Contributors: 14
Author Tokens Token Proportion Commits Commit Proportion
Stephen Boyd 1005 40.56% 6 16.22%
Rajendra Nayak 696 28.09% 10 27.03%
Björn Andersson 243 9.81% 4 10.81%
Amit Nischal 117 4.72% 3 8.11%
Johan Hovold 115 4.64% 4 10.81%
Taniya Das 98 3.95% 2 5.41%
Jagadeesh Kona 88 3.55% 1 2.70%
Dmitry Eremin-Solenikov 38 1.53% 1 2.70%
Angelo G. Del Regno 30 1.21% 1 2.70%
Jordan Crouse 18 0.73% 1 2.70%
Akhil P Oommen 14 0.56% 1 2.70%
Jonathan Marek 10 0.40% 1 2.70%
Abel Vesa 5 0.20% 1 2.70%
Thomas Gleixner 1 0.04% 1 2.70%
Total 2478 37


// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (c) 2015, 2017-2018, 2022, The Linux Foundation. All rights reserved.
 */

#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/export.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/ktime.h>
#include <linux/pm_domain.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/reset-controller.h>
#include <linux/slab.h>
#include "gdsc.h"

#define PWR_ON_MASK		BIT(31)
#define EN_REST_WAIT_MASK	GENMASK_ULL(23, 20)
#define EN_FEW_WAIT_MASK	GENMASK_ULL(19, 16)
#define CLK_DIS_WAIT_MASK	GENMASK_ULL(15, 12)
#define SW_OVERRIDE_MASK	BIT(2)
#define HW_CONTROL_MASK		BIT(1)
#define SW_COLLAPSE_MASK	BIT(0)
#define GMEM_CLAMP_IO_MASK	BIT(0)
#define GMEM_RESET_MASK		BIT(4)

/* CFG_GDSCR */
#define GDSC_POWER_UP_COMPLETE		BIT(16)
#define GDSC_POWER_DOWN_COMPLETE	BIT(15)
#define GDSC_RETAIN_FF_ENABLE		BIT(11)
#define CFG_GDSCR_OFFSET		0x4

/* Wait 2^n CXO cycles between all states. Here, n=2 (4 cycles). */
#define EN_REST_WAIT_VAL	0x2
#define EN_FEW_WAIT_VAL		0x8
#define CLK_DIS_WAIT_VAL	0x2

/* Transition delay shifts */
#define EN_REST_WAIT_SHIFT	20
#define EN_FEW_WAIT_SHIFT	16
#define CLK_DIS_WAIT_SHIFT	12

#define RETAIN_MEM		BIT(14)
#define RETAIN_PERIPH		BIT(13)

#define STATUS_POLL_TIMEOUT_US	1500
#define TIMEOUT_US		500

#define domain_to_gdsc(domain) container_of(domain, struct gdsc, pd)

enum gdsc_status {
	GDSC_OFF,
	GDSC_ON
};

/* Returns 1 if GDSC status is status, 0 if not, and < 0 on error */
static int gdsc_check_status(struct gdsc *sc, enum gdsc_status status)
{
	unsigned int reg;
	u32 val;
	int ret;

	if (sc->flags & POLL_CFG_GDSCR)
		reg = sc->gdscr + CFG_GDSCR_OFFSET;
	else if (sc->gds_hw_ctrl)
		reg = sc->gds_hw_ctrl;
	else
		reg = sc->gdscr;

	ret = regmap_read(sc->regmap, reg, &val);
	if (ret)
		return ret;

	if (sc->flags & POLL_CFG_GDSCR) {
		switch (status) {
		case GDSC_ON:
			return !!(val & GDSC_POWER_UP_COMPLETE);
		case GDSC_OFF:
			return !!(val & GDSC_POWER_DOWN_COMPLETE);
		}
	}

	switch (status) {
	case GDSC_ON:
		return !!(val & PWR_ON_MASK);
	case GDSC_OFF:
		return !(val & PWR_ON_MASK);
	}

	return -EINVAL;
}

static int gdsc_hwctrl(struct gdsc *sc, bool en)
{
	u32 val = en ? HW_CONTROL_MASK : 0;

	return regmap_update_bits(sc->regmap, sc->gdscr, HW_CONTROL_MASK, val);
}

static int gdsc_poll_status(struct gdsc *sc, enum gdsc_status status)
{
	ktime_t start;

	start = ktime_get();
	do {
		if (gdsc_check_status(sc, status))
			return 0;
	} while (ktime_us_delta(ktime_get(), start) < STATUS_POLL_TIMEOUT_US);

	if (gdsc_check_status(sc, status))
		return 0;

	return -ETIMEDOUT;
}

static int gdsc_update_collapse_bit(struct gdsc *sc, bool val)
{
	u32 reg, mask;
	int ret;

	if (sc->collapse_mask) {
		reg = sc->collapse_ctrl;
		mask = sc->collapse_mask;
	} else {
		reg = sc->gdscr;
		mask = SW_COLLAPSE_MASK;
	}

	ret = regmap_update_bits(sc->regmap, reg, mask, val ? mask : 0);
	if (ret)
		return ret;

	return 0;
}

static int gdsc_toggle_logic(struct gdsc *sc, enum gdsc_status status,
		bool wait)
{
	int ret;

	if (status == GDSC_ON && sc->rsupply) {
		ret = regulator_enable(sc->rsupply);
		if (ret < 0)
			return ret;
	}

	ret = gdsc_update_collapse_bit(sc, status == GDSC_OFF);

	/* If disabling votable gdscs, don't poll on status */
	if ((sc->flags & VOTABLE) && status == GDSC_OFF && !wait) {
		/*
		 * Add a short delay here to ensure that an enable
		 * right after it was disabled does not put it in an
		 * unknown state
		 */
		udelay(TIMEOUT_US);
		return 0;
	}

	if (sc->gds_hw_ctrl) {
		/*
		 * The gds hw controller asserts/de-asserts the status bit soon
		 * after it receives a power on/off request from a master.
		 * The controller then takes around 8 xo cycles to start its
		 * internal state machine and update the status bit. During
		 * this time, the status bit does not reflect the true status
		 * of the core.
		 * Add a delay of 1 us between writing to the SW_COLLAPSE bit
		 * and polling the status bit.
		 */
		udelay(1);
	}

	ret = gdsc_poll_status(sc, status);
	WARN(ret, "%s status stuck at 'o%s'", sc->pd.name, status ? "ff" : "n");

	if (!ret && status == GDSC_OFF && sc->rsupply) {
		ret = regulator_disable(sc->rsupply);
		if (ret < 0)
			return ret;
	}

	return ret;
}

static inline int gdsc_deassert_reset(struct gdsc *sc)
{
	int i;

	for (i = 0; i < sc->reset_count; i++)
		sc->rcdev->ops->deassert(sc->rcdev, sc->resets[i]);
	return 0;
}

static inline int gdsc_assert_reset(struct gdsc *sc)
{
	int i;

	for (i = 0; i < sc->reset_count; i++)
		sc->rcdev->ops->assert(sc->rcdev, sc->resets[i]);
	return 0;
}

static inline void gdsc_force_mem_on(struct gdsc *sc)
{
	int i;
	u32 mask = RETAIN_MEM;

	if (!(sc->flags & NO_RET_PERIPH))
		mask |= RETAIN_PERIPH;

	for (i = 0; i < sc->cxc_count; i++)
		regmap_update_bits(sc->regmap, sc->cxcs[i], mask, mask);
}

static inline void gdsc_clear_mem_on(struct gdsc *sc)
{
	int i;
	u32 mask = RETAIN_MEM;

	if (!(sc->flags & NO_RET_PERIPH))
		mask |= RETAIN_PERIPH;

	for (i = 0; i < sc->cxc_count; i++)
		regmap_update_bits(sc->regmap, sc->cxcs[i], mask, 0);
}

static inline void gdsc_deassert_clamp_io(struct gdsc *sc)
{
	regmap_update_bits(sc->regmap, sc->clamp_io_ctrl,
			   GMEM_CLAMP_IO_MASK, 0);
}

static inline void gdsc_assert_clamp_io(struct gdsc *sc)
{
	regmap_update_bits(sc->regmap, sc->clamp_io_ctrl,
			   GMEM_CLAMP_IO_MASK, 1);
}

static inline void gdsc_assert_reset_aon(struct gdsc *sc)
{
	regmap_update_bits(sc->regmap, sc->clamp_io_ctrl,
			   GMEM_RESET_MASK, 1);
	udelay(1);
	regmap_update_bits(sc->regmap, sc->clamp_io_ctrl,
			   GMEM_RESET_MASK, 0);
}

static void gdsc_retain_ff_on(struct gdsc *sc)
{
	u32 mask = GDSC_RETAIN_FF_ENABLE;

	regmap_update_bits(sc->regmap, sc->gdscr, mask, mask);
}

static int gdsc_enable(struct generic_pm_domain *domain)
{
	struct gdsc *sc = domain_to_gdsc(domain);
	int ret;

	if (sc->pwrsts == PWRSTS_ON)
		return gdsc_deassert_reset(sc);

	if (sc->flags & SW_RESET) {
		gdsc_assert_reset(sc);
		udelay(1);
		gdsc_deassert_reset(sc);
	}

	if (sc->flags & CLAMP_IO) {
		if (sc->flags & AON_RESET)
			gdsc_assert_reset_aon(sc);
		gdsc_deassert_clamp_io(sc);
	}

	ret = gdsc_toggle_logic(sc, GDSC_ON, false);
	if (ret)
		return ret;

	if (sc->pwrsts & PWRSTS_OFF)
		gdsc_force_mem_on(sc);

	/*
	 * If clocks to this power domain were already on, they will take an
	 * additional 4 clock cycles to re-enable after the power domain is
	 * enabled. Delay to account for this. A delay is also needed to ensure
	 * clocks are not enabled within 400ns of enabling power to the
	 * memories.
	 */
	udelay(1);

	/* Turn on HW trigger mode if supported */
	if (sc->flags & HW_CTRL) {
		ret = gdsc_hwctrl(sc, true);
		if (ret)
			return ret;
		/*
		 * Wait for the GDSC to go through a power down and
		 * up cycle.  In case a firmware ends up polling status
		 * bits for the gdsc, it might read an 'on' status before
		 * the GDSC can finish the power cycle.
		 * We wait 1us before returning to ensure the firmware
		 * can't immediately poll the status bits.
		 */
		udelay(1);
	}

	if (sc->flags & RETAIN_FF_ENABLE)
		gdsc_retain_ff_on(sc);

	return 0;
}

static int gdsc_disable(struct generic_pm_domain *domain)
{
	struct gdsc *sc = domain_to_gdsc(domain);
	int ret;

	if (sc->pwrsts == PWRSTS_ON)
		return gdsc_assert_reset(sc);

	/* Turn off HW trigger mode if supported */
	if (sc->flags & HW_CTRL) {
		ret = gdsc_hwctrl(sc, false);
		if (ret < 0)
			return ret;
		/*
		 * Wait for the GDSC to go through a power down and
		 * up cycle.  In case we end up polling status
		 * bits for the gdsc before the power cycle is completed
		 * it might read an 'on' status wrongly.
		 */
		udelay(1);

		ret = gdsc_poll_status(sc, GDSC_ON);
		if (ret)
			return ret;
	}

	if (sc->pwrsts & PWRSTS_OFF)
		gdsc_clear_mem_on(sc);

	/*
	 * If the GDSC supports only a Retention state, apart from ON,
	 * leave it in ON state.
	 * There is no SW control to transition the GDSC into
	 * Retention state. This happens in HW when the parent
	 * domain goes down to a Low power state
	 */
	if (sc->pwrsts == PWRSTS_RET_ON)
		return 0;

	ret = gdsc_toggle_logic(sc, GDSC_OFF, domain->synced_poweroff);
	if (ret)
		return ret;

	if (sc->flags & CLAMP_IO)
		gdsc_assert_clamp_io(sc);

	return 0;
}

static int gdsc_set_hwmode(struct generic_pm_domain *domain, struct device *dev, bool mode)
{
	struct gdsc *sc = domain_to_gdsc(domain);
	int ret;

	ret = gdsc_hwctrl(sc, mode);
	if (ret)
		return ret;

	/*
	 * Wait for the GDSC to go through a power down and
	 * up cycle. If we poll the status register before the
	 * power cycle is finished we might read incorrect values.
	 */
	udelay(1);

	/*
	 * When the GDSC is switched to HW mode, HW can disable the GDSC.
	 * When the GDSC is switched back to SW mode, the GDSC will be enabled
	 * again, hence we need to poll for GDSC to complete the power up.
	 */
	if (!mode)
		return gdsc_poll_status(sc, GDSC_ON);

	return 0;
}

static bool gdsc_get_hwmode(struct generic_pm_domain *domain, struct device *dev)
{
	struct gdsc *sc = domain_to_gdsc(domain);
	u32 val;

	regmap_read(sc->regmap, sc->gdscr, &val);

	return !!(val & HW_CONTROL_MASK);
}

static int gdsc_init(struct gdsc *sc)
{
	u32 mask, val;
	int on, ret;

	/*
	 * Disable HW trigger: collapse/restore occur based on registers writes.
	 * Disable SW override: Use hardware state-machine for sequencing.
	 * Configure wait time between states.
	 */
	mask = HW_CONTROL_MASK | SW_OVERRIDE_MASK |
	       EN_REST_WAIT_MASK | EN_FEW_WAIT_MASK | CLK_DIS_WAIT_MASK;

	if (!sc->en_rest_wait_val)
		sc->en_rest_wait_val = EN_REST_WAIT_VAL;
	if (!sc->en_few_wait_val)
		sc->en_few_wait_val = EN_FEW_WAIT_VAL;
	if (!sc->clk_dis_wait_val)
		sc->clk_dis_wait_val = CLK_DIS_WAIT_VAL;

	val = sc->en_rest_wait_val << EN_REST_WAIT_SHIFT |
		sc->en_few_wait_val << EN_FEW_WAIT_SHIFT |
		sc->clk_dis_wait_val << CLK_DIS_WAIT_SHIFT;

	ret = regmap_update_bits(sc->regmap, sc->gdscr, mask, val);
	if (ret)
		return ret;

	/* Force gdsc ON if only ON state is supported */
	if (sc->pwrsts == PWRSTS_ON) {
		ret = gdsc_toggle_logic(sc, GDSC_ON, false);
		if (ret)
			return ret;
	}

	on = gdsc_check_status(sc, GDSC_ON);
	if (on < 0)
		return on;

	if (on) {
		/* The regulator must be on, sync the kernel state */
		if (sc->rsupply) {
			ret = regulator_enable(sc->rsupply);
			if (ret < 0)
				return ret;
		}

		/*
		 * Votable GDSCs can be ON due to Vote from other masters.
		 * If a Votable GDSC is ON, make sure we have a Vote.
		 */
		if (sc->flags & VOTABLE) {
			ret = gdsc_update_collapse_bit(sc, false);
			if (ret)
				goto err_disable_supply;
		}

		/* Turn on HW trigger mode if supported */
		if (sc->flags & HW_CTRL) {
			ret = gdsc_hwctrl(sc, true);
			if (ret < 0)
				goto err_disable_supply;
		}

		/*
		 * Make sure the retain bit is set if the GDSC is already on,
		 * otherwise we end up turning off the GDSC and destroying all
		 * the register contents that we thought we were saving.
		 */
		if (sc->flags & RETAIN_FF_ENABLE)
			gdsc_retain_ff_on(sc);
	} else if (sc->flags & ALWAYS_ON) {
		/* If ALWAYS_ON GDSCs are not ON, turn them ON */
		gdsc_enable(&sc->pd);
		on = true;
	}

	if (on || (sc->pwrsts & PWRSTS_RET))
		gdsc_force_mem_on(sc);
	else
		gdsc_clear_mem_on(sc);

	if (sc->flags & ALWAYS_ON)
		sc->pd.flags |= GENPD_FLAG_ALWAYS_ON;
	if (!sc->pd.power_off)
		sc->pd.power_off = gdsc_disable;
	if (!sc->pd.power_on)
		sc->pd.power_on = gdsc_enable;
	if (sc->flags & HW_CTRL_TRIGGER) {
		sc->pd.set_hwmode_dev = gdsc_set_hwmode;
		sc->pd.get_hwmode_dev = gdsc_get_hwmode;
	}

	ret = pm_genpd_init(&sc->pd, NULL, !on);
	if (ret)
		goto err_disable_supply;

	return 0;

err_disable_supply:
	if (on && sc->rsupply)
		regulator_disable(sc->rsupply);

	return ret;
}

int gdsc_register(struct gdsc_desc *desc,
		  struct reset_controller_dev *rcdev, struct regmap *regmap)
{
	int i, ret;
	struct genpd_onecell_data *data;
	struct device *dev = desc->dev;
	struct gdsc **scs = desc->scs;
	size_t num = desc->num;

	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	data->domains = devm_kcalloc(dev, num, sizeof(*data->domains),
				     GFP_KERNEL);
	if (!data->domains)
		return -ENOMEM;

	for (i = 0; i < num; i++) {
		if (!scs[i] || !scs[i]->supply)
			continue;

		scs[i]->rsupply = devm_regulator_get_optional(dev, scs[i]->supply);
		if (IS_ERR(scs[i]->rsupply)) {
			ret = PTR_ERR(scs[i]->rsupply);
			if (ret != -ENODEV)
				return ret;

			scs[i]->rsupply = NULL;
		}
	}

	data->num_domains = num;
	for (i = 0; i < num; i++) {
		if (!scs[i])
			continue;
		scs[i]->regmap = regmap;
		scs[i]->rcdev = rcdev;
		ret = gdsc_init(scs[i]);
		if (ret)
			return ret;
		data->domains[i] = &scs[i]->pd;
	}

	/* Add subdomains */
	for (i = 0; i < num; i++) {
		if (!scs[i])
			continue;
		if (scs[i]->parent)
			pm_genpd_add_subdomain(scs[i]->parent, &scs[i]->pd);
		else if (!IS_ERR_OR_NULL(dev->pm_domain))
			pm_genpd_add_subdomain(pd_to_genpd(dev->pm_domain), &scs[i]->pd);
	}

	return of_genpd_add_provider_onecell(dev->of_node, data);
}

void gdsc_unregister(struct gdsc_desc *desc)
{
	int i;
	struct device *dev = desc->dev;
	struct gdsc **scs = desc->scs;
	size_t num = desc->num;

	/* Remove subdomains */
	for (i = 0; i < num; i++) {
		if (!scs[i])
			continue;
		if (scs[i]->parent)
			pm_genpd_remove_subdomain(scs[i]->parent, &scs[i]->pd);
		else if (!IS_ERR_OR_NULL(dev->pm_domain))
			pm_genpd_remove_subdomain(pd_to_genpd(dev->pm_domain), &scs[i]->pd);
	}
	of_genpd_del_provider(dev->of_node);
}

/*
 * On SDM845+ the GPU GX domain is *almost* entirely controlled by the GMU
 * running in the CX domain so the CPU doesn't need to know anything about the
 * GX domain EXCEPT....
 *
 * Hardware constraints dictate that the GX be powered down before the CX. If
 * the GMU crashes it could leave the GX on. In order to successfully bring back
 * the device the CPU needs to disable the GX headswitch. There being no sane
 * way to reach in and touch that register from deep inside the GPU driver we
 * need to set up the infrastructure to be able to ensure that the GPU can
 * ensure that the GX is off during this super special case. We do this by
 * defining a GX gdsc with a dummy enable function and a "default" disable
 * function.
 *
 * This allows us to attach with genpd_dev_pm_attach_by_name() in the GPU
 * driver. During power up, nothing will happen from the CPU (and the GMU will
 * power up normally but during power down this will ensure that the GX domain
 * is *really* off - this gives us a semi standard way of doing what we need.
 */
int gdsc_gx_do_nothing_enable(struct generic_pm_domain *domain)
{
	struct gdsc *sc = domain_to_gdsc(domain);
	int ret = 0;

	/* Enable the parent supply, when controlled through the regulator framework. */
	if (sc->rsupply)
		ret = regulator_enable(sc->rsupply);

	/* Do nothing with the GDSC itself */

	return ret;
}
EXPORT_SYMBOL_GPL(gdsc_gx_do_nothing_enable);