Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Horia Geantă | 3138 | 90.62% | 14 | 45.16% |
Valentin Ciocoi Radulescu | 122 | 3.52% | 1 | 3.23% |
Breno Leitão | 107 | 3.09% | 1 | 3.23% |
Andrey Smirnov | 23 | 0.66% | 1 | 3.23% |
Kim Phillips | 23 | 0.66% | 2 | 6.45% |
Herbert Xu | 21 | 0.61% | 2 | 6.45% |
Sebastian Andrzej Siewior | 9 | 0.26% | 2 | 6.45% |
Xulin Sun | 8 | 0.23% | 1 | 3.23% |
Harsha | 3 | 0.09% | 1 | 3.23% |
Alex Porosanu | 2 | 0.06% | 1 | 3.23% |
Dan Carpenter | 2 | 0.06% | 1 | 3.23% |
Wei Yongjun | 2 | 0.06% | 1 | 3.23% |
Jakub Kiciński | 1 | 0.03% | 1 | 3.23% |
Greg Kroah-Hartman | 1 | 0.03% | 1 | 3.23% |
Jiang Jian | 1 | 0.03% | 1 | 3.23% |
Total | 3463 | 31 |
// SPDX-License-Identifier: GPL-2.0 /* * CAAM/SEC 4.x QI transport/backend driver * Queue Interface backend functionality * * Copyright 2013-2016 Freescale Semiconductor, Inc. * Copyright 2016-2017, 2019-2020 NXP */ #include <linux/cpumask.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/kernel.h> #include <linux/kthread.h> #include <linux/netdevice.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/string.h> #include <soc/fsl/qman.h> #include "debugfs.h" #include "regs.h" #include "qi.h" #include "desc.h" #include "intern.h" #include "desc_constr.h" #define PREHDR_RSLS_SHIFT 31 #define PREHDR_ABS BIT(25) /* * Use a reasonable backlog of frames (per CPU) as congestion threshold, * so that resources used by the in-flight buffers do not become a memory hog. */ #define MAX_RSP_FQ_BACKLOG_PER_CPU 256 #define CAAM_QI_ENQUEUE_RETRIES 10000 #define CAAM_NAPI_WEIGHT 63 /* * caam_napi - struct holding CAAM NAPI-related params * @irqtask: IRQ task for QI backend * @p: QMan portal */ struct caam_napi { struct napi_struct irqtask; struct qman_portal *p; }; /* * caam_qi_pcpu_priv - percpu private data structure to main list of pending * responses expected on each cpu. * @caam_napi: CAAM NAPI params * @net_dev: netdev used by NAPI * @rsp_fq: response FQ from CAAM */ struct caam_qi_pcpu_priv { struct caam_napi caam_napi; struct net_device *net_dev; struct qman_fq *rsp_fq; } ____cacheline_aligned; static DEFINE_PER_CPU(struct caam_qi_pcpu_priv, pcpu_qipriv); static DEFINE_PER_CPU(int, last_cpu); /* * caam_qi_priv - CAAM QI backend private params * @cgr: QMan congestion group */ struct caam_qi_priv { struct qman_cgr cgr; }; static struct caam_qi_priv qipriv ____cacheline_aligned; /* * This is written by only one core - the one that initialized the CGR - and * read by multiple cores (all the others). */ bool caam_congested __read_mostly; EXPORT_SYMBOL(caam_congested); /* * This is a cache of buffers, from which the users of CAAM QI driver * can allocate short (CAAM_QI_MEMCACHE_SIZE) buffers. It's faster than * doing malloc on the hotpath. * NOTE: A more elegant solution would be to have some headroom in the frames * being processed. This could be added by the dpaa-ethernet driver. * This would pose a problem for userspace application processing which * cannot know of this limitation. So for now, this will work. * NOTE: The memcache is SMP-safe. No need to handle spinlocks in-here */ static struct kmem_cache *qi_cache; static void *caam_iova_to_virt(struct iommu_domain *domain, dma_addr_t iova_addr) { phys_addr_t phys_addr; phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr; return phys_to_virt(phys_addr); } int caam_qi_enqueue(struct device *qidev, struct caam_drv_req *req) { struct qm_fd fd; dma_addr_t addr; int ret; int num_retries = 0; qm_fd_clear_fd(&fd); qm_fd_set_compound(&fd, qm_sg_entry_get_len(&req->fd_sgt[1])); addr = dma_map_single(qidev, req->fd_sgt, sizeof(req->fd_sgt), DMA_BIDIRECTIONAL); if (dma_mapping_error(qidev, addr)) { dev_err(qidev, "DMA mapping error for QI enqueue request\n"); return -EIO; } qm_fd_addr_set64(&fd, addr); do { ret = qman_enqueue(req->drv_ctx->req_fq, &fd); if (likely(!ret)) { refcount_inc(&req->drv_ctx->refcnt); return 0; } if (ret != -EBUSY) break; num_retries++; } while (num_retries < CAAM_QI_ENQUEUE_RETRIES); dev_err(qidev, "qman_enqueue failed: %d\n", ret); return ret; } EXPORT_SYMBOL(caam_qi_enqueue); static void caam_fq_ern_cb(struct qman_portal *qm, struct qman_fq *fq, const union qm_mr_entry *msg) { const struct qm_fd *fd; struct caam_drv_req *drv_req; struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev->dev); struct caam_drv_private *priv = dev_get_drvdata(qidev); fd = &msg->ern.fd; drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd)); if (!drv_req) { dev_err(qidev, "Can't find original request for CAAM response\n"); return; } refcount_dec(&drv_req->drv_ctx->refcnt); if (qm_fd_get_format(fd) != qm_fd_compound) { dev_err(qidev, "Non-compound FD from CAAM\n"); return; } dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd), sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL); if (fd->status) drv_req->cbk(drv_req, be32_to_cpu(fd->status)); else drv_req->cbk(drv_req, JRSTA_SSRC_QI); } static struct qman_fq *create_caam_req_fq(struct device *qidev, struct qman_fq *rsp_fq, dma_addr_t hwdesc, int fq_sched_flag) { int ret; struct qman_fq *req_fq; struct qm_mcc_initfq opts; req_fq = kzalloc(sizeof(*req_fq), GFP_ATOMIC); if (!req_fq) return ERR_PTR(-ENOMEM); req_fq->cb.ern = caam_fq_ern_cb; req_fq->cb.fqs = NULL; ret = qman_create_fq(0, QMAN_FQ_FLAG_DYNAMIC_FQID | QMAN_FQ_FLAG_TO_DCPORTAL, req_fq); if (ret) { dev_err(qidev, "Failed to create session req FQ\n"); goto create_req_fq_fail; } memset(&opts, 0, sizeof(opts)); opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ | QM_INITFQ_WE_CONTEXTB | QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID); opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE); qm_fqd_set_destwq(&opts.fqd, qm_channel_caam, 2); opts.fqd.context_b = cpu_to_be32(qman_fq_fqid(rsp_fq)); qm_fqd_context_a_set64(&opts.fqd, hwdesc); opts.fqd.cgid = qipriv.cgr.cgrid; ret = qman_init_fq(req_fq, fq_sched_flag, &opts); if (ret) { dev_err(qidev, "Failed to init session req FQ\n"); goto init_req_fq_fail; } dev_dbg(qidev, "Allocated request FQ %u for CPU %u\n", req_fq->fqid, smp_processor_id()); return req_fq; init_req_fq_fail: qman_destroy_fq(req_fq); create_req_fq_fail: kfree(req_fq); return ERR_PTR(ret); } static int empty_retired_fq(struct device *qidev, struct qman_fq *fq) { int ret; ret = qman_volatile_dequeue(fq, QMAN_VOLATILE_FLAG_WAIT_INT | QMAN_VOLATILE_FLAG_FINISH, QM_VDQCR_PRECEDENCE_VDQCR | QM_VDQCR_NUMFRAMES_TILLEMPTY); if (ret) { dev_err(qidev, "Volatile dequeue fail for FQ: %u\n", fq->fqid); return ret; } do { struct qman_portal *p; p = qman_get_affine_portal(smp_processor_id()); qman_p_poll_dqrr(p, 16); } while (fq->flags & QMAN_FQ_STATE_NE); return 0; } static int kill_fq(struct device *qidev, struct qman_fq *fq) { u32 flags; int ret; ret = qman_retire_fq(fq, &flags); if (ret < 0) { dev_err(qidev, "qman_retire_fq failed: %d\n", ret); return ret; } if (!ret) goto empty_fq; /* Async FQ retirement condition */ if (ret == 1) { /* Retry till FQ gets in retired state */ do { msleep(20); } while (fq->state != qman_fq_state_retired); WARN_ON(fq->flags & QMAN_FQ_STATE_BLOCKOOS); WARN_ON(fq->flags & QMAN_FQ_STATE_ORL); } empty_fq: if (fq->flags & QMAN_FQ_STATE_NE) { ret = empty_retired_fq(qidev, fq); if (ret) { dev_err(qidev, "empty_retired_fq fail for FQ: %u\n", fq->fqid); return ret; } } ret = qman_oos_fq(fq); if (ret) dev_err(qidev, "OOS of FQID: %u failed\n", fq->fqid); qman_destroy_fq(fq); kfree(fq); return ret; } static int empty_caam_fq(struct qman_fq *fq, struct caam_drv_ctx *drv_ctx) { int ret; int retries = 10; struct qm_mcr_queryfq_np np; /* Wait till the older CAAM FQ get empty */ do { ret = qman_query_fq_np(fq, &np); if (ret) return ret; if (!qm_mcr_np_get(&np, frm_cnt)) break; msleep(20); } while (1); /* Wait until pending jobs from this FQ are processed by CAAM */ do { if (refcount_read(&drv_ctx->refcnt) == 1) break; msleep(20); } while (--retries); if (!retries) dev_warn_once(drv_ctx->qidev, "%d frames from FQID %u still pending in CAAM\n", refcount_read(&drv_ctx->refcnt), fq->fqid); return 0; } int caam_drv_ctx_update(struct caam_drv_ctx *drv_ctx, u32 *sh_desc) { int ret; u32 num_words; struct qman_fq *new_fq, *old_fq; struct device *qidev = drv_ctx->qidev; num_words = desc_len(sh_desc); if (num_words > MAX_SDLEN) { dev_err(qidev, "Invalid descriptor len: %d words\n", num_words); return -EINVAL; } /* Note down older req FQ */ old_fq = drv_ctx->req_fq; /* Create a new req FQ in parked state */ new_fq = create_caam_req_fq(drv_ctx->qidev, drv_ctx->rsp_fq, drv_ctx->context_a, 0); if (IS_ERR(new_fq)) { dev_err(qidev, "FQ allocation for shdesc update failed\n"); return PTR_ERR(new_fq); } /* Hook up new FQ to context so that new requests keep queuing */ drv_ctx->req_fq = new_fq; /* Empty and remove the older FQ */ ret = empty_caam_fq(old_fq, drv_ctx); if (ret) { dev_err(qidev, "Old CAAM FQ empty failed: %d\n", ret); /* We can revert to older FQ */ drv_ctx->req_fq = old_fq; if (kill_fq(qidev, new_fq)) dev_warn(qidev, "New CAAM FQ kill failed\n"); return ret; } /* * Re-initialise pre-header. Set RSLS and SDLEN. * Update the shared descriptor for driver context. */ drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) | num_words); drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS); memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc)); dma_sync_single_for_device(qidev, drv_ctx->context_a, sizeof(drv_ctx->sh_desc) + sizeof(drv_ctx->prehdr), DMA_BIDIRECTIONAL); /* Put the new FQ in scheduled state */ ret = qman_schedule_fq(new_fq); if (ret) { dev_err(qidev, "Fail to sched new CAAM FQ, ecode = %d\n", ret); /* * We can kill new FQ and revert to old FQ. * Since the desc is already modified, it is success case */ drv_ctx->req_fq = old_fq; if (kill_fq(qidev, new_fq)) dev_warn(qidev, "New CAAM FQ kill failed\n"); } else if (kill_fq(qidev, old_fq)) { dev_warn(qidev, "Old CAAM FQ kill failed\n"); } return 0; } EXPORT_SYMBOL(caam_drv_ctx_update); struct caam_drv_ctx *caam_drv_ctx_init(struct device *qidev, int *cpu, u32 *sh_desc) { size_t size; u32 num_words; dma_addr_t hwdesc; struct caam_drv_ctx *drv_ctx; const cpumask_t *cpus = qman_affine_cpus(); num_words = desc_len(sh_desc); if (num_words > MAX_SDLEN) { dev_err(qidev, "Invalid descriptor len: %d words\n", num_words); return ERR_PTR(-EINVAL); } drv_ctx = kzalloc(sizeof(*drv_ctx), GFP_ATOMIC); if (!drv_ctx) return ERR_PTR(-ENOMEM); /* * Initialise pre-header - set RSLS and SDLEN - and shared descriptor * and dma-map them. */ drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) | num_words); drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS); memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc)); size = sizeof(drv_ctx->prehdr) + sizeof(drv_ctx->sh_desc); hwdesc = dma_map_single(qidev, drv_ctx->prehdr, size, DMA_BIDIRECTIONAL); if (dma_mapping_error(qidev, hwdesc)) { dev_err(qidev, "DMA map error for preheader + shdesc\n"); kfree(drv_ctx); return ERR_PTR(-ENOMEM); } drv_ctx->context_a = hwdesc; /* If given CPU does not own the portal, choose another one that does */ if (!cpumask_test_cpu(*cpu, cpus)) { int *pcpu = &get_cpu_var(last_cpu); *pcpu = cpumask_next(*pcpu, cpus); if (*pcpu >= nr_cpu_ids) *pcpu = cpumask_first(cpus); *cpu = *pcpu; put_cpu_var(last_cpu); } drv_ctx->cpu = *cpu; /* Find response FQ hooked with this CPU */ drv_ctx->rsp_fq = per_cpu(pcpu_qipriv.rsp_fq, drv_ctx->cpu); /* Attach request FQ */ drv_ctx->req_fq = create_caam_req_fq(qidev, drv_ctx->rsp_fq, hwdesc, QMAN_INITFQ_FLAG_SCHED); if (IS_ERR(drv_ctx->req_fq)) { dev_err(qidev, "create_caam_req_fq failed\n"); dma_unmap_single(qidev, hwdesc, size, DMA_BIDIRECTIONAL); kfree(drv_ctx); return ERR_PTR(-ENOMEM); } /* init reference counter used to track references to request FQ */ refcount_set(&drv_ctx->refcnt, 1); drv_ctx->qidev = qidev; return drv_ctx; } EXPORT_SYMBOL(caam_drv_ctx_init); void *qi_cache_alloc(gfp_t flags) { return kmem_cache_alloc(qi_cache, flags); } EXPORT_SYMBOL(qi_cache_alloc); void qi_cache_free(void *obj) { kmem_cache_free(qi_cache, obj); } EXPORT_SYMBOL(qi_cache_free); static int caam_qi_poll(struct napi_struct *napi, int budget) { struct caam_napi *np = container_of(napi, struct caam_napi, irqtask); int cleaned = qman_p_poll_dqrr(np->p, budget); if (cleaned < budget) { napi_complete(napi); qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); } return cleaned; } void caam_drv_ctx_rel(struct caam_drv_ctx *drv_ctx) { if (IS_ERR_OR_NULL(drv_ctx)) return; /* Remove request FQ */ if (kill_fq(drv_ctx->qidev, drv_ctx->req_fq)) dev_err(drv_ctx->qidev, "Crypto session req FQ kill failed\n"); dma_unmap_single(drv_ctx->qidev, drv_ctx->context_a, sizeof(drv_ctx->sh_desc) + sizeof(drv_ctx->prehdr), DMA_BIDIRECTIONAL); kfree(drv_ctx); } EXPORT_SYMBOL(caam_drv_ctx_rel); static void caam_qi_shutdown(void *data) { int i; struct device *qidev = data; struct caam_qi_priv *priv = &qipriv; const cpumask_t *cpus = qman_affine_cpus(); for_each_cpu(i, cpus) { struct napi_struct *irqtask; irqtask = &per_cpu_ptr(&pcpu_qipriv.caam_napi, i)->irqtask; napi_disable(irqtask); netif_napi_del(irqtask); if (kill_fq(qidev, per_cpu(pcpu_qipriv.rsp_fq, i))) dev_err(qidev, "Rsp FQ kill failed, cpu: %d\n", i); free_netdev(per_cpu(pcpu_qipriv.net_dev, i)); } qman_delete_cgr_safe(&priv->cgr); qman_release_cgrid(priv->cgr.cgrid); kmem_cache_destroy(qi_cache); } static void cgr_cb(struct qman_portal *qm, struct qman_cgr *cgr, int congested) { caam_congested = congested; if (congested) { caam_debugfs_qi_congested(); pr_debug_ratelimited("CAAM entered congestion\n"); } else { pr_debug_ratelimited("CAAM exited congestion\n"); } } static int caam_qi_napi_schedule(struct qman_portal *p, struct caam_napi *np, bool sched_napi) { if (sched_napi) { /* Disable QMan IRQ source and invoke NAPI */ qman_p_irqsource_remove(p, QM_PIRQ_DQRI); np->p = p; napi_schedule(&np->irqtask); return 1; } return 0; } static enum qman_cb_dqrr_result caam_rsp_fq_dqrr_cb(struct qman_portal *p, struct qman_fq *rsp_fq, const struct qm_dqrr_entry *dqrr, bool sched_napi) { struct caam_napi *caam_napi = raw_cpu_ptr(&pcpu_qipriv.caam_napi); struct caam_drv_req *drv_req; const struct qm_fd *fd; struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev->dev); struct caam_drv_private *priv = dev_get_drvdata(qidev); u32 status; if (caam_qi_napi_schedule(p, caam_napi, sched_napi)) return qman_cb_dqrr_stop; fd = &dqrr->fd; drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd)); if (unlikely(!drv_req)) { dev_err(qidev, "Can't find original request for caam response\n"); return qman_cb_dqrr_consume; } refcount_dec(&drv_req->drv_ctx->refcnt); status = be32_to_cpu(fd->status); if (unlikely(status)) { u32 ssrc = status & JRSTA_SSRC_MASK; u8 err_id = status & JRSTA_CCBERR_ERRID_MASK; if (ssrc != JRSTA_SSRC_CCB_ERROR || err_id != JRSTA_CCBERR_ERRID_ICVCHK) dev_err_ratelimited(qidev, "Error: %#x in CAAM response FD\n", status); } if (unlikely(qm_fd_get_format(fd) != qm_fd_compound)) { dev_err(qidev, "Non-compound FD from CAAM\n"); return qman_cb_dqrr_consume; } dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd), sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL); drv_req->cbk(drv_req, status); return qman_cb_dqrr_consume; } static int alloc_rsp_fq_cpu(struct device *qidev, unsigned int cpu) { struct qm_mcc_initfq opts; struct qman_fq *fq; int ret; fq = kzalloc(sizeof(*fq), GFP_KERNEL); if (!fq) return -ENOMEM; fq->cb.dqrr = caam_rsp_fq_dqrr_cb; ret = qman_create_fq(0, QMAN_FQ_FLAG_NO_ENQUEUE | QMAN_FQ_FLAG_DYNAMIC_FQID, fq); if (ret) { dev_err(qidev, "Rsp FQ create failed\n"); kfree(fq); return -ENODEV; } memset(&opts, 0, sizeof(opts)); opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ | QM_INITFQ_WE_CONTEXTB | QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID); opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING | QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE); qm_fqd_set_destwq(&opts.fqd, qman_affine_channel(cpu), 3); opts.fqd.cgid = qipriv.cgr.cgrid; opts.fqd.context_a.stashing.exclusive = QM_STASHING_EXCL_CTX | QM_STASHING_EXCL_DATA; qm_fqd_set_stashing(&opts.fqd, 0, 1, 1); ret = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &opts); if (ret) { dev_err(qidev, "Rsp FQ init failed\n"); kfree(fq); return -ENODEV; } per_cpu(pcpu_qipriv.rsp_fq, cpu) = fq; dev_dbg(qidev, "Allocated response FQ %u for CPU %u", fq->fqid, cpu); return 0; } static int init_cgr(struct device *qidev) { int ret; struct qm_mcc_initcgr opts; const u64 val = (u64)cpumask_weight(qman_affine_cpus()) * MAX_RSP_FQ_BACKLOG_PER_CPU; ret = qman_alloc_cgrid(&qipriv.cgr.cgrid); if (ret) { dev_err(qidev, "CGR alloc failed for rsp FQs: %d\n", ret); return ret; } qipriv.cgr.cb = cgr_cb; memset(&opts, 0, sizeof(opts)); opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES | QM_CGR_WE_MODE); opts.cgr.cscn_en = QM_CGR_EN; opts.cgr.mode = QMAN_CGR_MODE_FRAME; qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, val, 1); ret = qman_create_cgr(&qipriv.cgr, QMAN_CGR_FLAG_USE_INIT, &opts); if (ret) { dev_err(qidev, "Error %d creating CAAM CGRID: %u\n", ret, qipriv.cgr.cgrid); return ret; } dev_dbg(qidev, "Congestion threshold set to %llu\n", val); return 0; } static int alloc_rsp_fqs(struct device *qidev) { int ret, i; const cpumask_t *cpus = qman_affine_cpus(); /*Now create response FQs*/ for_each_cpu(i, cpus) { ret = alloc_rsp_fq_cpu(qidev, i); if (ret) { dev_err(qidev, "CAAM rsp FQ alloc failed, cpu: %u", i); return ret; } } return 0; } static void free_rsp_fqs(void) { int i; const cpumask_t *cpus = qman_affine_cpus(); for_each_cpu(i, cpus) kfree(per_cpu(pcpu_qipriv.rsp_fq, i)); } static void free_caam_qi_pcpu_netdev(const cpumask_t *cpus) { struct caam_qi_pcpu_priv *priv; int i; for_each_cpu(i, cpus) { priv = per_cpu_ptr(&pcpu_qipriv, i); free_netdev(priv->net_dev); } } int caam_qi_init(struct platform_device *caam_pdev) { int err, i; struct device *ctrldev = &caam_pdev->dev, *qidev; struct caam_drv_private *ctrlpriv; const cpumask_t *cpus = qman_affine_cpus(); cpumask_t clean_mask; ctrlpriv = dev_get_drvdata(ctrldev); qidev = ctrldev; /* Initialize the congestion detection */ err = init_cgr(qidev); if (err) { dev_err(qidev, "CGR initialization failed: %d\n", err); return err; } /* Initialise response FQs */ err = alloc_rsp_fqs(qidev); if (err) { dev_err(qidev, "Can't allocate CAAM response FQs: %d\n", err); free_rsp_fqs(); return err; } cpumask_clear(&clean_mask); /* * Enable the NAPI contexts on each of the core which has an affine * portal. */ for_each_cpu(i, cpus) { struct caam_qi_pcpu_priv *priv = per_cpu_ptr(&pcpu_qipriv, i); struct caam_napi *caam_napi = &priv->caam_napi; struct napi_struct *irqtask = &caam_napi->irqtask; struct net_device *net_dev; net_dev = alloc_netdev_dummy(0); if (!net_dev) { err = -ENOMEM; goto fail; } cpumask_set_cpu(i, &clean_mask); priv->net_dev = net_dev; net_dev->dev = *qidev; netif_napi_add_tx_weight(net_dev, irqtask, caam_qi_poll, CAAM_NAPI_WEIGHT); napi_enable(irqtask); } qi_cache = kmem_cache_create("caamqicache", CAAM_QI_MEMCACHE_SIZE, dma_get_cache_alignment(), 0, NULL); if (!qi_cache) { dev_err(qidev, "Can't allocate CAAM cache\n"); err = -ENOMEM; goto fail2; } caam_debugfs_qi_init(ctrlpriv); err = devm_add_action_or_reset(qidev, caam_qi_shutdown, ctrlpriv); if (err) goto fail2; dev_info(qidev, "Linux CAAM Queue I/F driver initialised\n"); return 0; fail2: free_rsp_fqs(); fail: free_caam_qi_pcpu_netdev(&clean_mask); return err; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1