Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kamil Konieczny | 5442 | 59.28% | 5 | 10.87% |
Vladimir Zapolskiy | 2435 | 26.53% | 1 | 2.17% |
Krzysztof Kozlowski | 673 | 7.33% | 17 | 36.96% |
Naveen Krishna Chatradhi | 273 | 2.97% | 6 | 13.04% |
Christoph Manszewski | 133 | 1.45% | 3 | 6.52% |
Ard Biesheuvel | 125 | 1.36% | 3 | 6.52% |
Eric Biggers | 35 | 0.38% | 2 | 4.35% |
Jingoo Han | 32 | 0.35% | 2 | 4.35% |
tangbin | 9 | 0.10% | 1 | 2.17% |
Marek Szyprowski | 8 | 0.09% | 1 | 2.17% |
Nikos Mavrogiannopoulos | 6 | 0.07% | 1 | 2.17% |
Herbert Xu | 4 | 0.04% | 1 | 2.17% |
Axel Lin | 2 | 0.02% | 1 | 2.17% |
Uwe Kleine-König | 2 | 0.02% | 1 | 2.17% |
Gustavo A. R. Silva | 1 | 0.01% | 1 | 2.17% |
Total | 9180 | 46 |
// SPDX-License-Identifier: GPL-2.0 // // Cryptographic API. // // Support for Samsung S5PV210 and Exynos HW acceleration. // // Copyright (C) 2011 NetUP Inc. All rights reserved. // Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved. // // Hash part based on omap-sham.c driver. #include <linux/clk.h> #include <linux/crypto.h> #include <linux/dma-mapping.h> #include <linux/err.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/scatterlist.h> #include <crypto/ctr.h> #include <crypto/aes.h> #include <crypto/algapi.h> #include <crypto/scatterwalk.h> #include <crypto/hash.h> #include <crypto/md5.h> #include <crypto/sha1.h> #include <crypto/sha2.h> #include <crypto/internal/hash.h> #define _SBF(s, v) ((v) << (s)) /* Feed control registers */ #define SSS_REG_FCINTSTAT 0x0000 #define SSS_FCINTSTAT_HPARTINT BIT(7) #define SSS_FCINTSTAT_HDONEINT BIT(5) #define SSS_FCINTSTAT_BRDMAINT BIT(3) #define SSS_FCINTSTAT_BTDMAINT BIT(2) #define SSS_FCINTSTAT_HRDMAINT BIT(1) #define SSS_FCINTSTAT_PKDMAINT BIT(0) #define SSS_REG_FCINTENSET 0x0004 #define SSS_FCINTENSET_HPARTINTENSET BIT(7) #define SSS_FCINTENSET_HDONEINTENSET BIT(5) #define SSS_FCINTENSET_BRDMAINTENSET BIT(3) #define SSS_FCINTENSET_BTDMAINTENSET BIT(2) #define SSS_FCINTENSET_HRDMAINTENSET BIT(1) #define SSS_FCINTENSET_PKDMAINTENSET BIT(0) #define SSS_REG_FCINTENCLR 0x0008 #define SSS_FCINTENCLR_HPARTINTENCLR BIT(7) #define SSS_FCINTENCLR_HDONEINTENCLR BIT(5) #define SSS_FCINTENCLR_BRDMAINTENCLR BIT(3) #define SSS_FCINTENCLR_BTDMAINTENCLR BIT(2) #define SSS_FCINTENCLR_HRDMAINTENCLR BIT(1) #define SSS_FCINTENCLR_PKDMAINTENCLR BIT(0) #define SSS_REG_FCINTPEND 0x000C #define SSS_FCINTPEND_HPARTINTP BIT(7) #define SSS_FCINTPEND_HDONEINTP BIT(5) #define SSS_FCINTPEND_BRDMAINTP BIT(3) #define SSS_FCINTPEND_BTDMAINTP BIT(2) #define SSS_FCINTPEND_HRDMAINTP BIT(1) #define SSS_FCINTPEND_PKDMAINTP BIT(0) #define SSS_REG_FCFIFOSTAT 0x0010 #define SSS_FCFIFOSTAT_BRFIFOFUL BIT(7) #define SSS_FCFIFOSTAT_BRFIFOEMP BIT(6) #define SSS_FCFIFOSTAT_BTFIFOFUL BIT(5) #define SSS_FCFIFOSTAT_BTFIFOEMP BIT(4) #define SSS_FCFIFOSTAT_HRFIFOFUL BIT(3) #define SSS_FCFIFOSTAT_HRFIFOEMP BIT(2) #define SSS_FCFIFOSTAT_PKFIFOFUL BIT(1) #define SSS_FCFIFOSTAT_PKFIFOEMP BIT(0) #define SSS_REG_FCFIFOCTRL 0x0014 #define SSS_FCFIFOCTRL_DESSEL BIT(2) #define SSS_HASHIN_INDEPENDENT _SBF(0, 0x00) #define SSS_HASHIN_CIPHER_INPUT _SBF(0, 0x01) #define SSS_HASHIN_CIPHER_OUTPUT _SBF(0, 0x02) #define SSS_HASHIN_MASK _SBF(0, 0x03) #define SSS_REG_FCBRDMAS 0x0020 #define SSS_REG_FCBRDMAL 0x0024 #define SSS_REG_FCBRDMAC 0x0028 #define SSS_FCBRDMAC_BYTESWAP BIT(1) #define SSS_FCBRDMAC_FLUSH BIT(0) #define SSS_REG_FCBTDMAS 0x0030 #define SSS_REG_FCBTDMAL 0x0034 #define SSS_REG_FCBTDMAC 0x0038 #define SSS_FCBTDMAC_BYTESWAP BIT(1) #define SSS_FCBTDMAC_FLUSH BIT(0) #define SSS_REG_FCHRDMAS 0x0040 #define SSS_REG_FCHRDMAL 0x0044 #define SSS_REG_FCHRDMAC 0x0048 #define SSS_FCHRDMAC_BYTESWAP BIT(1) #define SSS_FCHRDMAC_FLUSH BIT(0) #define SSS_REG_FCPKDMAS 0x0050 #define SSS_REG_FCPKDMAL 0x0054 #define SSS_REG_FCPKDMAC 0x0058 #define SSS_FCPKDMAC_BYTESWAP BIT(3) #define SSS_FCPKDMAC_DESCEND BIT(2) #define SSS_FCPKDMAC_TRANSMIT BIT(1) #define SSS_FCPKDMAC_FLUSH BIT(0) #define SSS_REG_FCPKDMAO 0x005C /* AES registers */ #define SSS_REG_AES_CONTROL 0x00 #define SSS_AES_BYTESWAP_DI BIT(11) #define SSS_AES_BYTESWAP_DO BIT(10) #define SSS_AES_BYTESWAP_IV BIT(9) #define SSS_AES_BYTESWAP_CNT BIT(8) #define SSS_AES_BYTESWAP_KEY BIT(7) #define SSS_AES_KEY_CHANGE_MODE BIT(6) #define SSS_AES_KEY_SIZE_128 _SBF(4, 0x00) #define SSS_AES_KEY_SIZE_192 _SBF(4, 0x01) #define SSS_AES_KEY_SIZE_256 _SBF(4, 0x02) #define SSS_AES_FIFO_MODE BIT(3) #define SSS_AES_CHAIN_MODE_ECB _SBF(1, 0x00) #define SSS_AES_CHAIN_MODE_CBC _SBF(1, 0x01) #define SSS_AES_CHAIN_MODE_CTR _SBF(1, 0x02) #define SSS_AES_MODE_DECRYPT BIT(0) #define SSS_REG_AES_STATUS 0x04 #define SSS_AES_BUSY BIT(2) #define SSS_AES_INPUT_READY BIT(1) #define SSS_AES_OUTPUT_READY BIT(0) #define SSS_REG_AES_IN_DATA(s) (0x10 + (s << 2)) #define SSS_REG_AES_OUT_DATA(s) (0x20 + (s << 2)) #define SSS_REG_AES_IV_DATA(s) (0x30 + (s << 2)) #define SSS_REG_AES_CNT_DATA(s) (0x40 + (s << 2)) #define SSS_REG_AES_KEY_DATA(s) (0x80 + (s << 2)) #define SSS_REG(dev, reg) ((dev)->ioaddr + (SSS_REG_##reg)) #define SSS_READ(dev, reg) __raw_readl(SSS_REG(dev, reg)) #define SSS_WRITE(dev, reg, val) __raw_writel((val), SSS_REG(dev, reg)) #define SSS_AES_REG(dev, reg) ((dev)->aes_ioaddr + SSS_REG_##reg) #define SSS_AES_WRITE(dev, reg, val) __raw_writel((val), \ SSS_AES_REG(dev, reg)) /* HW engine modes */ #define FLAGS_AES_DECRYPT BIT(0) #define FLAGS_AES_MODE_MASK _SBF(1, 0x03) #define FLAGS_AES_CBC _SBF(1, 0x01) #define FLAGS_AES_CTR _SBF(1, 0x02) #define AES_KEY_LEN 16 #define CRYPTO_QUEUE_LEN 1 /* HASH registers */ #define SSS_REG_HASH_CTRL 0x00 #define SSS_HASH_USER_IV_EN BIT(5) #define SSS_HASH_INIT_BIT BIT(4) #define SSS_HASH_ENGINE_SHA1 _SBF(1, 0x00) #define SSS_HASH_ENGINE_MD5 _SBF(1, 0x01) #define SSS_HASH_ENGINE_SHA256 _SBF(1, 0x02) #define SSS_HASH_ENGINE_MASK _SBF(1, 0x03) #define SSS_REG_HASH_CTRL_PAUSE 0x04 #define SSS_HASH_PAUSE BIT(0) #define SSS_REG_HASH_CTRL_FIFO 0x08 #define SSS_HASH_FIFO_MODE_DMA BIT(0) #define SSS_HASH_FIFO_MODE_CPU 0 #define SSS_REG_HASH_CTRL_SWAP 0x0C #define SSS_HASH_BYTESWAP_DI BIT(3) #define SSS_HASH_BYTESWAP_DO BIT(2) #define SSS_HASH_BYTESWAP_IV BIT(1) #define SSS_HASH_BYTESWAP_KEY BIT(0) #define SSS_REG_HASH_STATUS 0x10 #define SSS_HASH_STATUS_MSG_DONE BIT(6) #define SSS_HASH_STATUS_PARTIAL_DONE BIT(4) #define SSS_HASH_STATUS_BUFFER_READY BIT(0) #define SSS_REG_HASH_MSG_SIZE_LOW 0x20 #define SSS_REG_HASH_MSG_SIZE_HIGH 0x24 #define SSS_REG_HASH_PRE_MSG_SIZE_LOW 0x28 #define SSS_REG_HASH_PRE_MSG_SIZE_HIGH 0x2C #define SSS_REG_HASH_IV(s) (0xB0 + ((s) << 2)) #define SSS_REG_HASH_OUT(s) (0x100 + ((s) << 2)) #define HASH_BLOCK_SIZE 64 #define HASH_REG_SIZEOF 4 #define HASH_MD5_MAX_REG (MD5_DIGEST_SIZE / HASH_REG_SIZEOF) #define HASH_SHA1_MAX_REG (SHA1_DIGEST_SIZE / HASH_REG_SIZEOF) #define HASH_SHA256_MAX_REG (SHA256_DIGEST_SIZE / HASH_REG_SIZEOF) /* * HASH bit numbers, used by device, setting in dev->hash_flags with * functions set_bit(), clear_bit() or tested with test_bit() or BIT(), * to keep HASH state BUSY or FREE, or to signal state from irq_handler * to hash_tasklet. SGS keep track of allocated memory for scatterlist */ #define HASH_FLAGS_BUSY 0 #define HASH_FLAGS_FINAL 1 #define HASH_FLAGS_DMA_ACTIVE 2 #define HASH_FLAGS_OUTPUT_READY 3 #define HASH_FLAGS_DMA_READY 4 #define HASH_FLAGS_SGS_COPIED 5 #define HASH_FLAGS_SGS_ALLOCED 6 /* HASH HW constants */ #define BUFLEN HASH_BLOCK_SIZE #define SSS_HASH_QUEUE_LENGTH 10 /** * struct samsung_aes_variant - platform specific SSS driver data * @aes_offset: AES register offset from SSS module's base. * @hash_offset: HASH register offset from SSS module's base. * @clk_names: names of clocks needed to run SSS IP * * Specifies platform specific configuration of SSS module. * Note: A structure for driver specific platform data is used for future * expansion of its usage. */ struct samsung_aes_variant { unsigned int aes_offset; unsigned int hash_offset; const char *clk_names[2]; }; struct s5p_aes_reqctx { unsigned long mode; }; struct s5p_aes_ctx { struct s5p_aes_dev *dev; u8 aes_key[AES_MAX_KEY_SIZE]; u8 nonce[CTR_RFC3686_NONCE_SIZE]; int keylen; }; /** * struct s5p_aes_dev - Crypto device state container * @dev: Associated device * @clk: Clock for accessing hardware * @pclk: APB bus clock necessary to access the hardware * @ioaddr: Mapped IO memory region * @aes_ioaddr: Per-varian offset for AES block IO memory * @irq_fc: Feed control interrupt line * @req: Crypto request currently handled by the device * @ctx: Configuration for currently handled crypto request * @sg_src: Scatter list with source data for currently handled block * in device. This is DMA-mapped into device. * @sg_dst: Scatter list with destination data for currently handled block * in device. This is DMA-mapped into device. * @sg_src_cpy: In case of unaligned access, copied scatter list * with source data. * @sg_dst_cpy: In case of unaligned access, copied scatter list * with destination data. * @tasklet: New request scheduling jib * @queue: Crypto queue * @busy: Indicates whether the device is currently handling some request * thus it uses some of the fields from this state, like: * req, ctx, sg_src/dst (and copies). This essentially * protects against concurrent access to these fields. * @lock: Lock for protecting both access to device hardware registers * and fields related to current request (including the busy field). * @res: Resources for hash. * @io_hash_base: Per-variant offset for HASH block IO memory. * @hash_lock: Lock for protecting hash_req, hash_queue and hash_flags * variable. * @hash_flags: Flags for current HASH op. * @hash_queue: Async hash queue. * @hash_tasklet: New HASH request scheduling job. * @xmit_buf: Buffer for current HASH request transfer into SSS block. * @hash_req: Current request sending to SSS HASH block. * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block. * @hash_sg_cnt: Counter for hash_sg_iter. * * @use_hash: true if HASH algs enabled */ struct s5p_aes_dev { struct device *dev; struct clk *clk; struct clk *pclk; void __iomem *ioaddr; void __iomem *aes_ioaddr; int irq_fc; struct skcipher_request *req; struct s5p_aes_ctx *ctx; struct scatterlist *sg_src; struct scatterlist *sg_dst; struct scatterlist *sg_src_cpy; struct scatterlist *sg_dst_cpy; struct tasklet_struct tasklet; struct crypto_queue queue; bool busy; spinlock_t lock; struct resource *res; void __iomem *io_hash_base; spinlock_t hash_lock; /* protect hash_ vars */ unsigned long hash_flags; struct crypto_queue hash_queue; struct tasklet_struct hash_tasklet; u8 xmit_buf[BUFLEN]; struct ahash_request *hash_req; struct scatterlist *hash_sg_iter; unsigned int hash_sg_cnt; bool use_hash; }; /** * struct s5p_hash_reqctx - HASH request context * @dd: Associated device * @op_update: Current request operation (OP_UPDATE or OP_FINAL) * @digcnt: Number of bytes processed by HW (without buffer[] ones) * @digest: Digest message or IV for partial result * @nregs: Number of HW registers for digest or IV read/write * @engine: Bits for selecting type of HASH in SSS block * @sg: sg for DMA transfer * @sg_len: Length of sg for DMA transfer * @sgl: sg for joining buffer and req->src scatterlist * @skip: Skip offset in req->src for current op * @total: Total number of bytes for current request * @finup: Keep state for finup or final. * @error: Keep track of error. * @bufcnt: Number of bytes holded in buffer[] * @buffer: For byte(s) from end of req->src in UPDATE op */ struct s5p_hash_reqctx { struct s5p_aes_dev *dd; bool op_update; u64 digcnt; u8 digest[SHA256_DIGEST_SIZE]; unsigned int nregs; /* digest_size / sizeof(reg) */ u32 engine; struct scatterlist *sg; unsigned int sg_len; struct scatterlist sgl[2]; unsigned int skip; unsigned int total; bool finup; bool error; u32 bufcnt; u8 buffer[]; }; /** * struct s5p_hash_ctx - HASH transformation context * @dd: Associated device * @flags: Bits for algorithm HASH. * @fallback: Software transformation for zero message or size < BUFLEN. */ struct s5p_hash_ctx { struct s5p_aes_dev *dd; unsigned long flags; struct crypto_shash *fallback; }; static const struct samsung_aes_variant s5p_aes_data = { .aes_offset = 0x4000, .hash_offset = 0x6000, .clk_names = { "secss", }, }; static const struct samsung_aes_variant exynos_aes_data = { .aes_offset = 0x200, .hash_offset = 0x400, .clk_names = { "secss", }, }; static const struct samsung_aes_variant exynos5433_slim_aes_data = { .aes_offset = 0x400, .hash_offset = 0x800, .clk_names = { "aclk", "pclk", }, }; static const struct of_device_id s5p_sss_dt_match[] = { { .compatible = "samsung,s5pv210-secss", .data = &s5p_aes_data, }, { .compatible = "samsung,exynos4210-secss", .data = &exynos_aes_data, }, { .compatible = "samsung,exynos5433-slim-sss", .data = &exynos5433_slim_aes_data, }, { }, }; MODULE_DEVICE_TABLE(of, s5p_sss_dt_match); static inline const struct samsung_aes_variant *find_s5p_sss_version (const struct platform_device *pdev) { if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node)) return of_device_get_match_data(&pdev->dev); return (const struct samsung_aes_variant *) platform_get_device_id(pdev)->driver_data; } static struct s5p_aes_dev *s5p_dev; static void s5p_set_dma_indata(struct s5p_aes_dev *dev, const struct scatterlist *sg) { SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg)); SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg)); } static void s5p_set_dma_outdata(struct s5p_aes_dev *dev, const struct scatterlist *sg) { SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg)); SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg)); } static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg) { int len; if (!*sg) return; len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE); free_pages((unsigned long)sg_virt(*sg), get_order(len)); kfree(*sg); *sg = NULL; } static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg, unsigned int nbytes, int out) { struct scatter_walk walk; if (!nbytes) return; scatterwalk_start(&walk, sg); scatterwalk_copychunks(buf, &walk, nbytes, out); scatterwalk_done(&walk, out, 0); } static void s5p_sg_done(struct s5p_aes_dev *dev) { struct skcipher_request *req = dev->req; struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req); if (dev->sg_dst_cpy) { dev_dbg(dev->dev, "Copying %d bytes of output data back to original place\n", dev->req->cryptlen); s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst, dev->req->cryptlen, 1); } s5p_free_sg_cpy(dev, &dev->sg_src_cpy); s5p_free_sg_cpy(dev, &dev->sg_dst_cpy); if (reqctx->mode & FLAGS_AES_CBC) memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), AES_BLOCK_SIZE); else if (reqctx->mode & FLAGS_AES_CTR) memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), AES_BLOCK_SIZE); } /* Calls the completion. Cannot be called with dev->lock hold. */ static void s5p_aes_complete(struct skcipher_request *req, int err) { skcipher_request_complete(req, err); } static void s5p_unset_outdata(struct s5p_aes_dev *dev) { dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE); } static void s5p_unset_indata(struct s5p_aes_dev *dev) { dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE); } static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src, struct scatterlist **dst) { void *pages; int len; *dst = kmalloc(sizeof(**dst), GFP_ATOMIC); if (!*dst) return -ENOMEM; len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE); pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len)); if (!pages) { kfree(*dst); *dst = NULL; return -ENOMEM; } s5p_sg_copy_buf(pages, src, dev->req->cryptlen, 0); sg_init_table(*dst, 1); sg_set_buf(*dst, pages, len); return 0; } static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg) { if (!sg->length) return -EINVAL; if (!dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE)) return -ENOMEM; dev->sg_dst = sg; return 0; } static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg) { if (!sg->length) return -EINVAL; if (!dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE)) return -ENOMEM; dev->sg_src = sg; return 0; } /* * Returns -ERRNO on error (mapping of new data failed). * On success returns: * - 0 if there is no more data, * - 1 if new transmitting (output) data is ready and its address+length * have to be written to device (by calling s5p_set_dma_outdata()). */ static int s5p_aes_tx(struct s5p_aes_dev *dev) { int ret = 0; s5p_unset_outdata(dev); if (!sg_is_last(dev->sg_dst)) { ret = s5p_set_outdata(dev, sg_next(dev->sg_dst)); if (!ret) ret = 1; } return ret; } /* * Returns -ERRNO on error (mapping of new data failed). * On success returns: * - 0 if there is no more data, * - 1 if new receiving (input) data is ready and its address+length * have to be written to device (by calling s5p_set_dma_indata()). */ static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/) { int ret = 0; s5p_unset_indata(dev); if (!sg_is_last(dev->sg_src)) { ret = s5p_set_indata(dev, sg_next(dev->sg_src)); if (!ret) ret = 1; } return ret; } static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset) { return __raw_readl(dd->io_hash_base + offset); } static inline void s5p_hash_write(struct s5p_aes_dev *dd, u32 offset, u32 value) { __raw_writel(value, dd->io_hash_base + offset); } /** * s5p_set_dma_hashdata() - start DMA with sg * @dev: device * @sg: scatterlist ready to DMA transmit */ static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev, const struct scatterlist *sg) { dev->hash_sg_cnt--; SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg)); SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */ } /** * s5p_hash_rx() - get next hash_sg_iter * @dev: device * * Return: * 2 if there is no more data and it is UPDATE op * 1 if new receiving (input) data is ready and can be written to device * 0 if there is no more data and it is FINAL op */ static int s5p_hash_rx(struct s5p_aes_dev *dev) { if (dev->hash_sg_cnt > 0) { dev->hash_sg_iter = sg_next(dev->hash_sg_iter); return 1; } set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags); if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags)) return 0; return 2; } static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id) { struct platform_device *pdev = dev_id; struct s5p_aes_dev *dev = platform_get_drvdata(pdev); struct skcipher_request *req; int err_dma_tx = 0; int err_dma_rx = 0; int err_dma_hx = 0; bool tx_end = false; bool hx_end = false; unsigned long flags; u32 status, st_bits; int err; spin_lock_irqsave(&dev->lock, flags); /* * Handle rx or tx interrupt. If there is still data (scatterlist did not * reach end), then map next scatterlist entry. * In case of such mapping error, s5p_aes_complete() should be called. * * If there is no more data in tx scatter list, call s5p_aes_complete() * and schedule new tasklet. * * Handle hx interrupt. If there is still data map next entry. */ status = SSS_READ(dev, FCINTSTAT); if (status & SSS_FCINTSTAT_BRDMAINT) err_dma_rx = s5p_aes_rx(dev); if (status & SSS_FCINTSTAT_BTDMAINT) { if (sg_is_last(dev->sg_dst)) tx_end = true; err_dma_tx = s5p_aes_tx(dev); } if (status & SSS_FCINTSTAT_HRDMAINT) err_dma_hx = s5p_hash_rx(dev); st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT | SSS_FCINTSTAT_HRDMAINT); /* clear DMA bits */ SSS_WRITE(dev, FCINTPEND, st_bits); /* clear HASH irq bits */ if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) { /* cannot have both HPART and HDONE */ if (status & SSS_FCINTSTAT_HPARTINT) st_bits = SSS_HASH_STATUS_PARTIAL_DONE; if (status & SSS_FCINTSTAT_HDONEINT) st_bits = SSS_HASH_STATUS_MSG_DONE; set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags); s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits); hx_end = true; /* when DONE or PART, do not handle HASH DMA */ err_dma_hx = 0; } if (err_dma_rx < 0) { err = err_dma_rx; goto error; } if (err_dma_tx < 0) { err = err_dma_tx; goto error; } if (tx_end) { s5p_sg_done(dev); if (err_dma_hx == 1) s5p_set_dma_hashdata(dev, dev->hash_sg_iter); spin_unlock_irqrestore(&dev->lock, flags); s5p_aes_complete(dev->req, 0); /* Device is still busy */ tasklet_schedule(&dev->tasklet); } else { /* * Writing length of DMA block (either receiving or * transmitting) will start the operation immediately, so this * should be done at the end (even after clearing pending * interrupts to not miss the interrupt). */ if (err_dma_tx == 1) s5p_set_dma_outdata(dev, dev->sg_dst); if (err_dma_rx == 1) s5p_set_dma_indata(dev, dev->sg_src); if (err_dma_hx == 1) s5p_set_dma_hashdata(dev, dev->hash_sg_iter); spin_unlock_irqrestore(&dev->lock, flags); } goto hash_irq_end; error: s5p_sg_done(dev); dev->busy = false; req = dev->req; if (err_dma_hx == 1) s5p_set_dma_hashdata(dev, dev->hash_sg_iter); spin_unlock_irqrestore(&dev->lock, flags); s5p_aes_complete(req, err); hash_irq_end: /* * Note about else if: * when hash_sg_iter reaches end and its UPDATE op, * issue SSS_HASH_PAUSE and wait for HPART irq */ if (hx_end) tasklet_schedule(&dev->hash_tasklet); else if (err_dma_hx == 2) s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE, SSS_HASH_PAUSE); return IRQ_HANDLED; } /** * s5p_hash_read_msg() - read message or IV from HW * @req: AHASH request */ static void s5p_hash_read_msg(struct ahash_request *req) { struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); struct s5p_aes_dev *dd = ctx->dd; u32 *hash = (u32 *)ctx->digest; unsigned int i; for (i = 0; i < ctx->nregs; i++) hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i)); } /** * s5p_hash_write_ctx_iv() - write IV for next partial/finup op. * @dd: device * @ctx: request context */ static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd, const struct s5p_hash_reqctx *ctx) { const u32 *hash = (const u32 *)ctx->digest; unsigned int i; for (i = 0; i < ctx->nregs; i++) s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]); } /** * s5p_hash_write_iv() - write IV for next partial/finup op. * @req: AHASH request */ static void s5p_hash_write_iv(struct ahash_request *req) { struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); s5p_hash_write_ctx_iv(ctx->dd, ctx); } /** * s5p_hash_copy_result() - copy digest into req->result * @req: AHASH request */ static void s5p_hash_copy_result(struct ahash_request *req) { const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); if (!req->result) return; memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF); } /** * s5p_hash_dma_flush() - flush HASH DMA * @dev: secss device */ static void s5p_hash_dma_flush(struct s5p_aes_dev *dev) { SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH); } /** * s5p_hash_dma_enable() - enable DMA mode for HASH * @dev: secss device * * enable DMA mode for HASH */ static void s5p_hash_dma_enable(struct s5p_aes_dev *dev) { s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA); } /** * s5p_hash_irq_disable() - disable irq HASH signals * @dev: secss device * @flags: bitfield with irq's to be disabled */ static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags) { SSS_WRITE(dev, FCINTENCLR, flags); } /** * s5p_hash_irq_enable() - enable irq signals * @dev: secss device * @flags: bitfield with irq's to be enabled */ static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags) { SSS_WRITE(dev, FCINTENSET, flags); } /** * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH * @dev: secss device * @hashflow: HASH stream flow with/without crypto AES/DES */ static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow) { unsigned long flags; u32 flow; spin_lock_irqsave(&dev->lock, flags); flow = SSS_READ(dev, FCFIFOCTRL); flow &= ~SSS_HASHIN_MASK; flow |= hashflow; SSS_WRITE(dev, FCFIFOCTRL, flow); spin_unlock_irqrestore(&dev->lock, flags); } /** * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS * @dev: secss device * @hashflow: HASH stream flow with/without AES/DES * * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW, * enable HASH irq's HRDMA, HDONE, HPART */ static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow) { s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR | SSS_FCINTENCLR_HDONEINTENCLR | SSS_FCINTENCLR_HPARTINTENCLR); s5p_hash_dma_flush(dev); s5p_hash_dma_enable(dev); s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK); s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET | SSS_FCINTENSET_HDONEINTENSET | SSS_FCINTENSET_HPARTINTENSET); } /** * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing * @dd: secss device * @length: length for request * @final: true if final op * * Prepare SSS HASH block for processing bytes in DMA mode. If it is called * after previous updates, fill up IV words. For final, calculate and set * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH * length as 2^63 so it will be never reached and set to zero prelow and * prehigh. * * This function does not start DMA transfer. */ static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length, bool final) { struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req); u32 prelow, prehigh, low, high; u32 configflags, swapflags; u64 tmplen; configflags = ctx->engine | SSS_HASH_INIT_BIT; if (likely(ctx->digcnt)) { s5p_hash_write_ctx_iv(dd, ctx); configflags |= SSS_HASH_USER_IV_EN; } if (final) { /* number of bytes for last part */ low = length; high = 0; /* total number of bits prev hashed */ tmplen = ctx->digcnt * 8; prelow = (u32)tmplen; prehigh = (u32)(tmplen >> 32); } else { prelow = 0; prehigh = 0; low = 0; high = BIT(31); } swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO | SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY; s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low); s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high); s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow); s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh); s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags); s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags); } /** * s5p_hash_xmit_dma() - start DMA hash processing * @dd: secss device * @length: length for request * @final: true if final op * * Update digcnt here, as it is needed for finup/final op. */ static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length, bool final) { struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req); unsigned int cnt; cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE); if (!cnt) { dev_err(dd->dev, "dma_map_sg error\n"); ctx->error = true; return -EINVAL; } set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags); dd->hash_sg_iter = ctx->sg; dd->hash_sg_cnt = cnt; s5p_hash_write_ctrl(dd, length, final); ctx->digcnt += length; ctx->total -= length; /* catch last interrupt */ if (final) set_bit(HASH_FLAGS_FINAL, &dd->hash_flags); s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */ return -EINPROGRESS; } /** * s5p_hash_copy_sgs() - copy request's bytes into new buffer * @ctx: request context * @sg: source scatterlist request * @new_len: number of bytes to process from sg * * Allocate new buffer, copy data for HASH into it. If there was xmit_buf * filled, copy it first, then copy data from sg into it. Prepare one sgl[0] * with allocated buffer. * * Set bit in dd->hash_flag so we can free it after irq ends processing. */ static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx, struct scatterlist *sg, unsigned int new_len) { unsigned int pages, len; void *buf; len = new_len + ctx->bufcnt; pages = get_order(len); buf = (void *)__get_free_pages(GFP_ATOMIC, pages); if (!buf) { dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n"); ctx->error = true; return -ENOMEM; } if (ctx->bufcnt) memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt); scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->skip, new_len, 0); sg_init_table(ctx->sgl, 1); sg_set_buf(ctx->sgl, buf, len); ctx->sg = ctx->sgl; ctx->sg_len = 1; ctx->bufcnt = 0; ctx->skip = 0; set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags); return 0; } /** * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy * @ctx: request context * @sg: source scatterlist request * @new_len: number of bytes to process from sg * * Allocate new scatterlist table, copy data for HASH into it. If there was * xmit_buf filled, prepare it first, then copy page, length and offset from * source sg into it, adjusting begin and/or end for skip offset and * hash_later value. * * Resulting sg table will be assigned to ctx->sg. Set flag so we can free * it after irq ends processing. */ static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx, struct scatterlist *sg, unsigned int new_len) { unsigned int skip = ctx->skip, n = sg_nents(sg); struct scatterlist *tmp; unsigned int len; if (ctx->bufcnt) n++; ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL); if (!ctx->sg) { ctx->error = true; return -ENOMEM; } sg_init_table(ctx->sg, n); tmp = ctx->sg; ctx->sg_len = 0; if (ctx->bufcnt) { sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt); tmp = sg_next(tmp); ctx->sg_len++; } while (sg && skip >= sg->length) { skip -= sg->length; sg = sg_next(sg); } while (sg && new_len) { len = sg->length - skip; if (new_len < len) len = new_len; new_len -= len; sg_set_page(tmp, sg_page(sg), len, sg->offset + skip); skip = 0; if (new_len <= 0) sg_mark_end(tmp); tmp = sg_next(tmp); ctx->sg_len++; sg = sg_next(sg); } set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags); return 0; } /** * s5p_hash_prepare_sgs() - prepare sg for processing * @ctx: request context * @sg: source scatterlist request * @new_len: number of bytes to process from sg * @final: final flag * * Check two conditions: (1) if buffers in sg have len aligned data, and (2) * sg table have good aligned elements (list_ok). If one of this checks fails, * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy * data into this buffer and prepare request in sgl, or (2) allocates new sg * table and prepare sg elements. * * For digest or finup all conditions can be good, and we may not need any * fixes. */ static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx, struct scatterlist *sg, unsigned int new_len, bool final) { unsigned int skip = ctx->skip, nbytes = new_len, n = 0; bool aligned = true, list_ok = true; struct scatterlist *sg_tmp = sg; if (!sg || !sg->length || !new_len) return 0; if (skip || !final) list_ok = false; while (nbytes > 0 && sg_tmp) { n++; if (skip >= sg_tmp->length) { skip -= sg_tmp->length; if (!sg_tmp->length) { aligned = false; break; } } else { if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) { aligned = false; break; } if (nbytes < sg_tmp->length - skip) { list_ok = false; break; } nbytes -= sg_tmp->length - skip; skip = 0; } sg_tmp = sg_next(sg_tmp); } if (!aligned) return s5p_hash_copy_sgs(ctx, sg, new_len); else if (!list_ok) return s5p_hash_copy_sg_lists(ctx, sg, new_len); /* * Have aligned data from previous operation and/or current * Note: will enter here only if (digest or finup) and aligned */ if (ctx->bufcnt) { ctx->sg_len = n; sg_init_table(ctx->sgl, 2); sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt); sg_chain(ctx->sgl, 2, sg); ctx->sg = ctx->sgl; ctx->sg_len++; } else { ctx->sg = sg; ctx->sg_len = n; } return 0; } /** * s5p_hash_prepare_request() - prepare request for processing * @req: AHASH request * @update: true if UPDATE op * * Note 1: we can have update flag _and_ final flag at the same time. * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or * either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or * we have final op */ static int s5p_hash_prepare_request(struct ahash_request *req, bool update) { struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); bool final = ctx->finup; int xmit_len, hash_later, nbytes; int ret; if (update) nbytes = req->nbytes; else nbytes = 0; ctx->total = nbytes + ctx->bufcnt; if (!ctx->total) return 0; if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) { /* bytes left from previous request, so fill up to BUFLEN */ int len = BUFLEN - ctx->bufcnt % BUFLEN; if (len > nbytes) len = nbytes; scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src, 0, len, 0); ctx->bufcnt += len; nbytes -= len; ctx->skip = len; } else { ctx->skip = 0; } if (ctx->bufcnt) memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt); xmit_len = ctx->total; if (final) { hash_later = 0; } else { if (IS_ALIGNED(xmit_len, BUFLEN)) xmit_len -= BUFLEN; else xmit_len -= xmit_len & (BUFLEN - 1); hash_later = ctx->total - xmit_len; /* copy hash_later bytes from end of req->src */ /* previous bytes are in xmit_buf, so no overwrite */ scatterwalk_map_and_copy(ctx->buffer, req->src, req->nbytes - hash_later, hash_later, 0); } if (xmit_len > BUFLEN) { ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later, final); if (ret) return ret; } else { /* have buffered data only */ if (unlikely(!ctx->bufcnt)) { /* first update didn't fill up buffer */ scatterwalk_map_and_copy(ctx->dd->xmit_buf, req->src, 0, xmit_len, 0); } sg_init_table(ctx->sgl, 1); sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len); ctx->sg = ctx->sgl; ctx->sg_len = 1; } ctx->bufcnt = hash_later; if (!final) ctx->total = xmit_len; return 0; } /** * s5p_hash_update_dma_stop() - unmap DMA * @dd: secss device * * Unmap scatterlist ctx->sg. */ static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd) { const struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req); dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE); clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags); } /** * s5p_hash_finish() - copy calculated digest to crypto layer * @req: AHASH request */ static void s5p_hash_finish(struct ahash_request *req) { struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); struct s5p_aes_dev *dd = ctx->dd; if (ctx->digcnt) s5p_hash_copy_result(req); dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt); } /** * s5p_hash_finish_req() - finish request * @req: AHASH request * @err: error */ static void s5p_hash_finish_req(struct ahash_request *req, int err) { struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); struct s5p_aes_dev *dd = ctx->dd; unsigned long flags; if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags)) free_pages((unsigned long)sg_virt(ctx->sg), get_order(ctx->sg->length)); if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags)) kfree(ctx->sg); ctx->sg = NULL; dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) | BIT(HASH_FLAGS_SGS_COPIED)); if (!err && !ctx->error) { s5p_hash_read_msg(req); if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags)) s5p_hash_finish(req); } else { ctx->error = true; } spin_lock_irqsave(&dd->hash_lock, flags); dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) | BIT(HASH_FLAGS_DMA_READY) | BIT(HASH_FLAGS_OUTPUT_READY)); spin_unlock_irqrestore(&dd->hash_lock, flags); if (req->base.complete) ahash_request_complete(req, err); } /** * s5p_hash_handle_queue() - handle hash queue * @dd: device s5p_aes_dev * @req: AHASH request * * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the * device then processes the first request from the dd->queue * * Returns: see s5p_hash_final below. */ static int s5p_hash_handle_queue(struct s5p_aes_dev *dd, struct ahash_request *req) { struct crypto_async_request *async_req, *backlog; struct s5p_hash_reqctx *ctx; unsigned long flags; int err = 0, ret = 0; retry: spin_lock_irqsave(&dd->hash_lock, flags); if (req) ret = ahash_enqueue_request(&dd->hash_queue, req); if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) { spin_unlock_irqrestore(&dd->hash_lock, flags); return ret; } backlog = crypto_get_backlog(&dd->hash_queue); async_req = crypto_dequeue_request(&dd->hash_queue); if (async_req) set_bit(HASH_FLAGS_BUSY, &dd->hash_flags); spin_unlock_irqrestore(&dd->hash_lock, flags); if (!async_req) return ret; if (backlog) crypto_request_complete(backlog, -EINPROGRESS); req = ahash_request_cast(async_req); dd->hash_req = req; ctx = ahash_request_ctx(req); err = s5p_hash_prepare_request(req, ctx->op_update); if (err || !ctx->total) goto out; dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n", ctx->op_update, req->nbytes); s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT); if (ctx->digcnt) s5p_hash_write_iv(req); /* restore hash IV */ if (ctx->op_update) { /* HASH_OP_UPDATE */ err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup); if (err != -EINPROGRESS && ctx->finup && !ctx->error) /* no final() after finup() */ err = s5p_hash_xmit_dma(dd, ctx->total, true); } else { /* HASH_OP_FINAL */ err = s5p_hash_xmit_dma(dd, ctx->total, true); } out: if (err != -EINPROGRESS) { /* hash_tasklet_cb will not finish it, so do it here */ s5p_hash_finish_req(req, err); req = NULL; /* * Execute next request immediately if there is anything * in queue. */ goto retry; } return ret; } /** * s5p_hash_tasklet_cb() - hash tasklet * @data: ptr to s5p_aes_dev */ static void s5p_hash_tasklet_cb(unsigned long data) { struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data; if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) { s5p_hash_handle_queue(dd, NULL); return; } if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) { if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags)) { s5p_hash_update_dma_stop(dd); } if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY, &dd->hash_flags)) { /* hash or semi-hash ready */ clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags); goto finish; } } return; finish: /* finish curent request */ s5p_hash_finish_req(dd->hash_req, 0); /* If we are not busy, process next req */ if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) s5p_hash_handle_queue(dd, NULL); } /** * s5p_hash_enqueue() - enqueue request * @req: AHASH request * @op: operation UPDATE (true) or FINAL (false) * * Returns: see s5p_hash_final below. */ static int s5p_hash_enqueue(struct ahash_request *req, bool op) { struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm); ctx->op_update = op; return s5p_hash_handle_queue(tctx->dd, req); } /** * s5p_hash_update() - process the hash input data * @req: AHASH request * * If request will fit in buffer, copy it and return immediately * else enqueue it with OP_UPDATE. * * Returns: see s5p_hash_final below. */ static int s5p_hash_update(struct ahash_request *req) { struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); if (!req->nbytes) return 0; if (ctx->bufcnt + req->nbytes <= BUFLEN) { scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src, 0, req->nbytes, 0); ctx->bufcnt += req->nbytes; return 0; } return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */ } /** * s5p_hash_final() - close up hash and calculate digest * @req: AHASH request * * Note: in final req->src do not have any data, and req->nbytes can be * non-zero. * * If there were no input data processed yet and the buffered hash data is * less than BUFLEN (64) then calculate the final hash immediately by using * SW algorithm fallback. * * Otherwise enqueues the current AHASH request with OP_FINAL operation op * and finalize hash message in HW. Note that if digcnt!=0 then there were * previous update op, so there are always some buffered bytes in ctx->buffer, * which means that ctx->bufcnt!=0 * * Returns: * 0 if the request has been processed immediately, * -EINPROGRESS if the operation has been queued for later execution or is set * to processing by HW, * -EBUSY if queue is full and request should be resubmitted later, * other negative values denotes an error. */ static int s5p_hash_final(struct ahash_request *req) { struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); ctx->finup = true; if (ctx->error) return -EINVAL; /* uncompleted hash is not needed */ if (!ctx->digcnt && ctx->bufcnt < BUFLEN) { struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm); return crypto_shash_tfm_digest(tctx->fallback, ctx->buffer, ctx->bufcnt, req->result); } return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */ } /** * s5p_hash_finup() - process last req->src and calculate digest * @req: AHASH request containing the last update data * * Return values: see s5p_hash_final above. */ static int s5p_hash_finup(struct ahash_request *req) { struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); int err1, err2; ctx->finup = true; err1 = s5p_hash_update(req); if (err1 == -EINPROGRESS || err1 == -EBUSY) return err1; /* * final() has to be always called to cleanup resources even if * update() failed, except EINPROGRESS or calculate digest for small * size */ err2 = s5p_hash_final(req); return err1 ?: err2; } /** * s5p_hash_init() - initialize AHASH request contex * @req: AHASH request * * Init async hash request context. */ static int s5p_hash_init(struct ahash_request *req) { struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm); ctx->dd = tctx->dd; ctx->error = false; ctx->finup = false; ctx->bufcnt = 0; ctx->digcnt = 0; ctx->total = 0; ctx->skip = 0; dev_dbg(tctx->dd->dev, "init: digest size: %d\n", crypto_ahash_digestsize(tfm)); switch (crypto_ahash_digestsize(tfm)) { case MD5_DIGEST_SIZE: ctx->engine = SSS_HASH_ENGINE_MD5; ctx->nregs = HASH_MD5_MAX_REG; break; case SHA1_DIGEST_SIZE: ctx->engine = SSS_HASH_ENGINE_SHA1; ctx->nregs = HASH_SHA1_MAX_REG; break; case SHA256_DIGEST_SIZE: ctx->engine = SSS_HASH_ENGINE_SHA256; ctx->nregs = HASH_SHA256_MAX_REG; break; default: ctx->error = true; return -EINVAL; } return 0; } /** * s5p_hash_digest - calculate digest from req->src * @req: AHASH request * * Return values: see s5p_hash_final above. */ static int s5p_hash_digest(struct ahash_request *req) { return s5p_hash_init(req) ?: s5p_hash_finup(req); } /** * s5p_hash_cra_init_alg - init crypto alg transformation * @tfm: crypto transformation */ static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm) { struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm); const char *alg_name = crypto_tfm_alg_name(tfm); tctx->dd = s5p_dev; /* Allocate a fallback and abort if it failed. */ tctx->fallback = crypto_alloc_shash(alg_name, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(tctx->fallback)) { pr_err("fallback alloc fails for '%s'\n", alg_name); return PTR_ERR(tctx->fallback); } crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct s5p_hash_reqctx) + BUFLEN); return 0; } /** * s5p_hash_cra_init - init crypto tfm * @tfm: crypto transformation */ static int s5p_hash_cra_init(struct crypto_tfm *tfm) { return s5p_hash_cra_init_alg(tfm); } /** * s5p_hash_cra_exit - exit crypto tfm * @tfm: crypto transformation * * free allocated fallback */ static void s5p_hash_cra_exit(struct crypto_tfm *tfm) { struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm); crypto_free_shash(tctx->fallback); tctx->fallback = NULL; } /** * s5p_hash_export - export hash state * @req: AHASH request * @out: buffer for exported state */ static int s5p_hash_export(struct ahash_request *req, void *out) { const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt); return 0; } /** * s5p_hash_import - import hash state * @req: AHASH request * @in: buffer with state to be imported from */ static int s5p_hash_import(struct ahash_request *req, const void *in) { struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm); const struct s5p_hash_reqctx *ctx_in = in; memcpy(ctx, in, sizeof(*ctx) + BUFLEN); if (ctx_in->bufcnt > BUFLEN) { ctx->error = true; return -EINVAL; } ctx->dd = tctx->dd; ctx->error = false; return 0; } static struct ahash_alg algs_sha1_md5_sha256[] = { { .init = s5p_hash_init, .update = s5p_hash_update, .final = s5p_hash_final, .finup = s5p_hash_finup, .digest = s5p_hash_digest, .export = s5p_hash_export, .import = s5p_hash_import, .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN, .halg.digestsize = SHA1_DIGEST_SIZE, .halg.base = { .cra_name = "sha1", .cra_driver_name = "exynos-sha1", .cra_priority = 100, .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = HASH_BLOCK_SIZE, .cra_ctxsize = sizeof(struct s5p_hash_ctx), .cra_module = THIS_MODULE, .cra_init = s5p_hash_cra_init, .cra_exit = s5p_hash_cra_exit, } }, { .init = s5p_hash_init, .update = s5p_hash_update, .final = s5p_hash_final, .finup = s5p_hash_finup, .digest = s5p_hash_digest, .export = s5p_hash_export, .import = s5p_hash_import, .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN, .halg.digestsize = MD5_DIGEST_SIZE, .halg.base = { .cra_name = "md5", .cra_driver_name = "exynos-md5", .cra_priority = 100, .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = HASH_BLOCK_SIZE, .cra_ctxsize = sizeof(struct s5p_hash_ctx), .cra_module = THIS_MODULE, .cra_init = s5p_hash_cra_init, .cra_exit = s5p_hash_cra_exit, } }, { .init = s5p_hash_init, .update = s5p_hash_update, .final = s5p_hash_final, .finup = s5p_hash_finup, .digest = s5p_hash_digest, .export = s5p_hash_export, .import = s5p_hash_import, .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN, .halg.digestsize = SHA256_DIGEST_SIZE, .halg.base = { .cra_name = "sha256", .cra_driver_name = "exynos-sha256", .cra_priority = 100, .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = HASH_BLOCK_SIZE, .cra_ctxsize = sizeof(struct s5p_hash_ctx), .cra_module = THIS_MODULE, .cra_init = s5p_hash_cra_init, .cra_exit = s5p_hash_cra_exit, } } }; static void s5p_set_aes(struct s5p_aes_dev *dev, const u8 *key, const u8 *iv, const u8 *ctr, unsigned int keylen) { void __iomem *keystart; if (iv) memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv, AES_BLOCK_SIZE); if (ctr) memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), ctr, AES_BLOCK_SIZE); if (keylen == AES_KEYSIZE_256) keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0); else if (keylen == AES_KEYSIZE_192) keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2); else keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4); memcpy_toio(keystart, key, keylen); } static bool s5p_is_sg_aligned(struct scatterlist *sg) { while (sg) { if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE)) return false; sg = sg_next(sg); } return true; } static int s5p_set_indata_start(struct s5p_aes_dev *dev, struct skcipher_request *req) { struct scatterlist *sg; int err; dev->sg_src_cpy = NULL; sg = req->src; if (!s5p_is_sg_aligned(sg)) { dev_dbg(dev->dev, "At least one unaligned source scatter list, making a copy\n"); err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy); if (err) return err; sg = dev->sg_src_cpy; } err = s5p_set_indata(dev, sg); if (err) { s5p_free_sg_cpy(dev, &dev->sg_src_cpy); return err; } return 0; } static int s5p_set_outdata_start(struct s5p_aes_dev *dev, struct skcipher_request *req) { struct scatterlist *sg; int err; dev->sg_dst_cpy = NULL; sg = req->dst; if (!s5p_is_sg_aligned(sg)) { dev_dbg(dev->dev, "At least one unaligned dest scatter list, making a copy\n"); err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy); if (err) return err; sg = dev->sg_dst_cpy; } err = s5p_set_outdata(dev, sg); if (err) { s5p_free_sg_cpy(dev, &dev->sg_dst_cpy); return err; } return 0; } static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode) { struct skcipher_request *req = dev->req; u32 aes_control; unsigned long flags; int err; u8 *iv, *ctr; /* This sets bit [13:12] to 00, which selects 128-bit counter */ aes_control = SSS_AES_KEY_CHANGE_MODE; if (mode & FLAGS_AES_DECRYPT) aes_control |= SSS_AES_MODE_DECRYPT; if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) { aes_control |= SSS_AES_CHAIN_MODE_CBC; iv = req->iv; ctr = NULL; } else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) { aes_control |= SSS_AES_CHAIN_MODE_CTR; iv = NULL; ctr = req->iv; } else { iv = NULL; /* AES_ECB */ ctr = NULL; } if (dev->ctx->keylen == AES_KEYSIZE_192) aes_control |= SSS_AES_KEY_SIZE_192; else if (dev->ctx->keylen == AES_KEYSIZE_256) aes_control |= SSS_AES_KEY_SIZE_256; aes_control |= SSS_AES_FIFO_MODE; /* as a variant it is possible to use byte swapping on DMA side */ aes_control |= SSS_AES_BYTESWAP_DI | SSS_AES_BYTESWAP_DO | SSS_AES_BYTESWAP_IV | SSS_AES_BYTESWAP_KEY | SSS_AES_BYTESWAP_CNT; spin_lock_irqsave(&dev->lock, flags); SSS_WRITE(dev, FCINTENCLR, SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR); SSS_WRITE(dev, FCFIFOCTRL, 0x00); err = s5p_set_indata_start(dev, req); if (err) goto indata_error; err = s5p_set_outdata_start(dev, req); if (err) goto outdata_error; SSS_AES_WRITE(dev, AES_CONTROL, aes_control); s5p_set_aes(dev, dev->ctx->aes_key, iv, ctr, dev->ctx->keylen); s5p_set_dma_indata(dev, dev->sg_src); s5p_set_dma_outdata(dev, dev->sg_dst); SSS_WRITE(dev, FCINTENSET, SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET); spin_unlock_irqrestore(&dev->lock, flags); return; outdata_error: s5p_unset_indata(dev); indata_error: s5p_sg_done(dev); dev->busy = false; spin_unlock_irqrestore(&dev->lock, flags); s5p_aes_complete(req, err); } static void s5p_tasklet_cb(unsigned long data) { struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data; struct crypto_async_request *async_req, *backlog; struct s5p_aes_reqctx *reqctx; unsigned long flags; spin_lock_irqsave(&dev->lock, flags); backlog = crypto_get_backlog(&dev->queue); async_req = crypto_dequeue_request(&dev->queue); if (!async_req) { dev->busy = false; spin_unlock_irqrestore(&dev->lock, flags); return; } spin_unlock_irqrestore(&dev->lock, flags); if (backlog) crypto_request_complete(backlog, -EINPROGRESS); dev->req = skcipher_request_cast(async_req); dev->ctx = crypto_tfm_ctx(dev->req->base.tfm); reqctx = skcipher_request_ctx(dev->req); s5p_aes_crypt_start(dev, reqctx->mode); } static int s5p_aes_handle_req(struct s5p_aes_dev *dev, struct skcipher_request *req) { unsigned long flags; int err; spin_lock_irqsave(&dev->lock, flags); err = crypto_enqueue_request(&dev->queue, &req->base); if (dev->busy) { spin_unlock_irqrestore(&dev->lock, flags); return err; } dev->busy = true; spin_unlock_irqrestore(&dev->lock, flags); tasklet_schedule(&dev->tasklet); return err; } static int s5p_aes_crypt(struct skcipher_request *req, unsigned long mode) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req); struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm); struct s5p_aes_dev *dev = ctx->dev; if (!req->cryptlen) return 0; if (!IS_ALIGNED(req->cryptlen, AES_BLOCK_SIZE) && ((mode & FLAGS_AES_MODE_MASK) != FLAGS_AES_CTR)) { dev_dbg(dev->dev, "request size is not exact amount of AES blocks\n"); return -EINVAL; } reqctx->mode = mode; return s5p_aes_handle_req(dev, req); } static int s5p_aes_setkey(struct crypto_skcipher *cipher, const u8 *key, unsigned int keylen) { struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher); struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm); if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 && keylen != AES_KEYSIZE_256) return -EINVAL; memcpy(ctx->aes_key, key, keylen); ctx->keylen = keylen; return 0; } static int s5p_aes_ecb_encrypt(struct skcipher_request *req) { return s5p_aes_crypt(req, 0); } static int s5p_aes_ecb_decrypt(struct skcipher_request *req) { return s5p_aes_crypt(req, FLAGS_AES_DECRYPT); } static int s5p_aes_cbc_encrypt(struct skcipher_request *req) { return s5p_aes_crypt(req, FLAGS_AES_CBC); } static int s5p_aes_cbc_decrypt(struct skcipher_request *req) { return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC); } static int s5p_aes_ctr_crypt(struct skcipher_request *req) { return s5p_aes_crypt(req, FLAGS_AES_CTR); } static int s5p_aes_init_tfm(struct crypto_skcipher *tfm) { struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm); ctx->dev = s5p_dev; crypto_skcipher_set_reqsize(tfm, sizeof(struct s5p_aes_reqctx)); return 0; } static struct skcipher_alg algs[] = { { .base.cra_name = "ecb(aes)", .base.cra_driver_name = "ecb-aes-s5p", .base.cra_priority = 100, .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct s5p_aes_ctx), .base.cra_alignmask = 0x0f, .base.cra_module = THIS_MODULE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = s5p_aes_setkey, .encrypt = s5p_aes_ecb_encrypt, .decrypt = s5p_aes_ecb_decrypt, .init = s5p_aes_init_tfm, }, { .base.cra_name = "cbc(aes)", .base.cra_driver_name = "cbc-aes-s5p", .base.cra_priority = 100, .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct s5p_aes_ctx), .base.cra_alignmask = 0x0f, .base.cra_module = THIS_MODULE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = s5p_aes_setkey, .encrypt = s5p_aes_cbc_encrypt, .decrypt = s5p_aes_cbc_decrypt, .init = s5p_aes_init_tfm, }, { .base.cra_name = "ctr(aes)", .base.cra_driver_name = "ctr-aes-s5p", .base.cra_priority = 100, .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .base.cra_blocksize = 1, .base.cra_ctxsize = sizeof(struct s5p_aes_ctx), .base.cra_alignmask = 0x0f, .base.cra_module = THIS_MODULE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = s5p_aes_setkey, .encrypt = s5p_aes_ctr_crypt, .decrypt = s5p_aes_ctr_crypt, .init = s5p_aes_init_tfm, }, }; static int s5p_aes_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; int i, j, err; const struct samsung_aes_variant *variant; struct s5p_aes_dev *pdata; struct resource *res; unsigned int hash_i; if (s5p_dev) return -EEXIST; pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) return -ENOMEM; variant = find_s5p_sss_version(pdev); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) return -EINVAL; /* * Note: HASH and PRNG uses the same registers in secss, avoid * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG * is enabled in config. We need larger size for HASH registers in * secss, current describe only AES/DES */ if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) { if (variant == &exynos_aes_data) { res->end += 0x300; pdata->use_hash = true; } } pdata->res = res; pdata->ioaddr = devm_ioremap_resource(dev, res); if (IS_ERR(pdata->ioaddr)) { if (!pdata->use_hash) return PTR_ERR(pdata->ioaddr); /* try AES without HASH */ res->end -= 0x300; pdata->use_hash = false; pdata->ioaddr = devm_ioremap_resource(dev, res); if (IS_ERR(pdata->ioaddr)) return PTR_ERR(pdata->ioaddr); } pdata->clk = devm_clk_get(dev, variant->clk_names[0]); if (IS_ERR(pdata->clk)) return dev_err_probe(dev, PTR_ERR(pdata->clk), "failed to find secss clock %s\n", variant->clk_names[0]); err = clk_prepare_enable(pdata->clk); if (err < 0) { dev_err(dev, "Enabling clock %s failed, err %d\n", variant->clk_names[0], err); return err; } if (variant->clk_names[1]) { pdata->pclk = devm_clk_get(dev, variant->clk_names[1]); if (IS_ERR(pdata->pclk)) { err = dev_err_probe(dev, PTR_ERR(pdata->pclk), "failed to find clock %s\n", variant->clk_names[1]); goto err_clk; } err = clk_prepare_enable(pdata->pclk); if (err < 0) { dev_err(dev, "Enabling clock %s failed, err %d\n", variant->clk_names[0], err); goto err_clk; } } else { pdata->pclk = NULL; } spin_lock_init(&pdata->lock); spin_lock_init(&pdata->hash_lock); pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset; pdata->io_hash_base = pdata->ioaddr + variant->hash_offset; pdata->irq_fc = platform_get_irq(pdev, 0); if (pdata->irq_fc < 0) { err = pdata->irq_fc; dev_warn(dev, "feed control interrupt is not available.\n"); goto err_irq; } err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL, s5p_aes_interrupt, IRQF_ONESHOT, pdev->name, pdev); if (err < 0) { dev_warn(dev, "feed control interrupt is not available.\n"); goto err_irq; } pdata->busy = false; pdata->dev = dev; platform_set_drvdata(pdev, pdata); s5p_dev = pdata; tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata); crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN); for (i = 0; i < ARRAY_SIZE(algs); i++) { err = crypto_register_skcipher(&algs[i]); if (err) goto err_algs; } if (pdata->use_hash) { tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb, (unsigned long)pdata); crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH); for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256); hash_i++) { struct ahash_alg *alg; alg = &algs_sha1_md5_sha256[hash_i]; err = crypto_register_ahash(alg); if (err) { dev_err(dev, "can't register '%s': %d\n", alg->halg.base.cra_driver_name, err); goto err_hash; } } } dev_info(dev, "s5p-sss driver registered\n"); return 0; err_hash: for (j = hash_i - 1; j >= 0; j--) crypto_unregister_ahash(&algs_sha1_md5_sha256[j]); tasklet_kill(&pdata->hash_tasklet); res->end -= 0x300; err_algs: if (i < ARRAY_SIZE(algs)) dev_err(dev, "can't register '%s': %d\n", algs[i].base.cra_name, err); for (j = 0; j < i; j++) crypto_unregister_skcipher(&algs[j]); tasklet_kill(&pdata->tasklet); err_irq: clk_disable_unprepare(pdata->pclk); err_clk: clk_disable_unprepare(pdata->clk); s5p_dev = NULL; return err; } static void s5p_aes_remove(struct platform_device *pdev) { struct s5p_aes_dev *pdata = platform_get_drvdata(pdev); int i; for (i = 0; i < ARRAY_SIZE(algs); i++) crypto_unregister_skcipher(&algs[i]); tasklet_kill(&pdata->tasklet); if (pdata->use_hash) { for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--) crypto_unregister_ahash(&algs_sha1_md5_sha256[i]); pdata->res->end -= 0x300; tasklet_kill(&pdata->hash_tasklet); pdata->use_hash = false; } clk_disable_unprepare(pdata->pclk); clk_disable_unprepare(pdata->clk); s5p_dev = NULL; } static struct platform_driver s5p_aes_crypto = { .probe = s5p_aes_probe, .remove_new = s5p_aes_remove, .driver = { .name = "s5p-secss", .of_match_table = s5p_sss_dt_match, }, }; module_platform_driver(s5p_aes_crypto); MODULE_DESCRIPTION("S5PV210 AES hw acceleration support."); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>"); MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1