Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Rob Rice | 1186 | 97.37% | 1 | 10.00% |
Ard Biesheuvel | 8 | 0.66% | 1 | 10.00% |
Raveendra Padasalagi | 5 | 0.41% | 1 | 10.00% |
Herbert Xu | 4 | 0.33% | 1 | 10.00% |
Eric Biggers | 4 | 0.33% | 1 | 10.00% |
Iuliana Prodan | 3 | 0.25% | 1 | 10.00% |
Corentin Labbe | 3 | 0.25% | 1 | 10.00% |
Jiri Olsa | 2 | 0.16% | 1 | 10.00% |
Thomas Gleixner | 2 | 0.16% | 1 | 10.00% |
wangjianli | 1 | 0.08% | 1 | 10.00% |
Total | 1218 | 10 |
/* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright 2016 Broadcom */ #ifndef _CIPHER_H #define _CIPHER_H #include <linux/atomic.h> #include <linux/mailbox/brcm-message.h> #include <linux/mailbox_client.h> #include <crypto/aes.h> #include <crypto/internal/hash.h> #include <crypto/internal/skcipher.h> #include <crypto/aead.h> #include <crypto/arc4.h> #include <crypto/gcm.h> #include <crypto/sha1.h> #include <crypto/sha2.h> #include <crypto/sha3.h> #include "spu.h" #include "spum.h" #include "spu2.h" /* Driver supports up to MAX_SPUS SPU blocks */ #define MAX_SPUS 16 #define ARC4_STATE_SIZE 4 #define CCM_AES_IV_SIZE 16 #define CCM_ESP_IV_SIZE 8 #define RFC4543_ICV_SIZE 16 #define MAX_KEY_SIZE ARC4_MAX_KEY_SIZE #define MAX_IV_SIZE AES_BLOCK_SIZE #define MAX_DIGEST_SIZE SHA3_512_DIGEST_SIZE #define MAX_ASSOC_SIZE 512 /* size of salt value for AES-GCM-ESP and AES-CCM-ESP */ #define GCM_ESP_SALT_SIZE 4 #define CCM_ESP_SALT_SIZE 3 #define MAX_SALT_SIZE GCM_ESP_SALT_SIZE #define GCM_ESP_SALT_OFFSET 0 #define CCM_ESP_SALT_OFFSET 1 #define GCM_ESP_DIGESTSIZE 16 #define MAX_HASH_BLOCK_SIZE SHA512_BLOCK_SIZE /* * Maximum number of bytes from a non-final hash request that can be deferred * until more data is available. With new crypto API framework, this * can be no more than one block of data. */ #define HASH_CARRY_MAX MAX_HASH_BLOCK_SIZE /* Force at least 4-byte alignment of all SPU message fields */ #define SPU_MSG_ALIGN 4 /* Number of times to resend mailbox message if mb queue is full */ #define SPU_MB_RETRY_MAX 1000 /* op_counts[] indexes */ enum op_type { SPU_OP_CIPHER, SPU_OP_HASH, SPU_OP_HMAC, SPU_OP_AEAD, SPU_OP_NUM }; enum spu_spu_type { SPU_TYPE_SPUM, SPU_TYPE_SPU2, }; /* * SPUM_NS2 and SPUM_NSP are the SPU-M block on Northstar 2 and Northstar Plus, * respectively. */ enum spu_spu_subtype { SPU_SUBTYPE_SPUM_NS2, SPU_SUBTYPE_SPUM_NSP, SPU_SUBTYPE_SPU2_V1, SPU_SUBTYPE_SPU2_V2 }; struct spu_type_subtype { enum spu_spu_type type; enum spu_spu_subtype subtype; }; struct cipher_op { enum spu_cipher_alg alg; enum spu_cipher_mode mode; }; struct auth_op { enum hash_alg alg; enum hash_mode mode; }; struct iproc_alg_s { u32 type; union { struct skcipher_alg skcipher; struct ahash_alg hash; struct aead_alg aead; } alg; struct cipher_op cipher_info; struct auth_op auth_info; bool auth_first; bool registered; }; /* * Buffers for a SPU request/reply message pair. All part of one structure to * allow a single alloc per request. */ struct spu_msg_buf { /* Request message fragments */ /* * SPU request message header. For SPU-M, holds MH, EMH, SCTX, BDESC, * and BD header. For SPU2, holds FMD, OMD. */ u8 bcm_spu_req_hdr[ALIGN(SPU2_HEADER_ALLOC_LEN, SPU_MSG_ALIGN)]; /* IV or counter. Size to include salt. Also used for XTS tweek. */ u8 iv_ctr[ALIGN(2 * AES_BLOCK_SIZE, SPU_MSG_ALIGN)]; /* Hash digest. request and response. */ u8 digest[ALIGN(MAX_DIGEST_SIZE, SPU_MSG_ALIGN)]; /* SPU request message padding */ u8 spu_req_pad[ALIGN(SPU_PAD_LEN_MAX, SPU_MSG_ALIGN)]; /* SPU-M request message STATUS field */ u8 tx_stat[ALIGN(SPU_TX_STATUS_LEN, SPU_MSG_ALIGN)]; /* Response message fragments */ /* SPU response message header */ u8 spu_resp_hdr[ALIGN(SPU2_HEADER_ALLOC_LEN, SPU_MSG_ALIGN)]; /* SPU response message STATUS field padding */ u8 rx_stat_pad[ALIGN(SPU_STAT_PAD_MAX, SPU_MSG_ALIGN)]; /* SPU response message STATUS field */ u8 rx_stat[ALIGN(SPU_RX_STATUS_LEN, SPU_MSG_ALIGN)]; union { /* Buffers only used for skcipher */ struct { /* * Field used for either SUPDT when RC4 is used * -OR- tweak value when XTS/AES is used */ u8 supdt_tweak[ALIGN(SPU_SUPDT_LEN, SPU_MSG_ALIGN)]; } c; /* Buffers only used for aead */ struct { /* SPU response pad for GCM data */ u8 gcmpad[ALIGN(AES_BLOCK_SIZE, SPU_MSG_ALIGN)]; /* SPU request msg padding for GCM AAD */ u8 req_aad_pad[ALIGN(SPU_PAD_LEN_MAX, SPU_MSG_ALIGN)]; /* SPU response data to be discarded */ u8 resp_aad[ALIGN(MAX_ASSOC_SIZE + MAX_IV_SIZE, SPU_MSG_ALIGN)]; } a; }; }; struct iproc_ctx_s { u8 enckey[MAX_KEY_SIZE + ARC4_STATE_SIZE]; unsigned int enckeylen; u8 authkey[MAX_KEY_SIZE + ARC4_STATE_SIZE]; unsigned int authkeylen; u8 salt[MAX_SALT_SIZE]; unsigned int salt_len; unsigned int salt_offset; u8 iv[MAX_IV_SIZE]; unsigned int digestsize; struct iproc_alg_s *alg; bool is_esp; struct cipher_op cipher; enum spu_cipher_type cipher_type; struct auth_op auth; bool auth_first; /* * The maximum length in bytes of the payload in a SPU message for this * context. For SPU-M, the payload is the combination of AAD and data. * For SPU2, the payload is just data. A value of SPU_MAX_PAYLOAD_INF * indicates that there is no limit to the length of the SPU message * payload. */ unsigned int max_payload; struct crypto_aead *fallback_cipher; /* auth_type is determined during processing of request */ u8 ipad[MAX_HASH_BLOCK_SIZE]; u8 opad[MAX_HASH_BLOCK_SIZE]; /* * Buffer to hold SPU message header template. Template is created at * setkey time for skcipher requests, since most of the fields in the * header are known at that time. At request time, just fill in a few * missing pieces related to length of data in the request and IVs, etc. */ u8 bcm_spu_req_hdr[ALIGN(SPU2_HEADER_ALLOC_LEN, SPU_MSG_ALIGN)]; /* Length of SPU request header */ u16 spu_req_hdr_len; /* Expected length of SPU response header */ u16 spu_resp_hdr_len; /* * shash descriptor - needed to perform incremental hashing in * software, when hw doesn't support it. */ struct shash_desc *shash; bool is_rfc4543; /* RFC 4543 style of GMAC */ }; /* state from iproc_reqctx_s necessary for hash state export/import */ struct spu_hash_export_s { unsigned int total_todo; unsigned int total_sent; u8 hash_carry[HASH_CARRY_MAX]; unsigned int hash_carry_len; u8 incr_hash[MAX_DIGEST_SIZE]; bool is_sw_hmac; }; struct iproc_reqctx_s { /* general context */ struct crypto_async_request *parent; /* only valid after enqueue() */ struct iproc_ctx_s *ctx; u8 chan_idx; /* Mailbox channel to be used to submit this request */ /* total todo, rx'd, and sent for this request */ unsigned int total_todo; unsigned int total_received; /* only valid for skcipher */ unsigned int total_sent; /* * num bytes sent to hw from the src sg in this request. This can differ * from total_sent for incremental hashing. total_sent includes previous * init() and update() data. src_sent does not. */ unsigned int src_sent; /* * For AEAD requests, start of associated data. This will typically * point to the beginning of the src scatterlist from the request, * since assoc data is at the beginning of the src scatterlist rather * than in its own sg. */ struct scatterlist *assoc; /* * scatterlist entry and offset to start of data for next chunk. Crypto * API src scatterlist for AEAD starts with AAD, if present. For first * chunk, src_sg is sg entry at beginning of input data (after AAD). * src_skip begins at the offset in that sg entry where data begins. */ struct scatterlist *src_sg; int src_nents; /* Number of src entries with data */ u32 src_skip; /* bytes of current sg entry already used */ /* * Same for destination. For AEAD, if there is AAD, output data must * be written at offset following AAD. */ struct scatterlist *dst_sg; int dst_nents; /* Number of dst entries with data */ u32 dst_skip; /* bytes of current sg entry already written */ /* Mailbox message used to send this request to PDC driver */ struct brcm_message mb_mssg; bool bd_suppress; /* suppress BD field in SPU response? */ /* cipher context */ bool is_encrypt; /* * CBC mode: IV. CTR mode: counter. Else empty. Used as a DMA * buffer for AEAD requests. So allocate as DMAable memory. If IV * concatenated with salt, includes the salt. */ u8 *iv_ctr; /* Length of IV or counter, in bytes */ unsigned int iv_ctr_len; /* * Hash requests can be of any size, whether initial, update, or final. * A non-final request must be submitted to the SPU as an integral * number of blocks. This may leave data at the end of the request * that is not a full block. Since the request is non-final, it cannot * be padded. So, we write the remainder to this hash_carry buffer and * hold it until the next request arrives. The carry data is then * submitted at the beginning of the data in the next SPU msg. * hash_carry_len is the number of bytes currently in hash_carry. These * fields are only used for ahash requests. */ u8 hash_carry[HASH_CARRY_MAX]; unsigned int hash_carry_len; unsigned int is_final; /* is this the final for the hash op? */ /* * Digest from incremental hash is saved here to include in next hash * operation. Cannot be stored in req->result for truncated hashes, * since result may be sized for final digest. Cannot be saved in * msg_buf because that gets deleted between incremental hash ops * and is not saved as part of export(). */ u8 incr_hash[MAX_DIGEST_SIZE]; /* hmac context */ bool is_sw_hmac; gfp_t gfp; /* Buffers used to build SPU request and response messages */ struct spu_msg_buf msg_buf; struct aead_request req; }; /* * Structure encapsulates a set of function pointers specific to the type of * SPU hardware running. These functions handling creation and parsing of * SPU request messages and SPU response messages. Includes hardware-specific * values read from device tree. */ struct spu_hw { void (*spu_dump_msg_hdr)(u8 *buf, unsigned int buf_len); u32 (*spu_ctx_max_payload)(enum spu_cipher_alg cipher_alg, enum spu_cipher_mode cipher_mode, unsigned int blocksize); u32 (*spu_payload_length)(u8 *spu_hdr); u16 (*spu_response_hdr_len)(u16 auth_key_len, u16 enc_key_len, bool is_hash); u16 (*spu_hash_pad_len)(enum hash_alg hash_alg, enum hash_mode hash_mode, u32 chunksize, u16 hash_block_size); u32 (*spu_gcm_ccm_pad_len)(enum spu_cipher_mode cipher_mode, unsigned int data_size); u32 (*spu_assoc_resp_len)(enum spu_cipher_mode cipher_mode, unsigned int assoc_len, unsigned int iv_len, bool is_encrypt); u8 (*spu_aead_ivlen)(enum spu_cipher_mode cipher_mode, u16 iv_len); enum hash_type (*spu_hash_type)(u32 src_sent); u32 (*spu_digest_size)(u32 digest_size, enum hash_alg alg, enum hash_type); u32 (*spu_create_request)(u8 *spu_hdr, struct spu_request_opts *req_opts, struct spu_cipher_parms *cipher_parms, struct spu_hash_parms *hash_parms, struct spu_aead_parms *aead_parms, unsigned int data_size); u16 (*spu_cipher_req_init)(u8 *spu_hdr, struct spu_cipher_parms *cipher_parms); void (*spu_cipher_req_finish)(u8 *spu_hdr, u16 spu_req_hdr_len, unsigned int is_inbound, struct spu_cipher_parms *cipher_parms, unsigned int data_size); void (*spu_request_pad)(u8 *pad_start, u32 gcm_padding, u32 hash_pad_len, enum hash_alg auth_alg, enum hash_mode auth_mode, unsigned int total_sent, u32 status_padding); u8 (*spu_xts_tweak_in_payload)(void); u8 (*spu_tx_status_len)(void); u8 (*spu_rx_status_len)(void); int (*spu_status_process)(u8 *statp); void (*spu_ccm_update_iv)(unsigned int digestsize, struct spu_cipher_parms *cipher_parms, unsigned int assoclen, unsigned int chunksize, bool is_encrypt, bool is_esp); u32 (*spu_wordalign_padlen)(u32 data_size); /* The base virtual address of the SPU hw registers */ void __iomem *reg_vbase[MAX_SPUS]; /* Version of the SPU hardware */ enum spu_spu_type spu_type; /* Sub-version of the SPU hardware */ enum spu_spu_subtype spu_subtype; /* The number of SPUs on this platform */ u32 num_spu; /* The number of SPU channels on this platform */ u32 num_chan; }; struct bcm_device_private { struct platform_device *pdev; struct spu_hw spu; atomic_t session_count; /* number of streams active */ atomic_t stream_count; /* monotonic counter for streamID's */ /* Length of BCM header. Set to 0 when hw does not expect BCM HEADER. */ u8 bcm_hdr_len; /* The index of the channel to use for the next crypto request */ atomic_t next_chan; struct dentry *debugfs_dir; struct dentry *debugfs_stats; /* Number of request bytes processed and result bytes returned */ atomic64_t bytes_in; atomic64_t bytes_out; /* Number of operations of each type */ atomic_t op_counts[SPU_OP_NUM]; atomic_t cipher_cnt[CIPHER_ALG_LAST][CIPHER_MODE_LAST]; atomic_t hash_cnt[HASH_ALG_LAST]; atomic_t hmac_cnt[HASH_ALG_LAST]; atomic_t aead_cnt[AEAD_TYPE_LAST]; /* Number of calls to setkey() for each operation type */ atomic_t setkey_cnt[SPU_OP_NUM]; /* Number of times request was resubmitted because mb was full */ atomic_t mb_no_spc; /* Number of mailbox send failures */ atomic_t mb_send_fail; /* Number of ICV check failures for AEAD messages */ atomic_t bad_icv; struct mbox_client mcl; /* Array of mailbox channel pointers, one for each channel */ struct mbox_chan **mbox; }; extern struct bcm_device_private iproc_priv; #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1