Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Maxime Ripard | 871 | 50.46% | 22 | 61.11% |
Nicolas Saenz Julienne | 806 | 46.70% | 3 | 8.33% |
Ivan T. Ivanov | 15 | 0.87% | 2 | 5.56% |
Stefan Wahren | 9 | 0.52% | 4 | 11.11% |
Dom Cobley | 9 | 0.52% | 1 | 2.78% |
Nathan Chancellor | 9 | 0.52% | 1 | 2.78% |
Dan Carpenter | 3 | 0.17% | 1 | 2.78% |
Uwe Kleine-König | 2 | 0.12% | 1 | 2.78% |
Christophe Jaillet | 2 | 0.12% | 1 | 2.78% |
Total | 1726 | 36 |
// SPDX-License-Identifier: GPL-2.0+ /* * Raspberry Pi driver for firmware controlled clocks * * Even though clk-bcm2835 provides an interface to the hardware registers for * the system clocks we've had to factor out 'pllb' as the firmware 'owns' it. * We're not allowed to change it directly as we might race with the * over-temperature and under-voltage protections provided by the firmware. * * Copyright (C) 2019 Nicolas Saenz Julienne <nsaenzjulienne@suse.de> */ #include <linux/clkdev.h> #include <linux/clk-provider.h> #include <linux/io.h> #include <linux/module.h> #include <linux/platform_device.h> #include <soc/bcm2835/raspberrypi-firmware.h> static char *rpi_firmware_clk_names[] = { [RPI_FIRMWARE_EMMC_CLK_ID] = "emmc", [RPI_FIRMWARE_UART_CLK_ID] = "uart", [RPI_FIRMWARE_ARM_CLK_ID] = "arm", [RPI_FIRMWARE_CORE_CLK_ID] = "core", [RPI_FIRMWARE_V3D_CLK_ID] = "v3d", [RPI_FIRMWARE_H264_CLK_ID] = "h264", [RPI_FIRMWARE_ISP_CLK_ID] = "isp", [RPI_FIRMWARE_SDRAM_CLK_ID] = "sdram", [RPI_FIRMWARE_PIXEL_CLK_ID] = "pixel", [RPI_FIRMWARE_PWM_CLK_ID] = "pwm", [RPI_FIRMWARE_HEVC_CLK_ID] = "hevc", [RPI_FIRMWARE_EMMC2_CLK_ID] = "emmc2", [RPI_FIRMWARE_M2MC_CLK_ID] = "m2mc", [RPI_FIRMWARE_PIXEL_BVB_CLK_ID] = "pixel-bvb", [RPI_FIRMWARE_VEC_CLK_ID] = "vec", }; #define RPI_FIRMWARE_STATE_ENABLE_BIT BIT(0) #define RPI_FIRMWARE_STATE_WAIT_BIT BIT(1) struct raspberrypi_clk_variant; struct raspberrypi_clk { struct device *dev; struct rpi_firmware *firmware; struct platform_device *cpufreq; }; struct raspberrypi_clk_data { struct clk_hw hw; unsigned int id; struct raspberrypi_clk_variant *variant; struct raspberrypi_clk *rpi; }; struct raspberrypi_clk_variant { bool export; char *clkdev; unsigned long min_rate; bool minimize; }; static struct raspberrypi_clk_variant raspberrypi_clk_variants[RPI_FIRMWARE_NUM_CLK_ID] = { [RPI_FIRMWARE_ARM_CLK_ID] = { .export = true, .clkdev = "cpu0", }, [RPI_FIRMWARE_CORE_CLK_ID] = { .export = true, /* * The clock is shared between the HVS and the CSI * controllers, on the BCM2711 and will change depending * on the pixels composited on the HVS and the capture * resolution on Unicam. * * Since the rate can get quite large, and we need to * coordinate between both driver instances, let's * always use the minimum the drivers will let us. */ .minimize = true, }, [RPI_FIRMWARE_M2MC_CLK_ID] = { .export = true, /* * If we boot without any cable connected to any of the * HDMI connector, the firmware will skip the HSM * initialization and leave it with a rate of 0, * resulting in a bus lockup when we're accessing the * registers even if it's enabled. * * Let's put a sensible default so that we don't end up * in this situation. */ .min_rate = 120000000, /* * The clock is shared between the two HDMI controllers * on the BCM2711 and will change depending on the * resolution output on each. Since the rate can get * quite large, and we need to coordinate between both * driver instances, let's always use the minimum the * drivers will let us. */ .minimize = true, }, [RPI_FIRMWARE_V3D_CLK_ID] = { .export = true, }, [RPI_FIRMWARE_PIXEL_CLK_ID] = { .export = true, }, [RPI_FIRMWARE_HEVC_CLK_ID] = { .export = true, }, [RPI_FIRMWARE_PIXEL_BVB_CLK_ID] = { .export = true, }, [RPI_FIRMWARE_VEC_CLK_ID] = { .export = true, }, }; /* * Structure of the message passed to Raspberry Pi's firmware in order to * change clock rates. The 'disable_turbo' option is only available to the ARM * clock (pllb) which we enable by default as turbo mode will alter multiple * clocks at once. * * Even though we're able to access the clock registers directly we're bound to * use the firmware interface as the firmware ultimately takes care of * mitigating overheating/undervoltage situations and we would be changing * frequencies behind his back. * * For more information on the firmware interface check: * https://github.com/raspberrypi/firmware/wiki/Mailbox-property-interface */ struct raspberrypi_firmware_prop { __le32 id; __le32 val; __le32 disable_turbo; } __packed; static int raspberrypi_clock_property(struct rpi_firmware *firmware, const struct raspberrypi_clk_data *data, u32 tag, u32 *val) { struct raspberrypi_firmware_prop msg = { .id = cpu_to_le32(data->id), .val = cpu_to_le32(*val), .disable_turbo = cpu_to_le32(1), }; int ret; ret = rpi_firmware_property(firmware, tag, &msg, sizeof(msg)); if (ret) return ret; *val = le32_to_cpu(msg.val); return 0; } static int raspberrypi_fw_is_prepared(struct clk_hw *hw) { struct raspberrypi_clk_data *data = container_of(hw, struct raspberrypi_clk_data, hw); struct raspberrypi_clk *rpi = data->rpi; u32 val = 0; int ret; ret = raspberrypi_clock_property(rpi->firmware, data, RPI_FIRMWARE_GET_CLOCK_STATE, &val); if (ret) return 0; return !!(val & RPI_FIRMWARE_STATE_ENABLE_BIT); } static unsigned long raspberrypi_fw_get_rate(struct clk_hw *hw, unsigned long parent_rate) { struct raspberrypi_clk_data *data = container_of(hw, struct raspberrypi_clk_data, hw); struct raspberrypi_clk *rpi = data->rpi; u32 val = 0; int ret; ret = raspberrypi_clock_property(rpi->firmware, data, RPI_FIRMWARE_GET_CLOCK_RATE, &val); if (ret) return 0; return val; } static int raspberrypi_fw_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct raspberrypi_clk_data *data = container_of(hw, struct raspberrypi_clk_data, hw); struct raspberrypi_clk *rpi = data->rpi; u32 _rate = rate; int ret; ret = raspberrypi_clock_property(rpi->firmware, data, RPI_FIRMWARE_SET_CLOCK_RATE, &_rate); if (ret) dev_err_ratelimited(rpi->dev, "Failed to change %s frequency: %d\n", clk_hw_get_name(hw), ret); return ret; } static int raspberrypi_fw_dumb_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct raspberrypi_clk_data *data = container_of(hw, struct raspberrypi_clk_data, hw); struct raspberrypi_clk_variant *variant = data->variant; /* * The firmware will do the rounding but that isn't part of * the interface with the firmware, so we just do our best * here. */ req->rate = clamp(req->rate, req->min_rate, req->max_rate); /* * We want to aggressively reduce the clock rate here, so let's * just ignore the requested rate and return the bare minimum * rate we can get away with. */ if (variant->minimize && req->min_rate > 0) req->rate = req->min_rate; return 0; } static const struct clk_ops raspberrypi_firmware_clk_ops = { .is_prepared = raspberrypi_fw_is_prepared, .recalc_rate = raspberrypi_fw_get_rate, .determine_rate = raspberrypi_fw_dumb_determine_rate, .set_rate = raspberrypi_fw_set_rate, }; static struct clk_hw *raspberrypi_clk_register(struct raspberrypi_clk *rpi, unsigned int parent, unsigned int id, struct raspberrypi_clk_variant *variant) { struct raspberrypi_clk_data *data; struct clk_init_data init = {}; u32 min_rate, max_rate; int ret; data = devm_kzalloc(rpi->dev, sizeof(*data), GFP_KERNEL); if (!data) return ERR_PTR(-ENOMEM); data->rpi = rpi; data->id = id; data->variant = variant; init.name = devm_kasprintf(rpi->dev, GFP_KERNEL, "fw-clk-%s", rpi_firmware_clk_names[id]); init.ops = &raspberrypi_firmware_clk_ops; init.flags = CLK_GET_RATE_NOCACHE; data->hw.init = &init; ret = raspberrypi_clock_property(rpi->firmware, data, RPI_FIRMWARE_GET_MIN_CLOCK_RATE, &min_rate); if (ret) { dev_err(rpi->dev, "Failed to get clock %d min freq: %d\n", id, ret); return ERR_PTR(ret); } ret = raspberrypi_clock_property(rpi->firmware, data, RPI_FIRMWARE_GET_MAX_CLOCK_RATE, &max_rate); if (ret) { dev_err(rpi->dev, "Failed to get clock %d max freq: %d\n", id, ret); return ERR_PTR(ret); } ret = devm_clk_hw_register(rpi->dev, &data->hw); if (ret) return ERR_PTR(ret); clk_hw_set_rate_range(&data->hw, min_rate, max_rate); if (variant->clkdev) { ret = devm_clk_hw_register_clkdev(rpi->dev, &data->hw, NULL, variant->clkdev); if (ret) { dev_err(rpi->dev, "Failed to initialize clkdev\n"); return ERR_PTR(ret); } } if (variant->min_rate) { unsigned long rate; clk_hw_set_rate_range(&data->hw, variant->min_rate, max_rate); rate = raspberrypi_fw_get_rate(&data->hw, 0); if (rate < variant->min_rate) { ret = raspberrypi_fw_set_rate(&data->hw, variant->min_rate, 0); if (ret) return ERR_PTR(ret); } } return &data->hw; } struct rpi_firmware_get_clocks_response { u32 parent; u32 id; }; static int raspberrypi_discover_clocks(struct raspberrypi_clk *rpi, struct clk_hw_onecell_data *data) { struct rpi_firmware_get_clocks_response *clks; int ret; /* * The firmware doesn't guarantee that the last element of * RPI_FIRMWARE_GET_CLOCKS is zeroed. So allocate an additional * zero element as sentinel. */ clks = devm_kcalloc(rpi->dev, RPI_FIRMWARE_NUM_CLK_ID + 1, sizeof(*clks), GFP_KERNEL); if (!clks) return -ENOMEM; ret = rpi_firmware_property(rpi->firmware, RPI_FIRMWARE_GET_CLOCKS, clks, sizeof(*clks) * RPI_FIRMWARE_NUM_CLK_ID); if (ret) return ret; while (clks->id) { struct raspberrypi_clk_variant *variant; if (clks->id >= RPI_FIRMWARE_NUM_CLK_ID) { dev_err(rpi->dev, "Unknown clock id: %u (max: %u)\n", clks->id, RPI_FIRMWARE_NUM_CLK_ID - 1); return -EINVAL; } variant = &raspberrypi_clk_variants[clks->id]; if (variant->export) { struct clk_hw *hw; hw = raspberrypi_clk_register(rpi, clks->parent, clks->id, variant); if (IS_ERR(hw)) return PTR_ERR(hw); data->num = clks->id + 1; data->hws[clks->id] = hw; } clks++; } return 0; } static int raspberrypi_clk_probe(struct platform_device *pdev) { struct clk_hw_onecell_data *clk_data; struct device_node *firmware_node; struct device *dev = &pdev->dev; struct rpi_firmware *firmware; struct raspberrypi_clk *rpi; int ret; /* * We can be probed either through the an old-fashioned * platform device registration or through a DT node that is a * child of the firmware node. Handle both cases. */ if (dev->of_node) firmware_node = of_get_parent(dev->of_node); else firmware_node = of_find_compatible_node(NULL, NULL, "raspberrypi,bcm2835-firmware"); if (!firmware_node) { dev_err(dev, "Missing firmware node\n"); return -ENOENT; } firmware = devm_rpi_firmware_get(&pdev->dev, firmware_node); of_node_put(firmware_node); if (!firmware) return -EPROBE_DEFER; rpi = devm_kzalloc(dev, sizeof(*rpi), GFP_KERNEL); if (!rpi) return -ENOMEM; rpi->dev = dev; rpi->firmware = firmware; platform_set_drvdata(pdev, rpi); clk_data = devm_kzalloc(dev, struct_size(clk_data, hws, RPI_FIRMWARE_NUM_CLK_ID), GFP_KERNEL); if (!clk_data) return -ENOMEM; ret = raspberrypi_discover_clocks(rpi, clk_data); if (ret) return ret; ret = devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get, clk_data); if (ret) return ret; rpi->cpufreq = platform_device_register_data(dev, "raspberrypi-cpufreq", -1, NULL, 0); return 0; } static void raspberrypi_clk_remove(struct platform_device *pdev) { struct raspberrypi_clk *rpi = platform_get_drvdata(pdev); platform_device_unregister(rpi->cpufreq); } static const struct of_device_id raspberrypi_clk_match[] = { { .compatible = "raspberrypi,firmware-clocks" }, { }, }; MODULE_DEVICE_TABLE(of, raspberrypi_clk_match); static struct platform_driver raspberrypi_clk_driver = { .driver = { .name = "raspberrypi-clk", .of_match_table = raspberrypi_clk_match, }, .probe = raspberrypi_clk_probe, .remove_new = raspberrypi_clk_remove, }; module_platform_driver(raspberrypi_clk_driver); MODULE_AUTHOR("Nicolas Saenz Julienne <nsaenzjulienne@suse.de>"); MODULE_DESCRIPTION("Raspberry Pi firmware clock driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:raspberrypi-clk");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1