } qca->qca_memdump = qca_memdump; } qca->memdump_state = QCA_MEMDUMP_COLLECTING; cmd_hdr = (void *) skb->data; seq_no = __le16_to_cpu(cmd_hdr->seq_no); skb_pull(skb, sizeof(struct qca_memdump_event_hdr)); if (!seq_no) { /* This is the first frame of memdump packet from * the controller, Disable IBS to recevie dump * with out any interruption, ideally time required for * the controller to send the dump is 8 seconds. let us * start timer to handle this asynchronous activity. */ set_bit(QCA_IBS_DISABLED, &qca->flags); set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags); dump = (void *) skb->data; qca_memdump->ram_dump_size = __le32_to_cpu(dump->dump_size); if (!(qca_memdump->ram_dump_size)) { bt_dev_err(hu->hdev, "Rx invalid memdump size"); kfree(qca_memdump); kfree_skb(skb); mutex_unlock(&qca->hci_memdump_lock); return; } queue_delayed_work(qca->workqueue, &qca->ctrl_memdump_timeout, msecs_to_jiffies(MEMDUMP_TIMEOUT_MS)); skb_pull(skb, sizeof(qca_memdump->ram_dump_size)); qca_memdump->current_seq_no = 0; qca_memdump->received_dump = 0; ret = hci_devcd_init(hu->hdev, qca_memdump->ram_dump_size); bt_dev_info(hu->hdev, "hci_devcd_init Return:%d", ret); if (ret < 0) { kfree(qca->qca_memdump); qca->qca_memdump = NULL; qca->memdump_state = QCA_MEMDUMP_COLLECTED; cancel_delayed_work(&qca->ctrl_memdump_timeout); clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags); clear_bit(QCA_IBS_DISABLED, &qca->flags); mutex_unlock(&qca->hci_memdump_lock); return; } bt_dev_info(hu->hdev, "QCA collecting dump of size:%u", qca_memdump->ram_dump_size); } /* If sequence no 0 is missed then there is no point in * accepting the other sequences. */ if (!test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) { bt_dev_err(hu->hdev, "QCA: Discarding other packets"); kfree(qca_memdump); kfree_skb(skb); mutex_unlock(&qca->hci_memdump_lock); return; } /* There could be chance of missing some packets from * the controller. In such cases let us store the dummy * packets in the buffer. */ /* For QCA6390, controller does not lost packets but * sequence number field of packet sometimes has error * bits, so skip this checking for missing packet. */ while ((seq_no > qca_memdump->current_seq_no + 1) && (soc_type != QCA_QCA6390) && seq_no != QCA_LAST_SEQUENCE_NUM) { bt_dev_err(hu->hdev, "QCA controller missed packet:%d", qca_memdump->current_seq_no); rx_size = qca_memdump->received_dump; rx_size += QCA_DUMP_PACKET_SIZE; if (rx_size > qca_memdump->ram_dump_size) { bt_dev_err(hu->hdev, "QCA memdump received %d, no space for missed packet", qca_memdump->received_dump); break; } hci_devcd_append_pattern(hu->hdev, 0x00, QCA_DUMP_PACKET_SIZE); qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE; qca_memdump->current_seq_no++; } rx_size = qca_memdump->received_dump + skb->len; if (rx_size <= qca_memdump->ram_dump_size) { if ((seq_no != QCA_LAST_SEQUENCE_NUM) && (seq_no != qca_memdump->current_seq_no)) { bt_dev_err(hu->hdev, "QCA memdump unexpected packet %d", seq_no); } bt_dev_dbg(hu->hdev, "QCA memdump packet %d with length %d", seq_no, skb->len); hci_devcd_append(hu->hdev, skb); qca_memdump->current_seq_no += 1; qca_memdump->received_dump = rx_size; } else { bt_dev_err(hu->hdev, "QCA memdump received no space for packet %d", qca_memdump->current_seq_no); } if (seq_no == QCA_LAST_SEQUENCE_NUM) { bt_dev_info(hu->hdev, "QCA memdump Done, received %d, total %d", qca_memdump->received_dump, qca_memdump->ram_dump_size); hci_devcd_complete(hu->hdev); cancel_delayed_work(&qca->ctrl_memdump_timeout); kfree(qca->qca_memdump); qca->qca_memdump = NULL; qca->memdump_state = QCA_MEMDUMP_COLLECTED; clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags); } mutex_unlock(&qca->hci_memdump_lock); } } static int qca_controller_memdump_event(struct hci_dev *hdev, struct sk_buff *skb) { struct hci_uart *hu = hci_get_drvdata(hdev); struct qca_data *qca = hu->priv; set_bit(QCA_SSR_TRIGGERED, &qca->flags); skb_queue_tail(&qca->rx_memdump_q, skb); queue_work(qca->workqueue, &qca->ctrl_memdump_evt); return 0; } static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb) { struct hci_uart *hu = hci_get_drvdata(hdev); struct qca_data *qca = hu->priv; if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) { struct hci_event_hdr *hdr = (void *)skb->data; /* For the WCN3990 the vendor command for a baudrate change * isn't sent as synchronous HCI command, because the * controller sends the corresponding vendor event with the * new baudrate. The event is received and properly decoded * after changing the baudrate of the host port. It needs to * be dropped, otherwise it can be misinterpreted as * response to a later firmware download command (also a * vendor command). */ if (hdr->evt == HCI_EV_VENDOR) complete(&qca->drop_ev_comp); kfree_skb(skb); return 0; } /* We receive chip memory dump as an event packet, With a dedicated * handler followed by a hardware error event. When this event is * received we store dump into a file before closing hci. This * dump will help in triaging the issues. */ if ((skb->data[0] == HCI_VENDOR_PKT) && (get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE)) return qca_controller_memdump_event(hdev, skb); return hci_recv_frame(hdev, skb); } #define QCA_IBS_SLEEP_IND_EVENT \ .type = HCI_IBS_SLEEP_IND, \ .hlen = 0, \ .loff = 0, \ .lsize = 0, \ .maxlen = HCI_MAX_IBS_SIZE #define QCA_IBS_WAKE_IND_EVENT \ .type = HCI_IBS_WAKE_IND, \ .hlen = 0, \ .loff = 0, \ .lsize = 0, \ .maxlen = HCI_MAX_IBS_SIZE #define QCA_IBS_WAKE_ACK_EVENT \ .type = HCI_IBS_WAKE_ACK, \ .hlen = 0, \ .loff = 0, \ .lsize = 0, \ .maxlen = HCI_MAX_IBS_SIZE static const struct h4_recv_pkt qca_recv_pkts[] = { { H4_RECV_ACL, .recv = qca_recv_acl_data }, { H4_RECV_SCO, .recv = hci_recv_frame }, { H4_RECV_EVENT, .recv = qca_recv_event }, { QCA_IBS_WAKE_IND_EVENT, .recv = qca_ibs_wake_ind }, { QCA_IBS_WAKE_ACK_EVENT, .recv = qca_ibs_wake_ack }, { QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind }, }; static int qca_recv(struct hci_uart *hu, const void *data, int count) { struct qca_data *qca = hu->priv; if (!test_bit(HCI_UART_REGISTERED, &hu->flags)) return -EUNATCH; qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count, qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts)); if (IS_ERR(qca->rx_skb)) { int err = PTR_ERR(qca->rx_skb); bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err); qca->rx_skb = NULL; return err; } return count; } static struct sk_buff *qca_dequeue(struct hci_uart *hu) { struct qca_data *qca = hu->priv; return skb_dequeue(&qca->txq); } static uint8_t qca_get_baudrate_value(int speed) { switch (speed) { case 9600: return QCA_BAUDRATE_9600; case 19200: return QCA_BAUDRATE_19200; case 38400: return QCA_BAUDRATE_38400; case 57600: return QCA_BAUDRATE_57600; case 115200: return QCA_BAUDRATE_115200; case 230400: return QCA_BAUDRATE_230400; case 460800: return QCA_BAUDRATE_460800; case 500000: return QCA_BAUDRATE_500000; case 921600: return QCA_BAUDRATE_921600; case 1000000: return QCA_BAUDRATE_1000000; case 2000000: return QCA_BAUDRATE_2000000; case 3000000: return QCA_BAUDRATE_3000000; case 3200000: return QCA_BAUDRATE_3200000; case 3500000: return QCA_BAUDRATE_3500000; default: return QCA_BAUDRATE_115200; } } static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate) { struct hci_uart *hu = hci_get_drvdata(hdev); struct qca_data *qca = hu->priv; struct sk_buff *skb; u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 }; if (baudrate > QCA_BAUDRATE_3200000) return -EINVAL; cmd[4] = baudrate; skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL); if (!skb) { bt_dev_err(hdev, "Failed to allocate baudrate packet"); return -ENOMEM; } /* Assign commands to change baudrate and packet type. */ skb_put_data(skb, cmd, sizeof(cmd)); hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; skb_queue_tail(&qca->txq, skb); hci_uart_tx_wakeup(hu); /* Wait for the baudrate change request to be sent */ while (!skb_queue_empty(&qca->txq)) usleep_range(100, 200); if (hu->serdev) serdev_device_wait_until_sent(hu->serdev, msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS)); /* Give the controller time to process the request */ switch (qca_soc_type(hu)) { case QCA_WCN3988: case QCA_WCN3990: case QCA_WCN3991: case QCA_WCN3998: case QCA_WCN6750: case QCA_WCN6855: case QCA_WCN7850: usleep_range(1000, 10000); break; default: msleep(300); } return 0; } static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed) { if (hu->serdev) serdev_device_set_baudrate(hu->serdev, speed); else hci_uart_set_baudrate(hu, speed); } static int qca_send_power_pulse(struct hci_uart *hu, bool on) { int ret; int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS); u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE; /* These power pulses are single byte command which are sent * at required baudrate to wcn3990. On wcn3990, we have an external * circuit at Tx pin which decodes the pulse sent at specific baudrate. * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT * and also we use the same power inputs to turn on and off for * Wi-Fi/BT. Powering up the power sources will not enable BT, until * we send a power on pulse at 115200 bps. This algorithm will help to * save power. Disabling hardware flow control is mandatory while * sending power pulses to SoC. */ bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd); serdev_device_write_flush(hu->serdev); hci_uart_set_flow_control(hu, true); ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd)); if (ret < 0) { bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd); return ret; } serdev_device_wait_until_sent(hu->serdev, timeout); hci_uart_set_flow_control(hu, false); /* Give to controller time to boot/shutdown */ if (on) msleep(100); else usleep_range(1000, 10000); return 0; } static unsigned int qca_get_speed(struct hci_uart *hu, enum qca_speed_type speed_type) { unsigned int speed = 0; if (speed_type == QCA_INIT_SPEED) { if (hu->init_speed) speed = hu->init_speed; else if (hu->proto->init_speed) speed = hu->proto->init_speed; } else { if (hu->oper_speed) speed = hu->oper_speed; else if (hu->proto->oper_speed) speed = hu->proto->oper_speed; } return speed; } static int qca_check_speeds(struct hci_uart *hu) { switch (qca_soc_type(hu)) { case QCA_WCN3988: case QCA_WCN3990: case QCA_WCN3991: case QCA_WCN3998: case QCA_WCN6750: case QCA_WCN6855: case QCA_WCN7850: if (!qca_get_speed(hu, QCA_INIT_SPEED) && !qca_get_speed(hu, QCA_OPER_SPEED)) return -EINVAL; break; default: if (!qca_get_speed(hu, QCA_INIT_SPEED) || !qca_get_speed(hu, QCA_OPER_SPEED)) return -EINVAL; } return 0; } static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type) { unsigned int speed, qca_baudrate; struct qca_data *qca = hu->priv; int ret = 0; if (speed_type == QCA_INIT_SPEED) { speed = qca_get_speed(hu, QCA_INIT_SPEED); if (speed) host_set_baudrate(hu, speed); } else { enum qca_btsoc_type soc_type = qca_soc_type(hu); speed = qca_get_speed(hu, QCA_OPER_SPEED); if (!speed) return 0; /* Disable flow control for wcn3990 to deassert RTS while * changing the baudrate of chip and host. */ switch (soc_type) { case QCA_WCN3988: case QCA_WCN3990: case QCA_WCN3991: case QCA_WCN3998: case QCA_WCN6750: case QCA_WCN6855: case QCA_WCN7850: hci_uart_set_flow_control(hu, true); break; default: break; } switch (soc_type) { case QCA_WCN3990: reinit_completion(&qca->drop_ev_comp); set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags); break; default: break; } qca_baudrate = qca_get_baudrate_value(speed); bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed); ret = qca_set_baudrate(hu->hdev, qca_baudrate); if (ret) goto error; host_set_baudrate(hu, speed); error: switch (soc_type) { case QCA_WCN3988: case QCA_WCN3990: case QCA_WCN3991: case QCA_WCN3998: case QCA_WCN6750: case QCA_WCN6855: case QCA_WCN7850: hci_uart_set_flow_control(hu, false); break; default: break; } switch (soc_type) { case QCA_WCN3990: /* Wait for the controller to send the vendor event * for the baudrate change command. */ if (!wait_for_completion_timeout(&qca->drop_ev_comp, msecs_to_jiffies(100))) { bt_dev_err(hu->hdev, "Failed to change controller baudrate\n"); ret = -ETIMEDOUT; } clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags); break; default: break; } } return ret; } static int qca_send_crashbuffer(struct hci_uart *hu) { struct qca_data *qca = hu->priv; struct sk_buff *skb; skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL); if (!skb) { bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet"); return -ENOMEM; } /* We forcefully crash the controller, by sending 0xfb byte for * 1024 times. We also might have chance of losing data, To be * on safer side we send 1096 bytes to the SoC. */ memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE, QCA_CRASHBYTE_PACKET_LEN); hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; bt_dev_info(hu->hdev, "crash the soc to collect controller dump"); skb_queue_tail(&qca->txq, skb); hci_uart_tx_wakeup(hu); return 0; } static void qca_wait_for_dump_collection(struct hci_dev *hdev) { struct hci_uart *hu = hci_get_drvdata(hdev); struct qca_data *qca = hu->priv; wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION, TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS); clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags); } static void qca_hw_error(struct hci_dev *hdev, u8 code) { struct hci_uart *hu = hci_get_drvdata(hdev); struct qca_data *qca = hu->priv; set_bit(QCA_SSR_TRIGGERED, &qca->flags); set_bit(QCA_HW_ERROR_EVENT, &qca->flags); bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state); if (qca->memdump_state == QCA_MEMDUMP_IDLE) { /* If hardware error event received for other than QCA * soc memory dump event, then we need to crash the SOC * and wait here for 8 seconds to get the dump packets. * This will block main thread to be on hold until we * collect dump. */ set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags); qca_send_crashbuffer(hu); qca_wait_for_dump_collection(hdev); } else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) { /* Let us wait here until memory dump collected or * memory dump timer expired. */ bt_dev_info(hdev, "waiting for dump to complete"); qca_wait_for_dump_collection(hdev); } mutex_lock(&qca->hci_memdump_lock); if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) { bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout"); hci_devcd_abort(hu->hdev); if (qca->qca_memdump) { kfree(qca->qca_memdump); qca->qca_memdump = NULL; } qca->memdump_state = QCA_MEMDUMP_TIMEOUT; cancel_delayed_work(&qca->ctrl_memdump_timeout); } mutex_unlock(&qca->hci_memdump_lock); if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT || qca->memdump_state == QCA_MEMDUMP_COLLECTED) { cancel_work_sync(&qca->ctrl_memdump_evt); skb_queue_purge(&qca->rx_memdump_q); } clear_bit(QCA_HW_ERROR_EVENT, &qca->flags); } static void qca_cmd_timeout(struct hci_dev *hdev) { struct hci_uart *hu = hci_get_drvdata(hdev); struct qca_data *qca = hu->priv; set_bit(QCA_SSR_TRIGGERED, &qca->flags); if (qca->memdump_state == QCA_MEMDUMP_IDLE) { set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags); qca_send_crashbuffer(hu); qca_wait_for_dump_collection(hdev); } else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) { /* Let us wait here until memory dump collected or * memory dump timer expired. */ bt_dev_info(hdev, "waiting for dump to complete"); qca_wait_for_dump_collection(hdev); } mutex_lock(&qca->hci_memdump_lock); if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) { qca->memdump_state = QCA_MEMDUMP_TIMEOUT; if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) { /* Inject hw error event to reset the device * and driver. */ hci_reset_dev(hu->hdev); } } mutex_unlock(&qca->hci_memdump_lock); } static bool qca_wakeup(struct hci_dev *hdev) { struct hci_uart *hu = hci_get_drvdata(hdev); bool wakeup; if (!hu->serdev) return true; /* BT SoC attached through the serial bus is handled by the serdev driver. * So we need to use the device handle of the serdev driver to get the * status of device may wakeup. */ wakeup = device_may_wakeup(&hu->serdev->ctrl->dev); bt_dev_dbg(hu->hdev, "wakeup status : %d", wakeup); return wakeup; } static int qca_port_reopen(struct hci_uart *hu) { int ret; /* Now the device is in ready state to communicate with host. * To sync host with device we need to reopen port. * Without this, we will have RTS and CTS synchronization * issues. */ serdev_device_close(hu->serdev); ret = serdev_device_open(hu->serdev); if (ret) { bt_dev_err(hu->hdev, "failed to open port"); return ret; } hci_uart_set_flow_control(hu, false); return 0; } static int qca_regulator_init(struct hci_uart *hu) { enum qca_btsoc_type soc_type = qca_soc_type(hu); struct qca_serdev *qcadev; int ret; bool sw_ctrl_state; /* Check for vregs status, may be hci down has turned * off the voltage regulator. */ qcadev = serdev_device_get_drvdata(hu->serdev); if (!qcadev->bt_power->vregs_on) { serdev_device_close(hu->serdev); ret = qca_regulator_enable(qcadev); if (ret) return ret; ret = serdev_device_open(hu->serdev); if (ret) { bt_dev_err(hu->hdev, "failed to open port"); return ret; } } switch (soc_type) { case QCA_WCN3988: case QCA_WCN3990: case QCA_WCN3991: case QCA_WCN3998: /* Forcefully enable wcn399x to enter in to boot mode. */ host_set_baudrate(hu, 2400); ret = qca_send_power_pulse(hu, false); if (ret) return ret; break; default: break; } /* For wcn6750 need to enable gpio bt_en */ if (qcadev->bt_en) { gpiod_set_value_cansleep(qcadev->bt_en, 0); msleep(50); gpiod_set_value_cansleep(qcadev->bt_en, 1); msleep(50); if (qcadev->sw_ctrl) { sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl); bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state); } } qca_set_speed(hu, QCA_INIT_SPEED); switch (soc_type) { case QCA_WCN3988: case QCA_WCN3990: case QCA_WCN3991: case QCA_WCN3998: ret = qca_send_power_pulse(hu, true); if (ret) return ret; break; default: break; } return qca_port_reopen(hu); } static int qca_power_on(struct hci_dev *hdev) { struct hci_uart *hu = hci_get_drvdata(hdev); enum qca_btsoc_type soc_type = qca_soc_type(hu); struct qca_serdev *qcadev; struct qca_data *qca = hu->priv; int ret = 0; /* Non-serdev device usually is powered by external power * and don't need additional action in driver for power on */ if (!hu->serdev) return 0; switch (soc_type) { case QCA_WCN3988: case QCA_WCN3990: case QCA_WCN3991: case QCA_WCN3998: case QCA_WCN6750: case QCA_WCN6855: case QCA_WCN7850: case QCA_QCA6390: ret = qca_regulator_init(hu); break; default: qcadev = serdev_device_get_drvdata(hu->serdev); if (qcadev->bt_en) { gpiod_set_value_cansleep(qcadev->bt_en, 1); /* Controller needs time to bootup. */ msleep(150); } } clear_bit(QCA_BT_OFF, &qca->flags); return ret; } static void hci_coredump_qca(struct hci_dev *hdev) { int err; static const u8 param[] = { 0x26 }; err = __hci_cmd_send(hdev, 0xfc0c, 1, param); if (err < 0) bt_dev_err(hdev, "%s: trigger crash failed (%d)", __func__, err); } static int qca_get_data_path_id(struct hci_dev *hdev, __u8 *data_path_id) { /* QCA uses 1 as non-HCI data path id for HFP */ *data_path_id = 1; return 0; } static int qca_configure_hfp_offload(struct hci_dev *hdev) { bt_dev_info(hdev, "HFP non-HCI data transport is supported"); hdev->get_data_path_id = qca_get_data_path_id; /* Do not need to send HCI_Configure_Data_Path to configure non-HCI * data transport path for QCA controllers, so set below field as NULL. */ hdev->get_codec_config_data = NULL; return 0; } static int qca_setup(struct hci_uart *hu) { struct hci_dev *hdev = hu->hdev; struct qca_data *qca = hu->priv; unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200; unsigned int retries = 0; enum qca_btsoc_type soc_type = qca_soc_type(hu); const char *firmware_name = qca_get_firmware_name(hu); int ret; struct qca_btsoc_version ver; struct qca_serdev *qcadev; const char *soc_name; ret = qca_check_speeds(hu); if (ret) return ret; clear_bit(QCA_ROM_FW, &qca->flags); /* Patch downloading has to be done without IBS mode */ set_bit(QCA_IBS_DISABLED, &qca->flags); /* Enable controller to do both LE scan and BR/EDR inquiry * simultaneously. */ set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks); switch (soc_type) { case QCA_QCA2066: soc_name = "qca2066"; break; case QCA_WCN3988: case QCA_WCN3990: case QCA_WCN3991: case QCA_WCN3998: soc_name = "wcn399x"; break; case QCA_WCN6750: soc_name = "wcn6750"; break; case QCA_WCN6855: soc_name = "wcn6855"; break; case QCA_WCN7850: soc_name = "wcn7850"; break; default: soc_name = "ROME/QCA6390"; } bt_dev_info(hdev, "setting up %s", soc_name); qca->memdump_state = QCA_MEMDUMP_IDLE; retry: ret = qca_power_on(hdev); if (ret) goto out; clear_bit(QCA_SSR_TRIGGERED, &qca->flags); switch (soc_type) { case QCA_WCN3988: case QCA_WCN3990: case QCA_WCN3991: case QCA_WCN3998: case QCA_WCN6750: case QCA_WCN6855: case QCA_WCN7850: qcadev = serdev_device_get_drvdata(hu->serdev); if (qcadev->bdaddr_property_broken) set_bit(HCI_QUIRK_BDADDR_PROPERTY_BROKEN, &hdev->quirks); hci_set_aosp_capable(hdev); ret = qca_read_soc_version(hdev, &ver, soc_type); if (ret) goto out; break; default: qca_set_speed(hu, QCA_INIT_SPEED); } /* Setup user speed if needed */ speed = qca_get_speed(hu, QCA_OPER_SPEED); if (speed) { ret = qca_set_speed(hu, QCA_OPER_SPEED); if (ret) goto out; qca_baudrate = qca_get_baudrate_value(speed); } switch (soc_type) { case QCA_WCN3988: case QCA_WCN3990: case QCA_WCN3991: case QCA_WCN3998: case QCA_WCN6750: case QCA_WCN6855: case QCA_WCN7850: break; default: /* Get QCA version information */ ret = qca_read_soc_version(hdev, &ver, soc_type); if (ret) goto out; } /* Setup patch / NVM configurations */ ret = qca_uart_setup(hdev, qca_baudrate, soc_type, ver, firmware_name); if (!ret) { clear_bit(QCA_IBS_DISABLED, &qca->flags); qca_debugfs_init(hdev); hu->hdev->hw_error = qca_hw_error; hu->hdev->cmd_timeout = qca_cmd_timeout; if (hu->serdev) { if (device_can_wakeup(hu->serdev->ctrl->dev.parent)) hu->hdev->wakeup = qca_wakeup; } } else if (ret == -ENOENT) { /* No patch/nvm-config found, run with original fw/config */ set_bit(QCA_ROM_FW, &qca->flags); ret = 0; } else if (ret == -EAGAIN) { /* * Userspace firmware loader will return -EAGAIN in case no * patch/nvm-config is found, so run with original fw/config. */ set_bit(QCA_ROM_FW, &qca->flags); ret = 0; } out: if (ret && retries < MAX_INIT_RETRIES) { bt_dev_warn(hdev, "Retry BT power ON:%d", retries); qca_power_shutdown(hu); if (hu->serdev) { serdev_device_close(hu->serdev); ret = serdev_device_open(hu->serdev); if (ret) { bt_dev_err(hdev, "failed to open port"); return ret; } } retries++; goto retry; } /* Setup bdaddr */ if (soc_type == QCA_ROME) hu->hdev->set_bdaddr = qca_set_bdaddr_rome; else hu->hdev->set_bdaddr = qca_set_bdaddr; if (soc_type == QCA_QCA2066) qca_configure_hfp_offload(hdev); qca->fw_version = le16_to_cpu(ver.patch_ver); qca->controller_id = le16_to_cpu(ver.rom_ver); hci_devcd_register(hdev, hci_coredump_qca, qca_dmp_hdr, NULL); return ret; } static const struct hci_uart_proto qca_proto = { .id = HCI_UART_QCA, .name = "QCA", .manufacturer = 29, .init_speed = 115200, .oper_speed = 3000000, .open = qca_open, .close = qca_close, .flush = qca_flush, .setup = qca_setup, .recv = qca_recv, .enqueue = qca_enqueue, .dequeue = qca_dequeue, }; static const struct qca_device_data qca_soc_data_wcn3988 __maybe_unused = { .soc_type = QCA_WCN3988, .vregs = (struct qca_vreg []) { { "vddio", 15000 }, { "vddxo", 80000 }, { "vddrf", 300000 }, { "vddch0", 450000 }, }, .num_vregs = 4, }; static const struct qca_device_data qca_soc_data_wcn3990 __maybe_unused = { .soc_type = QCA_WCN3990, .vregs = (struct qca_vreg []) { { "vddio", 15000 }, { "vddxo", 80000 }, { "vddrf", 300000 }, { "vddch0", 450000 }, }, .num_vregs = 4, }; static const struct qca_device_data qca_soc_data_wcn3991 __maybe_unused = { .soc_type = QCA_WCN3991, .vregs = (struct qca_vreg []) { { "vddio", 15000 }, { "vddxo", 80000 }, { "vddrf", 300000 }, { "vddch0", 450000 }, }, .num_vregs = 4, .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES, }; static const struct qca_device_data qca_soc_data_wcn3998 __maybe_unused = { .soc_type = QCA_WCN3998, .vregs = (struct qca_vreg []) { { "vddio", 10000 }, { "vddxo", 80000 }, { "vddrf", 300000 }, { "vddch0", 450000 }, }, .num_vregs = 4, }; static const struct qca_device_data qca_soc_data_qca2066 __maybe_unused = { .soc_type = QCA_QCA2066, .num_vregs = 0, .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES, }; static const struct qca_device_data qca_soc_data_qca6390 __maybe_unused = { .soc_type = QCA_QCA6390, .num_vregs = 0, }; static const struct qca_device_data qca_soc_data_wcn6750 __maybe_unused = { .soc_type = QCA_WCN6750, .vregs = (struct qca_vreg []) { { "vddio", 5000 }, { "vddaon", 26000 }, { "vddbtcxmx", 126000 }, { "vddrfacmn", 12500 }, { "vddrfa0p8", 102000 }, { "vddrfa1p7", 302000 }, { "vddrfa1p2", 257000 }, { "vddrfa2p2", 1700000 }, { "vddasd", 200 }, }, .num_vregs = 9, .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES, }; static const struct qca_device_data qca_soc_data_wcn6855 __maybe_unused = { .soc_type = QCA_WCN6855, .vregs = (struct qca_vreg []) { { "vddio", 5000 }, { "vddbtcxmx", 126000 }, { "vddrfacmn", 12500 }, { "vddrfa0p8", 102000 }, { "vddrfa1p7", 302000 }, { "vddrfa1p2", 257000 }, }, .num_vregs = 6, .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES, }; static const struct qca_device_data qca_soc_data_wcn7850 __maybe_unused = { .soc_type = QCA_WCN7850, .vregs = (struct qca_vreg []) { { "vddio", 5000 }, { "vddaon", 26000 }, { "vdddig", 126000 }, { "vddrfa0p8", 102000 }, { "vddrfa1p2", 257000 }, { "vddrfa1p9", 302000 }, }, .num_vregs = 6, .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES, }; static void qca_power_shutdown(struct hci_uart *hu) { struct qca_serdev *qcadev; struct qca_data *qca = hu->priv; unsigned long flags; enum qca_btsoc_type soc_type = qca_soc_type(hu); bool sw_ctrl_state; struct qca_power *power; /* From this point we go into power off state. But serial port is * still open, stop queueing the IBS data and flush all the buffered * data in skb's. */ spin_lock_irqsave(&qca->hci_ibs_lock, flags); set_bit(QCA_IBS_DISABLED, &qca->flags); qca_flush(hu); spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); /* Non-serdev device usually is powered by external power * and don't need additional action in driver for power down */ if (!hu->serdev) return; qcadev = serdev_device_get_drvdata(hu->serdev); power = qcadev->bt_power; if (power && power->pwrseq) { pwrseq_power_off(power->pwrseq); set_bit(QCA_BT_OFF, &qca->flags); return; } switch (soc_type) { case QCA_WCN3988: case QCA_WCN3990: case QCA_WCN3991: case QCA_WCN3998: host_set_baudrate(hu, 2400); qca_send_power_pulse(hu, false); qca_regulator_disable(qcadev); break; case QCA_WCN6750: case QCA_WCN6855: gpiod_set_value_cansleep(qcadev->bt_en, 0); msleep(100); qca_regulator_disable(qcadev); if (qcadev->sw_ctrl) { sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl); bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state); } break; default: gpiod_set_value_cansleep(qcadev->bt_en, 0); } set_bit(QCA_BT_OFF, &qca->flags); } static int qca_power_off(struct hci_dev *hdev) { struct hci_uart *hu = hci_get_drvdata(hdev); struct qca_data *qca = hu->priv; enum qca_btsoc_type soc_type = qca_soc_type(hu); hu->hdev->hw_error = NULL; hu->hdev->cmd_timeout = NULL; del_timer_sync(&qca->wake_retrans_timer); del_timer_sync(&qca->tx_idle_timer); /* Stop sending shutdown command if soc crashes. */ if (soc_type != QCA_ROME && qca->memdump_state == QCA_MEMDUMP_IDLE) { qca_send_pre_shutdown_cmd(hdev); usleep_range(8000, 10000); } qca_power_shutdown(hu); return 0; } static int qca_regulator_enable(struct qca_serdev *qcadev) { struct qca_power *power = qcadev->bt_power; int ret; if (power->pwrseq) return pwrseq_power_on(power->pwrseq); /* Already enabled */ if (power->vregs_on) return 0; BT_DBG("enabling %d regulators)", power->num_vregs); ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk); if (ret) return ret; power->vregs_on = true; ret = clk_prepare_enable(qcadev->susclk); if (ret) qca_regulator_disable(qcadev); return ret; } static void qca_regulator_disable(struct qca_serdev *qcadev) { struct qca_power *power; if (!qcadev) return; power = qcadev->bt_power; /* Already disabled? */ if (!power->vregs_on) return; regulator_bulk_disable(power->num_vregs, power->vreg_bulk); power->vregs_on = false; clk_disable_unprepare(qcadev->susclk); } static int qca_init_regulators(struct qca_power *qca, const struct qca_vreg *vregs, size_t num_vregs) { struct regulator_bulk_data *bulk; int ret; int i; bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL); if (!bulk) return -ENOMEM; for (i = 0; i < num_vregs; i++) bulk[i].supply = vregs[i].name; ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk); if (ret < 0) return ret; for (i = 0; i < num_vregs; i++) { ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA); if (ret) return ret; } qca->vreg_bulk = bulk; qca->num_vregs = num_vregs; return 0; } static void qca_clk_disable_unprepare(void *data) { struct clk *clk = data; clk_disable_unprepare(clk); } static int qca_serdev_probe(struct serdev_device *serdev) { struct qca_serdev *qcadev; struct hci_dev *hdev; const struct qca_device_data *data; int err; bool power_ctrl_enabled = true; qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL); if (!qcadev) return -ENOMEM; qcadev->serdev_hu.serdev = serdev; data = device_get_match_data(&serdev->dev); serdev_device_set_drvdata(serdev, qcadev); device_property_read_string(&serdev->dev, "firmware-name", &qcadev->firmware_name); device_property_read_u32(&serdev->dev, "max-speed", &qcadev->oper_speed); if (!qcadev->oper_speed) BT_DBG("UART will pick default operating speed"); qcadev->bdaddr_property_broken = device_property_read_bool(&serdev->dev, "qcom,local-bd-address-broken"); if (data) qcadev->btsoc_type = data->soc_type; else qcadev->btsoc_type = QCA_ROME; switch (qcadev->btsoc_type) { case QCA_WCN3988: case QCA_WCN3990: case QCA_WCN3991: case QCA_WCN3998: case QCA_WCN6750: case QCA_WCN6855: case QCA_WCN7850: case QCA_QCA6390: qcadev->bt_power = devm_kzalloc(&serdev->dev, sizeof(struct qca_power), GFP_KERNEL); if (!qcadev->bt_power) return -ENOMEM; break; default: break; } switch (qcadev->btsoc_type) { case QCA_WCN6855: case QCA_WCN7850: if (!device_property_present(&serdev->dev, "enable-gpios")) { /* * Backward compatibility with old DT sources. If the * node doesn't have the 'enable-gpios' property then * let's use the power sequencer. Otherwise, let's * drive everything outselves. */ qcadev->bt_power->pwrseq = devm_pwrseq_get(&serdev->dev, "bluetooth"); if (IS_ERR(qcadev->bt_power->pwrseq)) return PTR_ERR(qcadev->bt_power->pwrseq); break; } fallthrough; case QCA_WCN3988: case QCA_WCN3990: case QCA_WCN3991: case QCA_WCN3998: case QCA_WCN6750: qcadev->bt_power->dev = &serdev->dev; err = qca_init_regulators(qcadev->bt_power, data->vregs, data->num_vregs); if (err) { BT_ERR("Failed to init regulators:%d", err); return err; } qcadev->bt_power->vregs_on = false; qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable", GPIOD_OUT_LOW); if (IS_ERR(qcadev->bt_en) && (data->soc_type == QCA_WCN6750 || data->soc_type == QCA_WCN6855)) { dev_err(&serdev->dev, "failed to acquire BT_EN gpio\n"); return PTR_ERR(qcadev->bt_en); } if (!qcadev->bt_en) power_ctrl_enabled = false; qcadev->sw_ctrl = devm_gpiod_get_optional(&serdev->dev, "swctrl", GPIOD_IN); if (IS_ERR(qcadev->sw_ctrl) && (data->soc_type == QCA_WCN6750 || data->soc_type == QCA_WCN6855 || data->soc_type == QCA_WCN7850)) { dev_err(&serdev->dev, "failed to acquire SW_CTRL gpio\n"); return PTR_ERR(qcadev->sw_ctrl); } qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL); if (IS_ERR(qcadev->susclk)) { dev_err(&serdev->dev, "failed to acquire clk\n"); return PTR_ERR(qcadev->susclk); } break; case QCA_QCA6390: if (dev_of_node(&serdev->dev)) { qcadev->bt_power->pwrseq = devm_pwrseq_get(&serdev->dev, "bluetooth"); if (IS_ERR(qcadev->bt_power->pwrseq)) return PTR_ERR(qcadev->bt_power->pwrseq); break; } fallthrough; default: qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable", GPIOD_OUT_LOW); if (IS_ERR(qcadev->bt_en)) { dev_err(&serdev->dev, "failed to acquire enable gpio\n"); return PTR_ERR(qcadev->bt_en); } if (!qcadev->bt_en) power_ctrl_enabled = false; qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL); if (IS_ERR(qcadev->susclk)) { dev_warn(&serdev->dev, "failed to acquire clk\n"); return PTR_ERR(qcadev->susclk); } err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ); if (err) return err; err = clk_prepare_enable(qcadev->susclk); if (err) return err; err = devm_add_action_or_reset(&serdev->dev, qca_clk_disable_unprepare, qcadev->susclk); if (err) return err; } err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto); if (err) { BT_ERR("serdev registration failed"); return err; } hdev = qcadev->serdev_hu.hdev; if (power_ctrl_enabled) { set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks); hdev->shutdown = qca_power_off; } if (data) { /* Wideband speech support must be set per driver since it can't * be queried via hci. Same with the valid le states quirk. */ if (data->capabilities & QCA_CAP_WIDEBAND_SPEECH) set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks); if (!(data->capabilities & QCA_CAP_VALID_LE_STATES)) set_bit(HCI_QUIRK_BROKEN_LE_STATES, &hdev->quirks); } return 0; } static void qca_serdev_remove(struct serdev_device *serdev) { struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev); struct qca_power *power = qcadev->bt_power; switch (qcadev->btsoc_type) { case QCA_WCN3988: case QCA_WCN3990: case QCA_WCN3991: case QCA_WCN3998: case QCA_WCN6750: case QCA_WCN6855: case QCA_WCN7850: if (power->vregs_on) qca_power_shutdown(&qcadev->serdev_hu); break; default: break; } hci_uart_unregister_device(&qcadev->serdev_hu); } static void qca_serdev_shutdown(struct device *dev) { int ret; int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS); struct serdev_device *serdev = to_serdev_device(dev); struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev); struct hci_uart *hu = &qcadev->serdev_hu; struct hci_dev *hdev = hu->hdev; const u8 ibs_wake_cmd[] = { 0xFD }; const u8 edl_reset_soc_cmd[] = { 0x01, 0x00, 0xFC, 0x01, 0x05 }; if (qcadev->btsoc_type == QCA_QCA6390) { /* The purpose of sending the VSC is to reset SOC into a initial * state and the state will ensure next hdev->setup() success. * if HCI_QUIRK_NON_PERSISTENT_SETUP is set, it means that * hdev->setup() can do its job regardless of SoC state, so * don't need to send the VSC. * if HCI_SETUP is set, it means that hdev->setup() was never * invoked and the SOC is already in the initial state, so * don't also need to send the VSC. */ if (test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks) || hci_dev_test_flag(hdev, HCI_SETUP)) return; /* The serdev must be in open state when conrol logic arrives * here, so also fix the use-after-free issue caused by that * the serdev is flushed or wrote after it is closed. */ serdev_device_write_flush(serdev); ret = serdev_device_write_buf(serdev, ibs_wake_cmd, sizeof(ibs_wake_cmd)); if (ret < 0) { BT_ERR("QCA send IBS_WAKE_IND error: %d", ret); return; } serdev_device_wait_until_sent(serdev, timeout); usleep_range(8000, 10000); serdev_device_write_flush(serdev); ret = serdev_device_write_buf(serdev, edl_reset_soc_cmd, sizeof(edl_reset_soc_cmd)); if (ret < 0) { BT_ERR("QCA send EDL_RESET_REQ error: %d", ret); return; } serdev_device_wait_until_sent(serdev, timeout); usleep_range(8000, 10000); } } static int __maybe_unused qca_suspend(struct device *dev) { struct serdev_device *serdev = to_serdev_device(dev); struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev); struct hci_uart *hu = &qcadev->serdev_hu; struct qca_data *qca = hu->priv; unsigned long flags; bool tx_pending = false; int ret = 0; u8 cmd; u32 wait_timeout = 0; set_bit(QCA_SUSPENDING, &qca->flags); /* if BT SoC is running with default firmware then it does not * support in-band sleep */ if (test_bit(QCA_ROM_FW, &qca->flags)) return 0; /* During SSR after memory dump collection, controller will be * powered off and then powered on.If controller is powered off * during SSR then we should wait until SSR is completed. */ if (test_bit(QCA_BT_OFF, &qca->flags) && !test_bit(QCA_SSR_TRIGGERED, &qca->flags)) return 0; if (test_bit(QCA_IBS_DISABLED, &qca->flags) || test_bit(QCA_SSR_TRIGGERED, &qca->flags)) { wait_timeout = test_bit(QCA_SSR_TRIGGERED, &qca->flags) ? IBS_DISABLE_SSR_TIMEOUT_MS : FW_DOWNLOAD_TIMEOUT_MS; /* QCA_IBS_DISABLED flag is set to true, During FW download * and during memory dump collection. It is reset to false, * After FW download complete. */ wait_on_bit_timeout(&qca->flags, QCA_IBS_DISABLED, TASK_UNINTERRUPTIBLE, msecs_to_jiffies(wait_timeout)); if (test_bit(QCA_IBS_DISABLED, &qca->flags)) { bt_dev_err(hu->hdev, "SSR or FW download time out"); ret = -ETIMEDOUT; goto error; } } cancel_work_sync(&qca->ws_awake_device); cancel_work_sync(&qca->ws_awake_rx); spin_lock_irqsave_nested(&qca->hci_ibs_lock, flags, SINGLE_DEPTH_NESTING); switch (qca->tx_ibs_state) { case HCI_IBS_TX_WAKING: del_timer(&qca->wake_retrans_timer); fallthrough; case HCI_IBS_TX_AWAKE: del_timer(&qca->tx_idle_timer); serdev_device_write_flush(hu->serdev); cmd = HCI_IBS_SLEEP_IND; ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd)); if (ret < 0) { BT_ERR("Failed to send SLEEP to device"); break; } qca->tx_ibs_state = HCI_IBS_TX_ASLEEP; qca->ibs_sent_slps++; tx_pending = true; break; case HCI_IBS_TX_ASLEEP: break; default: BT_ERR("Spurious tx state %d", qca->tx_ibs_state); ret = -EINVAL; break; } spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); if (ret < 0) goto error; if (tx_pending) { serdev_device_wait_until_sent(hu->serdev, msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS)); serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu); } /* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going * to sleep, so that the packet does not wake the system later. */ ret = wait_event_interruptible_timeout(qca->suspend_wait_q, qca->rx_ibs_state == HCI_IBS_RX_ASLEEP, msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS)); if (ret == 0) { ret = -ETIMEDOUT; goto error; } return 0; error: clear_bit(QCA_SUSPENDING, &qca->flags); return ret; } static int __maybe_unused qca_resume(struct device *dev) { struct serdev_device *serdev = to_serdev_device(dev); struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev); struct hci_uart *hu = &qcadev->serdev_hu; struct qca_data *qca = hu->priv; clear_bit(QCA_SUSPENDING, &qca->flags); return 0; } static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume); #ifdef CONFIG_OF static const struct of_device_id qca_bluetooth_of_match[] = { { .compatible = "qcom,qca2066-bt", .data = &qca_soc_data_qca2066}, { .compatible = "qcom,qca6174-bt" }, { .compatible = "qcom,qca6390-bt", .data = &qca_soc_data_qca6390}, { .compatible = "qcom,qca9377-bt" }, { .compatible = "qcom,wcn3988-bt", .data = &qca_soc_data_wcn3988}, { .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990}, { .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991}, { .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998}, { .compatible = "qcom,wcn6750-bt", .data = &qca_soc_data_wcn6750}, { .compatible = "qcom,wcn6855-bt", .data = &qca_soc_data_wcn6855}, { .compatible = "qcom,wcn7850-bt", .data = &qca_soc_data_wcn7850}, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match); #endif #ifdef CONFIG_ACPI static const struct acpi_device_id qca_bluetooth_acpi_match[] = { { "QCOM2066", (kernel_ulong_t)&qca_soc_data_qca2066 }, { "QCOM6390", (kernel_ulong_t)&qca_soc_data_qca6390 }, { "DLA16390", (kernel_ulong_t)&qca_soc_data_qca6390 }, { "DLB16390", (kernel_ulong_t)&qca_soc_data_qca6390 }, { "DLB26390", (kernel_ulong_t)&qca_soc_data_qca6390 }, { }, }; MODULE_DEVICE_TABLE(acpi, qca_bluetooth_acpi_match); #endif #ifdef CONFIG_DEV_COREDUMP static void hciqca_coredump(struct device *dev) { struct serdev_device *serdev = to_serdev_device(dev); struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev); struct hci_uart *hu = &qcadev->serdev_hu; struct hci_dev *hdev = hu->hdev; if (hdev->dump.coredump) hdev->dump.coredump(hdev); } #endif static struct serdev_device_driver qca_serdev_driver = { .probe = qca_serdev_probe, .remove = qca_serdev_remove, .driver = { .name = "hci_uart_qca", .of_match_table = of_match_ptr(qca_bluetooth_of_match), .acpi_match_table = ACPI_PTR(qca_bluetooth_acpi_match), .shutdown = qca_serdev_shutdown, .pm = &qca_pm_ops, #ifdef CONFIG_DEV_COREDUMP .coredump = hciqca_coredump, #endif }, }; int __init qca_init(void) { serdev_device_driver_register(&qca_serdev_driver); return hci_uart_register_proto(&qca_proto); } int __exit qca_deinit(void) { serdev_device_driver_unregister(&qca_serdev_driver); return hci_uart_unregister_proto(&qca_proto); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1