Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Chris Brandt | 626 | 64.74% | 1 | 11.11% |
Geert Uytterhoeven | 181 | 18.72% | 3 | 33.33% |
Biju Das | 146 | 15.10% | 1 | 11.11% |
Lad Prabhakar | 11 | 1.14% | 2 | 22.22% |
Kuninori Morimoto | 2 | 0.21% | 1 | 11.11% |
Daniel Lezcano | 1 | 0.10% | 1 | 11.11% |
Total | 967 | 9 |
// SPDX-License-Identifier: GPL-2.0 /* * Renesas Timer Support - OSTM * * Copyright (C) 2017 Renesas Electronics America, Inc. * Copyright (C) 2017 Chris Brandt */ #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/reset.h> #include <linux/sched_clock.h> #include <linux/slab.h> #include "timer-of.h" /* * The OSTM contains independent channels. * The first OSTM channel probed will be set up as a free running * clocksource. Additionally we will use this clocksource for the system * schedule timer sched_clock(). * * The second (or more) channel probed will be set up as an interrupt * driven clock event. */ static void __iomem *system_clock; /* For sched_clock() */ /* OSTM REGISTERS */ #define OSTM_CMP 0x000 /* RW,32 */ #define OSTM_CNT 0x004 /* R,32 */ #define OSTM_TE 0x010 /* R,8 */ #define OSTM_TS 0x014 /* W,8 */ #define OSTM_TT 0x018 /* W,8 */ #define OSTM_CTL 0x020 /* RW,8 */ #define TE 0x01 #define TS 0x01 #define TT 0x01 #define CTL_PERIODIC 0x00 #define CTL_ONESHOT 0x02 #define CTL_FREERUN 0x02 static void ostm_timer_stop(struct timer_of *to) { if (readb(timer_of_base(to) + OSTM_TE) & TE) { writeb(TT, timer_of_base(to) + OSTM_TT); /* * Read back the register simply to confirm the write operation * has completed since I/O writes can sometimes get queued by * the bus architecture. */ while (readb(timer_of_base(to) + OSTM_TE) & TE) ; } } static int __init ostm_init_clksrc(struct timer_of *to) { ostm_timer_stop(to); writel(0, timer_of_base(to) + OSTM_CMP); writeb(CTL_FREERUN, timer_of_base(to) + OSTM_CTL); writeb(TS, timer_of_base(to) + OSTM_TS); return clocksource_mmio_init(timer_of_base(to) + OSTM_CNT, to->np->full_name, timer_of_rate(to), 300, 32, clocksource_mmio_readl_up); } static u64 notrace ostm_read_sched_clock(void) { return readl(system_clock); } static void __init ostm_init_sched_clock(struct timer_of *to) { system_clock = timer_of_base(to) + OSTM_CNT; sched_clock_register(ostm_read_sched_clock, 32, timer_of_rate(to)); } static int ostm_clock_event_next(unsigned long delta, struct clock_event_device *ced) { struct timer_of *to = to_timer_of(ced); ostm_timer_stop(to); writel(delta, timer_of_base(to) + OSTM_CMP); writeb(CTL_ONESHOT, timer_of_base(to) + OSTM_CTL); writeb(TS, timer_of_base(to) + OSTM_TS); return 0; } static int ostm_shutdown(struct clock_event_device *ced) { struct timer_of *to = to_timer_of(ced); ostm_timer_stop(to); return 0; } static int ostm_set_periodic(struct clock_event_device *ced) { struct timer_of *to = to_timer_of(ced); if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced)) ostm_timer_stop(to); writel(timer_of_period(to) - 1, timer_of_base(to) + OSTM_CMP); writeb(CTL_PERIODIC, timer_of_base(to) + OSTM_CTL); writeb(TS, timer_of_base(to) + OSTM_TS); return 0; } static int ostm_set_oneshot(struct clock_event_device *ced) { struct timer_of *to = to_timer_of(ced); ostm_timer_stop(to); return 0; } static irqreturn_t ostm_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *ced = dev_id; if (clockevent_state_oneshot(ced)) ostm_timer_stop(to_timer_of(ced)); /* notify clockevent layer */ if (ced->event_handler) ced->event_handler(ced); return IRQ_HANDLED; } static int __init ostm_init_clkevt(struct timer_of *to) { struct clock_event_device *ced = &to->clkevt; ced->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC; ced->set_state_shutdown = ostm_shutdown; ced->set_state_periodic = ostm_set_periodic; ced->set_state_oneshot = ostm_set_oneshot; ced->set_next_event = ostm_clock_event_next; ced->shift = 32; ced->rating = 300; ced->cpumask = cpumask_of(0); clockevents_config_and_register(ced, timer_of_rate(to), 0xf, 0xffffffff); return 0; } static int __init ostm_init(struct device_node *np) { struct reset_control *rstc; struct timer_of *to; int ret; to = kzalloc(sizeof(*to), GFP_KERNEL); if (!to) return -ENOMEM; rstc = of_reset_control_get_optional_exclusive(np, NULL); if (IS_ERR(rstc)) { ret = PTR_ERR(rstc); goto err_free; } reset_control_deassert(rstc); to->flags = TIMER_OF_BASE | TIMER_OF_CLOCK; if (system_clock) { /* * clock sources don't use interrupts, clock events do */ to->flags |= TIMER_OF_IRQ; to->of_irq.flags = IRQF_TIMER | IRQF_IRQPOLL; to->of_irq.handler = ostm_timer_interrupt; } ret = timer_of_init(np, to); if (ret) goto err_reset; /* * First probed device will be used as system clocksource. Any * additional devices will be used as clock events. */ if (!system_clock) { ret = ostm_init_clksrc(to); if (ret) goto err_cleanup; ostm_init_sched_clock(to); pr_info("%pOF: used for clocksource\n", np); } else { ret = ostm_init_clkevt(to); if (ret) goto err_cleanup; pr_info("%pOF: used for clock events\n", np); } of_node_set_flag(np, OF_POPULATED); return 0; err_cleanup: timer_of_cleanup(to); err_reset: reset_control_assert(rstc); reset_control_put(rstc); err_free: kfree(to); return ret; } TIMER_OF_DECLARE(ostm, "renesas,ostm", ostm_init); #if defined(CONFIG_ARCH_RZG2L) || defined(CONFIG_ARCH_R9A09G057) static int __init ostm_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; return ostm_init(dev->of_node); } static const struct of_device_id ostm_of_table[] = { { .compatible = "renesas,ostm", }, { /* sentinel */ } }; static struct platform_driver ostm_device_driver = { .driver = { .name = "renesas_ostm", .of_match_table = of_match_ptr(ostm_of_table), .suppress_bind_attrs = true, }, }; builtin_platform_driver_probe(ostm_device_driver, ostm_probe); #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1